; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck %s ; PR22428: https://llvm.org/bugs/show_bug.cgi?id=22428 ; f1, f2, f3, and f4 should use an integer logic instruction. ; f5, f6, f9, and f10 should use an FP (SSE) logic instruction. ; ; f7 and f8 are less clear. ; ; For f7 and f8, the SSE instructions don't take immediate operands, so if we ; use one of those, we either have to load a constant from memory or move the ; scalar immediate value from an integer register over to an SSE register. ; Optimizing for size may affect that decision. Also, note that there are no ; scalar versions of the FP logic ops, so if we want to fold a load into a ; logic op, we have to load or splat a 16-byte vector constant. ; 1 FP operand, 1 int operand, int result define i32 @f1(float %x, i32 %y) { ; CHECK-LABEL: f1: ; CHECK: # %bb.0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl %edi, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, %y ret i32 %and } ; Swap operands of the logic op. define i32 @f2(float %x, i32 %y) { ; CHECK-LABEL: f2: ; CHECK: # %bb.0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl %edi, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %y, %bc1 ret i32 %and } ; 1 FP operand, 1 constant operand, int result define i32 @f3(float %x) { ; CHECK-LABEL: f3: ; CHECK: # %bb.0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl $1, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, 1 ret i32 %and } ; Swap operands of the logic op. define i32 @f4(float %x) { ; CHECK-LABEL: f4: ; CHECK: # %bb.0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl $2, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 2, %bc1 ret i32 %and } ; 1 FP operand, 1 integer operand, FP result define float @f5(float %x, i32 %y) { ; CHECK-LABEL: f5: ; CHECK: # %bb.0: ; CHECK-NEXT: movd %edi, %xmm1 ; CHECK-NEXT: pand %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, %y %bc2 = bitcast i32 %and to float ret float %bc2 } ; Swap operands of the logic op. define float @f6(float %x, i32 %y) { ; CHECK-LABEL: f6: ; CHECK: # %bb.0: ; CHECK-NEXT: movd %edi, %xmm1 ; CHECK-NEXT: pand %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %y, %bc1 %bc2 = bitcast i32 %and to float ret float %bc2 } ; 1 FP operand, 1 constant operand, FP result define float @f7(float %x) { ; CHECK-LABEL: f7: ; CHECK: # %bb.0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, 3 %bc2 = bitcast i32 %and to float ret float %bc2 } ; Swap operands of the logic op. define float @f8(float %x) { ; CHECK-LABEL: f8: ; CHECK: # %bb.0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 4, %bc1 %bc2 = bitcast i32 %and to float ret float %bc2 } ; 2 FP operands, int result define i32 @f9(float %x, float %y) { ; CHECK-LABEL: f9: ; CHECK: # %bb.0: ; CHECK-NEXT: pand %xmm1, %xmm0 ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = and i32 %bc1, %bc2 ret i32 %and } ; 2 FP operands, FP result define float @f10(float %x, float %y) { ; CHECK-LABEL: f10: ; CHECK: # %bb.0: ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = and i32 %bc1, %bc2 %bc3 = bitcast i32 %and to float ret float %bc3 } define float @or(float %x, float %y) { ; CHECK-LABEL: or: ; CHECK: # %bb.0: ; CHECK-NEXT: orps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = or i32 %bc1, %bc2 %bc3 = bitcast i32 %and to float ret float %bc3 } define float @xor(float %x, float %y) { ; CHECK-LABEL: xor: ; CHECK: # %bb.0: ; CHECK-NEXT: xorps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = xor i32 %bc1, %bc2 %bc3 = bitcast i32 %and to float ret float %bc3 } define float @f7_or(float %x) { ; CHECK-LABEL: f7_or: ; CHECK: # %bb.0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: orps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = or i32 %bc1, 3 %bc2 = bitcast i32 %and to float ret float %bc2 } define float @f7_xor(float %x) { ; CHECK-LABEL: f7_xor: ; CHECK: # %bb.0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: xorps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = xor i32 %bc1, 3 %bc2 = bitcast i32 %and to float ret float %bc2 } ; Make sure that doubles work too. define double @doubles(double %x, double %y) { ; CHECK-LABEL: doubles: ; CHECK: # %bb.0: ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast double %x to i64 %bc2 = bitcast double %y to i64 %and = and i64 %bc1, %bc2 %bc3 = bitcast i64 %and to double ret double %bc3 } define double @f7_double(double %x) { ; CHECK-LABEL: f7_double: ; CHECK: # %bb.0: ; CHECK-NEXT: movsd {{.*#+}} xmm1 = mem[0],zero ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast double %x to i64 %and = and i64 %bc1, 3 %bc2 = bitcast i64 %and to double ret double %bc2 } ; Grabbing the sign bit is a special case that could be handled ; by movmskps/movmskpd, but if we're not shifting it over, then ; a simple FP logic op is cheaper. define float @movmsk(float %x) { ; CHECK-LABEL: movmsk: ; CHECK: # %bb.0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, 2147483648 %bc2 = bitcast i32 %and to float ret float %bc2 } define double @bitcast_fabs(double %x) { ; CHECK-LABEL: bitcast_fabs: ; CHECK: # %bb.0: ; CHECK-NEXT: andps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast double %x to i64 %and = and i64 %bc1, 9223372036854775807 %bc2 = bitcast i64 %and to double ret double %bc2 } define float @bitcast_fneg(float %x) { ; CHECK-LABEL: bitcast_fneg: ; CHECK: # %bb.0: ; CHECK-NEXT: xorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %xor = xor i32 %bc1, 2147483648 %bc2 = bitcast i32 %xor to float ret float %bc2 } define <2 x double> @bitcast_fabs_vec(<2 x double> %x) { ; CHECK-LABEL: bitcast_fabs_vec: ; CHECK: # %bb.0: ; CHECK-NEXT: andps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <2 x double> %x to <2 x i64> %and = and <2 x i64> %bc1, <i64 9223372036854775807, i64 9223372036854775807> %bc2 = bitcast <2 x i64> %and to <2 x double> ret <2 x double> %bc2 } define <4 x float> @bitcast_fneg_vec(<4 x float> %x) { ; CHECK-LABEL: bitcast_fneg_vec: ; CHECK: # %bb.0: ; CHECK-NEXT: xorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <4 x float> %x to <4 x i32> %xor = xor <4 x i32> %bc1, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648> %bc2 = bitcast <4 x i32> %xor to <4 x float> ret <4 x float> %bc2 } define float @fadd_bitcast_fneg(float %x, float %y) { ; CHECK-LABEL: fadd_bitcast_fneg: ; CHECK: # %bb.0: ; CHECK-NEXT: subss %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %y to i32 %xor = xor i32 %bc1, 2147483648 %bc2 = bitcast i32 %xor to float %fadd = fadd float %x, %bc2 ret float %fadd } define float @fsub_bitcast_fneg(float %x, float %y) { ; CHECK-LABEL: fsub_bitcast_fneg: ; CHECK: # %bb.0: ; CHECK-NEXT: addss %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %y to i32 %xor = xor i32 %bc1, 2147483648 %bc2 = bitcast i32 %xor to float %fsub = fsub float %x, %bc2 ret float %fsub } define float @nabsf(float %a) { ; CHECK-LABEL: nabsf: ; CHECK: # %bb.0: ; CHECK-NEXT: orps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %conv = bitcast float %a to i32 %and = or i32 %conv, -2147483648 %conv1 = bitcast i32 %and to float ret float %conv1 } define double @nabsd(double %a) { ; CHECK-LABEL: nabsd: ; CHECK: # %bb.0: ; CHECK-NEXT: orps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %conv = bitcast double %a to i64 %and = or i64 %conv, -9223372036854775808 %conv1 = bitcast i64 %and to double ret double %conv1 } define <4 x float> @nabsv4f32(<4 x float> %a) { ; CHECK-LABEL: nabsv4f32: ; CHECK: # %bb.0: ; CHECK-NEXT: orps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %conv = bitcast <4 x float> %a to <4 x i32> %and = or <4 x i32> %conv, <i32 -2147483648, i32 -2147483648, i32 -2147483648, i32 -2147483648> %conv1 = bitcast <4 x i32> %and to <4 x float> ret <4 x float> %conv1 } define <2 x double> @nabsv2d64(<2 x double> %a) { ; CHECK-LABEL: nabsv2d64: ; CHECK: # %bb.0: ; CHECK-NEXT: orps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; CHECK-NEXT: retq %conv = bitcast <2 x double> %a to <2 x i64> %and = or <2 x i64> %conv, <i64 -9223372036854775808, i64 -9223372036854775808> %conv1 = bitcast <2 x i64> %and to <2 x double> ret <2 x double> %conv1 } define <4 x float> @fadd_bitcast_fneg_vec(<4 x float> %x, <4 x float> %y) { ; CHECK-LABEL: fadd_bitcast_fneg_vec: ; CHECK: # %bb.0: ; CHECK-NEXT: subps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <4 x float> %y to <4 x i32> %xor = xor <4 x i32> %bc1, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648> %bc2 = bitcast <4 x i32> %xor to <4 x float> %fadd = fadd <4 x float> %x, %bc2 ret <4 x float> %fadd } define <4 x float> @fadd_bitcast_fneg_vec_undef_elts(<4 x float> %x, <4 x float> %y) { ; CHECK-LABEL: fadd_bitcast_fneg_vec_undef_elts: ; CHECK: # %bb.0: ; CHECK-NEXT: subps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <4 x float> %y to <4 x i32> %xor = xor <4 x i32> %bc1, <i32 2147483648, i32 2147483648, i32 undef, i32 2147483648> %bc2 = bitcast <4 x i32> %xor to <4 x float> %fadd = fadd <4 x float> %x, %bc2 ret <4 x float> %fadd } define <4 x float> @fsub_bitcast_fneg_vec(<4 x float> %x, <4 x float> %y) { ; CHECK-LABEL: fsub_bitcast_fneg_vec: ; CHECK: # %bb.0: ; CHECK-NEXT: addps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <4 x float> %y to <4 x i32> %xor = xor <4 x i32> %bc1, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648> %bc2 = bitcast <4 x i32> %xor to <4 x float> %fsub = fsub <4 x float> %x, %bc2 ret <4 x float> %fsub } define <4 x float> @fsub_bitcast_fneg_vec_undef_elts(<4 x float> %x, <4 x float> %y) { ; CHECK-LABEL: fsub_bitcast_fneg_vec_undef_elts: ; CHECK: # %bb.0: ; CHECK-NEXT: addps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <4 x float> %y to <4 x i32> %xor = xor <4 x i32> %bc1, <i32 undef, i32 2147483648, i32 undef, i32 2147483648> %bc2 = bitcast <4 x i32> %xor to <4 x float> %fsub = fsub <4 x float> %x, %bc2 ret <4 x float> %fsub } define <4 x float> @fadd_bitcast_fneg_vec_width(<4 x float> %x, <4 x float> %y) { ; CHECK-LABEL: fadd_bitcast_fneg_vec_width: ; CHECK: # %bb.0: ; CHECK-NEXT: xorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm1 ; CHECK-NEXT: addps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <4 x float> %y to <2 x i64> %xor = xor <2 x i64> %bc1, <i64 -9223372034707292160, i64 -9223372034707292160> %bc2 = bitcast <2 x i64> %xor to <4 x float> %fadd = fadd <4 x float> %x, %bc2 ret <4 x float> %fadd } define <4 x float> @fsub_bitcast_fneg_vec_width(<4 x float> %x, <4 x float> %y) { ; CHECK-LABEL: fsub_bitcast_fneg_vec_width: ; CHECK: # %bb.0: ; CHECK-NEXT: xorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm1 ; CHECK-NEXT: subps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast <4 x float> %y to <2 x i64> %xor = xor <2 x i64> %bc1, <i64 -9223372034707292160, i64 -9223372034707292160> %bc2 = bitcast <2 x i64> %xor to <4 x float> %fsub = fsub <4 x float> %x, %bc2 ret <4 x float> %fsub }