#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
"forget-scev-loop-unroll", cl::init(false), cl::Hidden,
cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
" the current top-most loop. This is sometimes preferred to reduce"
" compile time."));
static cl::opt<unsigned>
UnrollThreshold("unroll-threshold", cl::Hidden,
cl::desc("The cost threshold for loop unrolling"));
static cl::opt<unsigned>
UnrollOptSizeThreshold(
"unroll-optsize-threshold", cl::init(0), cl::Hidden,
cl::desc("The cost threshold for loop unrolling when optimizing for "
"size"));
static cl::opt<unsigned> UnrollPartialThreshold(
"unroll-partial-threshold", cl::Hidden,
cl::desc("The cost threshold for partial loop unrolling"));
static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
"unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
"to the threshold when aggressively unrolling a loop due to the "
"dynamic cost savings. If completely unrolling a loop will reduce "
"the total runtime from X to Y, we boost the loop unroll "
"threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
"X/Y). This limit avoids excessive code bloat."));
static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
"unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
cl::desc("Don't allow loop unrolling to simulate more than this number of"
"iterations when checking full unroll profitability"));
static cl::opt<unsigned> UnrollCount(
"unroll-count", cl::Hidden,
cl::desc("Use this unroll count for all loops including those with "
"unroll_count pragma values, for testing purposes"));
static cl::opt<unsigned> UnrollMaxCount(
"unroll-max-count", cl::Hidden,
cl::desc("Set the max unroll count for partial and runtime unrolling, for"
"testing purposes"));
static cl::opt<unsigned> UnrollFullMaxCount(
"unroll-full-max-count", cl::Hidden,
cl::desc(
"Set the max unroll count for full unrolling, for testing purposes"));
static cl::opt<bool>
UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
cl::desc("Allows loops to be partially unrolled until "
"-unroll-threshold loop size is reached."));
static cl::opt<bool> UnrollAllowRemainder(
"unroll-allow-remainder", cl::Hidden,
cl::desc("Allow generation of a loop remainder (extra iterations) "
"when unrolling a loop."));
static cl::opt<bool>
UnrollRuntime("unroll-runtime", cl::Hidden,
cl::desc("Unroll loops with run-time trip counts"));
static cl::opt<unsigned> UnrollMaxUpperBound(
"unroll-max-upperbound", cl::init(8), cl::Hidden,
cl::desc(
"The max of trip count upper bound that is considered in unrolling"));
static cl::opt<unsigned> PragmaUnrollThreshold(
"pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
cl::desc("Unrolled size limit for loops with an unroll(full) or "
"unroll_count pragma."));
static cl::opt<unsigned> FlatLoopTripCountThreshold(
"flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
cl::desc("If the runtime tripcount for the loop is lower than the "
"threshold, the loop is considered as flat and will be less "
"aggressively unrolled."));
static cl::opt<bool> UnrollUnrollRemainder(
"unroll-remainder", cl::Hidden,
cl::desc("Allow the loop remainder to be unrolled."));
static cl::opt<bool> UnrollRevisitChildLoops(
"unroll-revisit-child-loops", cl::Hidden,
cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
"This shouldn't typically be needed as child loops (or their "
"clones) were already visited."));
static cl::opt<unsigned> UnrollThresholdAggressive(
"unroll-threshold-aggressive", cl::init(300), cl::Hidden,
cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
"optimizations"));
static cl::opt<unsigned>
UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
cl::Hidden,
cl::desc("Default threshold (max size of unrolled "
"loop), used in all but O3 optimizations"));
static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
OptimizationRemarkEmitter &ORE, int OptLevel,
Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
TargetTransformInfo::UnrollingPreferences UP;
UP.Threshold =
OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
UP.MaxPercentThresholdBoost = 400;
UP.OptSizeThreshold = UnrollOptSizeThreshold;
UP.PartialThreshold = 150;
UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
UP.Count = 0;
UP.DefaultUnrollRuntimeCount = 8;
UP.MaxCount = std::numeric_limits<unsigned>::max();
UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
UP.BEInsns = 2;
UP.Partial = false;
UP.Runtime = false;
UP.AllowRemainder = true;
UP.UnrollRemainder = false;
UP.AllowExpensiveTripCount = false;
UP.Force = false;
UP.UpperBound = false;
UP.UnrollAndJam = false;
UP.UnrollAndJamInnerLoopThreshold = 60;
UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
TTI.getUnrollingPreferences(L, SE, UP, &ORE);
bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
(hasUnrollTransformation(L) != TM_ForcedByUser &&
llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
PGSOQueryType::IRPass));
if (OptForSize) {
UP.Threshold = UP.OptSizeThreshold;
UP.PartialThreshold = UP.PartialOptSizeThreshold;
UP.MaxPercentThresholdBoost = 100;
}
if (UnrollThreshold.getNumOccurrences() > 0)
UP.Threshold = UnrollThreshold;
if (UnrollPartialThreshold.getNumOccurrences() > 0)
UP.PartialThreshold = UnrollPartialThreshold;
if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
if (UnrollMaxCount.getNumOccurrences() > 0)
UP.MaxCount = UnrollMaxCount;
if (UnrollFullMaxCount.getNumOccurrences() > 0)
UP.FullUnrollMaxCount = UnrollFullMaxCount;
if (UnrollAllowPartial.getNumOccurrences() > 0)
UP.Partial = UnrollAllowPartial;
if (UnrollAllowRemainder.getNumOccurrences() > 0)
UP.AllowRemainder = UnrollAllowRemainder;
if (UnrollRuntime.getNumOccurrences() > 0)
UP.Runtime = UnrollRuntime;
if (UnrollMaxUpperBound == 0)
UP.UpperBound = false;
if (UnrollUnrollRemainder.getNumOccurrences() > 0)
UP.UnrollRemainder = UnrollUnrollRemainder;
if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
if (UserThreshold) {
UP.Threshold = *UserThreshold;
UP.PartialThreshold = *UserThreshold;
}
if (UserCount)
UP.Count = *UserCount;
if (UserAllowPartial)
UP.Partial = *UserAllowPartial;
if (UserRuntime)
UP.Runtime = *UserRuntime;
if (UserUpperBound)
UP.UpperBound = *UserUpperBound;
if (UserFullUnrollMaxCount)
UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
return UP;
}
namespace {
struct UnrolledInstState {
Instruction *I;
int Iteration : 30;
unsigned IsFree : 1;
unsigned IsCounted : 1;
};
struct UnrolledInstStateKeyInfo {
using PtrInfo = DenseMapInfo<Instruction *>;
using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
static inline UnrolledInstState getEmptyKey() {
return {PtrInfo::getEmptyKey(), 0, 0, 0};
}
static inline UnrolledInstState getTombstoneKey() {
return {PtrInfo::getTombstoneKey(), 0, 0, 0};
}
static inline unsigned getHashValue(const UnrolledInstState &S) {
return PairInfo::getHashValue({S.I, S.Iteration});
}
static inline bool isEqual(const UnrolledInstState &LHS,
const UnrolledInstState &RHS) {
return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
}
};
struct EstimatedUnrollCost {
unsigned UnrolledCost;
unsigned RolledDynamicCost;
};
struct PragmaInfo {
PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
: UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
PragmaEnableUnroll(PEU) {}
const bool UserUnrollCount;
const bool PragmaFullUnroll;
const unsigned PragmaCount;
const bool PragmaEnableUnroll;
};
}
static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
const SmallPtrSetImpl<const Value *> &EphValues,
const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
unsigned MaxIterationsCountToAnalyze) {
assert(MaxIterationsCountToAnalyze <
(unsigned)(std::numeric_limits<int>::max() / 2) &&
"The unroll iterations max is too large!");
if (!L->isInnermost())
return None;
if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
return None;
SmallSetVector<BasicBlock *, 16> BBWorklist;
SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
DenseMap<Value *, Value *> SimplifiedValues;
SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
InstructionCost UnrolledCost = 0;
InstructionCost RolledDynamicCost = 0;
DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
SmallVector<Instruction *, 16> CostWorklist;
SmallVector<Instruction *, 4> PHIUsedList;
auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
assert(Iteration >= 0 && "Cannot have a negative iteration!");
assert(CostWorklist.empty() && "Must start with an empty cost list");
assert(PHIUsedList.empty() && "Must start with an empty phi used list");
CostWorklist.push_back(&RootI);
TargetTransformInfo::TargetCostKind CostKind =
RootI.getFunction()->hasMinSize() ?
