#include "RISCVTargetMachine.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVMacroFusion.h"
#include "RISCVTargetObjectFile.h"
#include "RISCVTargetTransformInfo.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
static cl::opt<bool> EnableRedundantCopyElimination(
"riscv-enable-copyelim",
cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVTarget() {
RegisterTargetMachine<RISCVTargetMachine> X(getTheRISCV32Target());
RegisterTargetMachine<RISCVTargetMachine> Y(getTheRISCV64Target());
auto *PR = PassRegistry::getPassRegistry();
initializeGlobalISel(*PR);
initializeRISCVMakeCompressibleOptPass(*PR);
initializeRISCVGatherScatterLoweringPass(*PR);
initializeRISCVCodeGenPreparePass(*PR);
initializeRISCVMergeBaseOffsetOptPass(*PR);
initializeRISCVSExtWRemovalPass(*PR);
initializeRISCVExpandPseudoPass(*PR);
initializeRISCVInsertVSETVLIPass(*PR);
}
static StringRef computeDataLayout(const Triple &TT) {
if (TT.isArch64Bit())
return "e-m:e-p:64:64-i64:64-i128:128-n64-S128";
assert(TT.isArch32Bit() && "only RV32 and RV64 are currently supported");
return "e-m:e-p:32:32-i64:64-n32-S128";
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
Optional<Reloc::Model> RM) {
return RM.value_or(Reloc::Static);
}
RISCVTargetMachine::RISCVTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, RM),
getEffectiveCodeModel(CM, CodeModel::Small), OL),
TLOF(std::make_unique<RISCVELFTargetObjectFile>()) {
initAsmInfo();
setMachineOutliner(true);
setSupportsDefaultOutlining(true);
}
const RISCVSubtarget *
RISCVTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
std::string Key = CPU + TuneCPU + FS;
auto &I = SubtargetMap[Key];
if (!I) {
resetTargetOptions(F);
auto ABIName = Options.MCOptions.getABIName();
if (const MDString *ModuleTargetABI = dyn_cast_or_null<MDString>(
F.getParent()->getModuleFlag("target-abi"))) {
auto TargetABI = RISCVABI::getTargetABI(ABIName);
if (TargetABI != RISCVABI::ABI_Unknown &&
ModuleTargetABI->getString() != ABIName) {
report_fatal_error("-target-abi option != target-abi module flag");
}
ABIName = ModuleTargetABI->getString();
}
I = std::make_unique<RISCVSubtarget>(TargetTriple, CPU, TuneCPU, FS, ABIName, *this);
}
return I.get();
}
TargetTransformInfo
RISCVTargetMachine::getTargetTransformInfo(const Function &F) const {
return TargetTransformInfo(RISCVTTIImpl(this, F));
}
bool RISCVTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DstAS) const {
return true;
}
namespace {
class RISCVPassConfig : public TargetPassConfig {
public:
RISCVPassConfig(RISCVTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
RISCVTargetMachine &getRISCVTargetMachine() const {
return getTM<RISCVTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
if (ST.hasMacroFusion()) {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createRISCVMacroFusionDAGMutation());
return DAG;
}
return nullptr;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
if (ST.hasMacroFusion()) {
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
DAG->addMutation(createRISCVMacroFusionDAGMutation());
return DAG;
}
return nullptr;
}
void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreSched2() override;
void addMachineSSAOptimization() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
};
}
TargetPassConfig *RISCVTargetMachine::createPassConfig(PassManagerBase &PM) {
return new RISCVPassConfig(*this, PM);
}
void RISCVPassConfig::addIRPasses() {
addPass(createAtomicExpandPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createRISCVGatherScatterLoweringPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createRISCVCodeGenPreparePass());
TargetPassConfig::addIRPasses();
}
bool RISCVPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOpt::None) {
addPass(createBarrierNoopPass());
}
return false;
}
bool RISCVPassConfig::addInstSelector() {
addPass(createRISCVISelDag(getRISCVTargetMachine(), getOptLevel()));
return false;
}
bool RISCVPassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
bool RISCVPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool RISCVPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool RISCVPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
return false;
}
void RISCVPassConfig::addPreSched2() {}
void RISCVPassConfig::addPreEmitPass() {
addPass(&BranchRelaxationPassID);
addPass(createRISCVMakeCompressibleOptPass());
}
void RISCVPassConfig::addPreEmitPass2() {
addPass(createRISCVExpandPseudoPass());
addPass(createRISCVExpandAtomicPseudoPass());
}
void RISCVPassConfig::addMachineSSAOptimization() {
TargetPassConfig::addMachineSSAOptimization();
if (TM->getTargetTriple().getArch() == Triple::riscv64)
addPass(createRISCVSExtWRemovalPass());
}
void RISCVPassConfig::addPreRegAlloc() {
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createRISCVMergeBaseOffsetOptPass());
addPass(createRISCVInsertVSETVLIPass());
}
void RISCVPassConfig::addPostRegAlloc() {
if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
addPass(createRISCVRedundantCopyEliminationPass());
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::RISCVMachineFunctionInfo();
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<RISCVMachineFunctionInfo>();
return new yaml::RISCVMachineFunctionInfo(*MFI);
}
bool RISCVTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const auto &YamlMFI =
static_cast<const yaml::RISCVMachineFunctionInfo &>(MFI);
PFS.MF.getInfo<RISCVMachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
return false;
}