TargetTransformInfo::TCK_CodeSize :
TargetTransformInfo::TCK_SizeAndLatency;
for (;; --Iteration) {
do {
Instruction *I = CostWorklist.pop_back_val();
auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
if (CostIter == InstCostMap.end())
continue;
auto &Cost = *CostIter;
if (Cost.IsCounted)
continue;
Cost.IsCounted = true;
if (auto *PhiI = dyn_cast<PHINode>(I))
if (PhiI->getParent() == L->getHeader()) {
assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
"inherently simplify during unrolling.");
if (Iteration == 0)
continue;
if (auto *OpI = dyn_cast<Instruction>(
PhiI->getIncomingValueForBlock(L->getLoopLatch())))
if (L->contains(OpI))
PHIUsedList.push_back(OpI);
continue;
}
if (!Cost.IsFree) {
UnrolledCost += TTI.getUserCost(I, CostKind);
LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
<< Iteration << "): ");
LLVM_DEBUG(I->dump());
}
for (Value *Op : I->operands()) {
auto *OpI = dyn_cast<Instruction>(Op);
if (!OpI || !L->contains(OpI))
continue;
CostWorklist.push_back(OpI);
}
} while (!CostWorklist.empty());
if (PHIUsedList.empty())
break;
assert(Iteration > 0 &&
"Cannot track PHI-used values past the first iteration!");
CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
PHIUsedList.clear();
}
};
assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
assert(L->isLCSSAForm(DT) &&
"Must have loops in LCSSA form to track live-out values.");
LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
TargetTransformInfo::TargetCostKind CostKind =
L->getHeader()->getParent()->hasMinSize() ?
TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
for (Instruction &I : *L->getHeader()) {
auto *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
break;
assert(
PHI->getNumIncomingValues() == 2 &&
"Must have an incoming value only for the preheader and the latch.");
Value *V = PHI->getIncomingValueForBlock(
Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
if (Iteration != 0 && SimplifiedValues.count(V))
V = SimplifiedValues.lookup(V);
SimplifiedInputValues.push_back({PHI, V});
}
SimplifiedValues.clear();
while (!SimplifiedInputValues.empty())
SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
BBWorklist.clear();
BBWorklist.insert(L->getHeader());
for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
BasicBlock *BB = BBWorklist[Idx];
for (Instruction &I : *BB) {
if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
continue;
RolledDynamicCost += TTI.getUserCost(&I, CostKind);
bool IsFree = Analyzer.visit(I);
bool Inserted = InstCostMap.insert({&I, (int)Iteration,
(unsigned)IsFree,
false}).second;
(void)Inserted;
assert(Inserted && "Cannot have a state for an unvisited instruction!");
if (IsFree)
continue;
if (auto *CI = dyn_cast<CallInst>(&I)) {
const Function *Callee = CI->getCalledFunction();
if (!Callee || TTI.isLoweredToCall(Callee)) {
LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
return None;
}
}
if (I.mayHaveSideEffects())
AddCostRecursively(I, Iteration);
if (UnrolledCost > MaxUnrolledLoopSize) {
LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
<< " UnrolledCost: " << UnrolledCost
<< ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
<< "\n");
return None;
}
}
Instruction *TI = BB->getTerminator();
auto getSimplifiedConstant = [&](Value *V) -> Constant * {
if (SimplifiedValues.count(V))
V = SimplifiedValues.lookup(V);
return dyn_cast<Constant>(V);
};
BasicBlock *KnownSucc = nullptr;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional()) {
if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
if (isa<UndefValue>(SimpleCond))
KnownSucc = BI->getSuccessor(0);
else if (ConstantInt *SimpleCondVal =
dyn_cast<ConstantInt>(SimpleCond))
KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
if (isa<UndefValue>(SimpleCond))
KnownSucc = SI->getSuccessor(0);
else if (ConstantInt *SimpleCondVal =
dyn_cast<ConstantInt>(SimpleCond))
KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
}
}
if (KnownSucc) {
if (L->contains(KnownSucc))
BBWorklist.insert(KnownSucc);
else
ExitWorklist.insert({BB, KnownSucc});
continue;
}
for (BasicBlock *Succ : successors(BB))
if (L->contains(Succ))
BBWorklist.insert(Succ);
else
ExitWorklist.insert({BB, Succ});
AddCostRecursively(*TI, Iteration);
}
if (UnrolledCost == RolledDynamicCost) {
LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
<< " UnrolledCost: " << UnrolledCost << "\n");
return None;
}
}
while (!ExitWorklist.empty()) {
BasicBlock *ExitingBB, *ExitBB;
std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
for (Instruction &I : *ExitBB) {
auto *PN = dyn_cast<PHINode>(&I);
if (!PN)
break;
Value *Op = PN->getIncomingValueForBlock(ExitingBB);
if (auto *OpI = dyn_cast<Instruction>(Op))
if (L->contains(OpI))
AddCostRecursively(*OpI, TripCount - 1);
}
}
assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
"All instructions must have a valid cost, whether the "
"loop is rolled or unrolled.");
LLVM_DEBUG(dbgs() << "Analysis finished:\n"
<< "UnrolledCost: " << UnrolledCost << ", "
<< "RolledDynamicCost: " << RolledDynamicCost << "\n");
return {{unsigned(*UnrolledCost.getValue()),
unsigned(*RolledDynamicCost.getValue())}};
}
InstructionCost llvm::ApproximateLoopSize(
const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
const TargetTransformInfo &TTI,
const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
CodeMetrics Metrics;
for (BasicBlock *BB : L->blocks())
Metrics.analyzeBasicBlock(BB, TTI, EphValues);
NumCalls = Metrics.NumInlineCandidates;
NotDuplicatable = Metrics.notDuplicatable;
Convergent = Metrics.convergent;
InstructionCost LoopSize = Metrics.NumInsts;
if (LoopSize.isValid() && *LoopSize.getValue() < BEInsns + 1)
LoopSize = BEInsns + 1;
return LoopSize;
}
static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
if (MDNode *LoopID = L->getLoopID())
return GetUnrollMetadata(LoopID, Name);
return nullptr;
}
static bool hasUnrollFullPragma(const Loop *L) {
return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}
static bool hasUnrollEnablePragma(const Loop *L) {
return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
}
static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}
static unsigned unrollCountPragmaValue(const Loop *L) {
MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
if (MD) {
assert(MD->getNumOperands() == 2 &&
"Unroll count hint metadata should have two operands.");
unsigned Count =
mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
assert(Count >= 1 && "Unroll count must be positive.");
return Count;
}
return 0;
}
static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
unsigned MaxPercentThresholdBoost) {
if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
return 100;
else if (Cost.UnrolledCost != 0)
return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
MaxPercentThresholdBoost);
else
return MaxPercentThresholdBoost;
}
class UnrollCostEstimator {
const unsigned LoopSize;
public:
UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
uint64_t
getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP,
const unsigned CountOverwrite = 0) const {
assert(LoopSize >= UP.BEInsns &&
"LoopSize should not be less than BEInsns!");
if (CountOverwrite)
return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite +
UP.BEInsns;
else
return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count +
UP.BEInsns;
}
};
static Optional<unsigned>
shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
const unsigned TripMultiple, const unsigned TripCount,
const UnrollCostEstimator UCE,
const TargetTransformInfo::UnrollingPreferences &UP) {
if (PInfo.UserUnrollCount) {
if (UP.AllowRemainder &&
UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
return (unsigned)UnrollCount;
}
if (PInfo.PragmaCount > 0) {
if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
return PInfo.PragmaCount;
}
if (PInfo.PragmaFullUnroll && TripCount != 0)
return TripCount;
return None;
}
static Optional<unsigned> shouldFullUnroll(
Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
const TargetTransformInfo::UnrollingPreferences &UP) {
assert(FullUnrollTripCount && "should be non-zero!");
if (FullUnrollTripCount > UP.FullUnrollMaxCount)
return None;
if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
return FullUnrollTripCount;
if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
L, FullUnrollTripCount, DT, SE, EphValues, TTI,
UP.Threshold * UP.MaxPercentThresholdBoost / 100,
UP.MaxIterationsCountToAnalyze)) {
unsigned Boost =
getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
return FullUnrollTripCount;
}
return None;
}
static Optional<unsigned>
shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
const UnrollCostEstimator UCE,
const TargetTransformInfo::UnrollingPreferences &UP) {
if (!TripCount)
return None;
if (!UP.Partial) {
LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
<< "-unroll-allow-partial not given\n");
return 0;
}
unsigned count = UP.Count;
if (count == 0)
count = TripCount;
if (UP.PartialThreshold != NoThreshold) {
if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
(LoopSize - UP.BEInsns);
if (count > UP.MaxCount)
count = UP.MaxCount;
while (count != 0 && TripCount % count != 0)
count--;
if (UP.AllowRemainder && count <= 1) {
count = UP.DefaultUnrollRuntimeCount;
while (count != 0 &&
UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
count >>= 1;
}
if (count < 2) {
count = 0;
}
} else {
count = TripCount;
}
if (count > UP.MaxCount)
count = UP.MaxCount;
LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n");
return count;
}
bool llvm::computeUnrollCount(
Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
TargetTransformInfo::UnrollingPreferences &UP,
TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
UnrollCostEstimator UCE(*L, LoopSize);
const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
const bool PragmaFullUnroll = hasUnrollFullPragma(L);
const unsigned PragmaCount = unrollCountPragmaValue(L);
const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
PragmaEnableUnroll || UserUnrollCount;
PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
PragmaEnableUnroll);
if (PP.PeelCount) {
if (UnrollCount.getNumOccurrences() > 0) {
report_fatal_error("Cannot specify both explicit peel count and "
"explicit unroll count", false);
}
UP.Count = 1;
UP.Runtime = false;
return true;
}
if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
UCE, UP)) {
UP.Count = *UnrollFactor;
if (UserUnrollCount || (PragmaCount > 0)) {
UP.AllowExpensiveTripCount = true;
UP.Force = true;
}
UP.Runtime |= (PragmaCount > 0);
return ExplicitUnroll;
} else {
if (ExplicitUnroll && TripCount != 0) {
UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
UP.PartialThreshold =
std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
}
}
UP.Count = 0;
if (TripCount) {
UP.Count = TripCount;
if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
TripCount, UCE, UP)) {
UP.Count = *UnrollFactor;
UseUpperBound = false;
return ExplicitUnroll;
}
}
if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
MaxTripCount <= UnrollMaxUpperBound) {
UP.Count = MaxTripCount;
if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
MaxTripCount, UCE, UP)) {
UP.Count = *UnrollFactor;
UseUpperBound = true;
return ExplicitUnroll;
}
}
computePeelCount(L, LoopSize, PP, TripCount, DT, SE, UP.Threshold);
if (PP.PeelCount) {
UP.Runtime = false;
UP.Count = 1;
return ExplicitUnroll;
}
if (TripCount)
UP.Partial |= ExplicitUnroll;
if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
UP.Count = *UnrollFactor;
if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
UP.Count != TripCount)
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE,
"FullUnrollAsDirectedTooLarge",
L->getStartLoc(), L->getHeader())
<< "Unable to fully unroll loop as directed by unroll pragma "
"because "
"unrolled size is too large.";
});
if (UP.PartialThreshold != NoThreshold) {
if (UP.Count == 0) {
if (PragmaEnableUnroll)
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE,
"UnrollAsDirectedTooLarge",
L->getStartLoc(), L->getHeader())
<< "Unable to unroll loop as directed by unroll(enable) "
"pragma "
"because unrolled size is too large.";
});
}
}
return ExplicitUnroll;
}
assert(TripCount == 0 &&
"All cases when TripCount is constant should be covered here.");
if (PragmaFullUnroll)
ORE->emit([&]() {
return OptimizationRemarkMissed(
DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
L->getStartLoc(), L->getHeader())
<< "Unable to fully unroll loop as directed by unroll(full) "
"pragma "
"because loop has a runtime trip count.";
});
if (hasRuntimeUnrollDisablePragma(L)) {
UP.Count = 0;
return false;
}
if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
UP.Count = 0;
return false;
}
if (L->getHeader()->getParent()->hasProfileData()) {
if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
if (*ProfileTripCount < FlatLoopTripCountThreshold)
return false;
else
UP.AllowExpensiveTripCount = true;
}
}
UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
if (!UP.Runtime) {
LLVM_DEBUG(
dbgs() << " will not try to unroll loop with runtime trip count "
<< "-unroll-runtime not given\n");
UP.Count = 0;
return false;
}
if (UP.Count == 0)
UP.Count = UP.DefaultUnrollRuntimeCount;
while (UP.Count != 0 &&
UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
UP.Count >>= 1;
#ifndef NDEBUG
unsigned OrigCount = UP.Count;
#endif
if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
while (UP.Count != 0 && TripMultiple % UP.Count != 0)
UP.Count >>= 1;
LLVM_DEBUG(
dbgs() << "Remainder loop is restricted (that could architecture "
"specific or because the loop contains a convergent "
"instruction), so unroll count must divide the trip "
"multiple, "
<< TripMultiple << ". Reducing unroll count from " << OrigCount
<< " to " << UP.Count << ".\n");
using namespace ore;
if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE,
"DifferentUnrollCountFromDirected",
L->getStartLoc(), L->getHeader())
<< "Unable to unroll loop the number of times directed by "
"unroll_count pragma because remainder loop is restricted "
"(that could architecture specific or because the loop "
"contains a convergent instruction) and so must have an "
"unroll "
"count that divides the loop trip multiple of "
<< NV("TripMultiple", TripMultiple) << ". Unrolling instead "
<< NV("UnrollCount", UP.Count) << " time(s).";
});
}
if (UP.Count > UP.MaxCount)
UP.Count = UP.MaxCount;
if (MaxTripCount && UP.Count > MaxTripCount)
UP.Count = MaxTripCount;
LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
<< "\n");
if (UP.Count < 2)
UP.Count = 0;
return ExplicitUnroll;
}
static LoopUnrollResult tryToUnrollLoop(
Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
const TargetTransformInfo &TTI, AssumptionCache &AC,
OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
Optional<bool> ProvidedAllowPeeling,
Optional<bool> ProvidedAllowProfileBasedPeeling,
Optional<unsigned> ProvidedFullUnrollMaxCount) {
LLVM_DEBUG(dbgs() << "Loop Unroll: F["
<< L->getHeader()->getParent()->getName() << "] Loop %"
<< L->getHeader()->getName() << "\n");
TransformationMode TM = hasUnrollTransformation(L);
if (TM & TM_Disable)
return LoopUnrollResult::Unmodified;
Loop *ParentL = L->getParentLoop();
if (ParentL != nullptr &&
hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
hasUnrollTransformation(L) != TM_ForcedByUser) {
LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
<< " llvm.loop.unroll_and_jam.\n");
return LoopUnrollResult::Unmodified;
}
if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
hasUnrollTransformation(L) != TM_ForcedByUser) {
LLVM_DEBUG(
dbgs()
<< " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
return LoopUnrollResult::Unmodified;
}
if (!L->isLoopSimplifyForm()) {
LLVM_DEBUG(
dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
return LoopUnrollResult::Unmodified;
}
if (OnlyWhenForced && !(TM & TM_Enable))
return LoopUnrollResult::Unmodified;
bool OptForSize = L->getHeader()->getParent()->hasOptSize();
unsigned NumInlineCandidates;
bool NotDuplicatable;
bool Convergent;
TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
ProvidedFullUnrollMaxCount);
TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
!OptForSize)
return LoopUnrollResult::Unmodified;
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
InstructionCost LoopSizeIC =
ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
TTI, EphValues, UP.BEInsns);
LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSizeIC << "\n");
if (!LoopSizeIC.isValid()) {
LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions"
<< " with invalid cost.\n");
return LoopUnrollResult::Unmodified;
}
unsigned LoopSize = *LoopSizeIC.getValue();
if (NotDuplicatable) {
LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
<< " instructions.\n");
return LoopUnrollResult::Unmodified;
}
if (OptForSize)
UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
if (NumInlineCandidates != 0) {
LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return LoopUnrollResult::Unmodified;
}
unsigned TripCount = 0;
unsigned TripMultiple = 1;
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBlock : ExitingBlocks)
if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
if (!TripCount || TC < TripCount)
TripCount = TripMultiple = TC;
if (!TripCount) {
BasicBlock *ExitingBlock = L->getLoopLatch();
if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
ExitingBlock = L->getExitingBlock();
if (ExitingBlock)
TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
}
if (Convergent)
UP.AllowRemainder = false;
unsigned MaxTripCount = 0;
bool MaxOrZero = false;
if (!TripCount) {
MaxTripCount = SE.getSmallConstantMaxTripCount(L);
MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
}
bool UseUpperBound = false;
bool IsCountSetExplicitly = computeUnrollCount(
L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
TripMultiple, LoopSize, UP, PP, UseUpperBound);
if (!UP.Count)
return LoopUnrollResult::Unmodified;
if (PP.PeelCount) {
assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
<< " with iteration count " << PP.PeelCount << "!\n");
ORE.emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
L->getHeader())
<< " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
<< " iterations";
});
if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA)) {
simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
if (PP.PeelProfiledIterations)
L->setLoopAlreadyUnrolled();
return LoopUnrollResult::PartiallyUnrolled;
}
return LoopUnrollResult::Unmodified;
}
UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
MDNode *OrigLoopID = L->getLoopID();
Loop *RemainderLoop = nullptr;
LoopUnrollResult UnrollResult = UnrollLoop(
L,
{UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
UP.UnrollRemainder, ForgetAllSCEV},
LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
if (UnrollResult == LoopUnrollResult::Unmodified)
return LoopUnrollResult::Unmodified;
if (RemainderLoop) {
Optional<MDNode *> RemainderLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
LLVMLoopUnrollFollowupRemainder});
if (RemainderLoopID)
RemainderLoop->setLoopID(RemainderLoopID.value());
}
if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
Optional<MDNode *> NewLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
LLVMLoopUnrollFollowupUnrolled});
if (NewLoopID) {
L->setLoopID(NewLoopID.value());
return UnrollResult;
}
}
if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
L->setLoopAlreadyUnrolled();
return UnrollResult;
}
namespace {
class LoopUnroll : public LoopPass {
public:
static char ID;
int OptLevel;
bool OnlyWhenForced;
bool ForgetAllSCEV;
Optional<unsigned> ProvidedCount;
Optional<unsigned> ProvidedThreshold;
Optional<bool> ProvidedAllowPartial;
Optional<bool> ProvidedRuntime;
Optional<bool> ProvidedUpperBound;
Optional<bool> ProvidedAllowPeeling;
Optional<bool> ProvidedAllowProfileBasedPeeling;
Optional<unsigned> ProvidedFullUnrollMaxCount;
LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
Optional<unsigned> Count = None,
Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
Optional<bool> UpperBound = None,
Optional<bool> AllowPeeling = None,
Optional<bool> AllowProfileBasedPeeling = None,
Optional<unsigned> ProvidedFullUnrollMaxCount = None)
: LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
ProvidedAllowPeeling(AllowPeeling),
ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
Function &F = *L->getHeader()->getParent();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
OptimizationRemarkEmitter ORE(&F);
bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
LoopUnrollResult Result = tryToUnrollLoop(
L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
ProvidedFullUnrollMaxCount);
if (Result == LoopUnrollResult::FullyUnrolled)
LPM.markLoopAsDeleted(*L);
return Result != LoopUnrollResult::Unmodified;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfoWrapperPass>();
getLoopAnalysisUsage(AU);
}
};
}
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
bool ForgetAllSCEV, int Threshold, int Count,
int AllowPartial, int Runtime, int UpperBound,
int AllowPeeling) {
return new LoopUnroll(
OptLevel, OnlyWhenForced, ForgetAllSCEV,
Threshold == -1 ? None : Optional<unsigned>(Threshold),
Count == -1 ? None : Optional<unsigned>(Count),
AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
Runtime == -1 ? None : Optional<bool>(Runtime),
UpperBound == -1 ? None : Optional<bool>(UpperBound),
AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
}
Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
bool ForgetAllSCEV) {
return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
0, 0, 0, 1);
}
PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
Loop *ParentL = L.getParentLoop();
SmallPtrSet<Loop *, 4> OldLoops;
if (ParentL)
OldLoops.insert(ParentL->begin(), ParentL->end());
else
OldLoops.insert(AR.LI.begin(), AR.LI.end());
std::string LoopName = std::string(L.getName());
bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
nullptr, nullptr,
true, OptLevel,
OnlyWhenForced, ForgetSCEV, None,
None, false,
false, false,
true,
false,
None) !=
LoopUnrollResult::Unmodified;
if (!Changed)
return PreservedAnalyses::all();
#ifndef NDEBUG
if (ParentL)
ParentL->verifyLoop();
#endif
bool IsCurrentLoopValid = false;
SmallVector<Loop *, 4> SibLoops;
if (ParentL)
SibLoops.append(ParentL->begin(), ParentL->end());
else
SibLoops.append(AR.LI.begin(), AR.LI.end());
erase_if(SibLoops, [&](Loop *SibLoop) {
if (SibLoop == &L) {
IsCurrentLoopValid = true;
return true;
}
return OldLoops.contains(SibLoop);
});
Updater.addSiblingLoops(SibLoops);
if (!IsCurrentLoopValid) {
Updater.markLoopAsDeleted(L, LoopName);
} else {
if (UnrollRevisitChildLoops) {
SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
Updater.addChildLoops(ChildLoops);
}
}
return getLoopPassPreservedAnalyses();
}
PreservedAnalyses LoopUnrollPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &LI = AM.getResult<LoopAnalysis>(F);
if (LI.empty())
return PreservedAnalyses::all();
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
LoopAnalysisManager *LAM = nullptr;
if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
LAM = &LAMProxy->getManager();
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
ProfileSummaryInfo *PSI =
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
bool Changed = false;
for (auto &L : LI) {
Changed |=
simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false );
Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
}
SmallPriorityWorklist<Loop *, 4> Worklist;
appendLoopsToWorklist(LI, Worklist);
while (!Worklist.empty()) {
Loop &L = *Worklist.pop_back_val();
#ifndef NDEBUG
Loop *ParentL = L.getParentLoop();
#endif
Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
if (PSI && PSI->hasHugeWorkingSetSize())
LocalAllowPeeling = false;
std::string LoopName = std::string(L.getName());
LoopUnrollResult Result = tryToUnrollLoop(
&L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
UnrollOpts.ForgetSCEV, None,
None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
UnrollOpts.AllowUpperBound, LocalAllowPeeling,
UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
Changed |= Result != LoopUnrollResult::Unmodified;
#ifndef NDEBUG
if (Result != LoopUnrollResult::Unmodified && ParentL)
ParentL->verifyLoop();
#endif
if (LAM && Result == LoopUnrollResult::FullyUnrolled)
LAM->clear(L, LoopName);
}
if (!Changed)
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
void LoopUnrollPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
OS, MapClassName2PassName);
OS << "<";
if (UnrollOpts.AllowPartial != None)
OS << (UnrollOpts.AllowPartial.value() ? "" : "no-") << "partial;";
if (UnrollOpts.AllowPeeling != None)
OS << (UnrollOpts.AllowPeeling.value() ? "" : "no-") << "peeling;";
if (UnrollOpts.AllowRuntime != None)
OS << (UnrollOpts.AllowRuntime.value() ? "" : "no-") << "runtime;";
if (UnrollOpts.AllowUpperBound != None)
OS << (UnrollOpts.AllowUpperBound.value() ? "" : "no-") << "upperbound;";
if (UnrollOpts.AllowProfileBasedPeeling != None)
OS << (UnrollOpts.AllowProfileBasedPeeling.value() ? "" : "no-")
<< "profile-peeling;";
if (UnrollOpts.FullUnrollMaxCount != None)
OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ";";
OS << "O" << UnrollOpts.OptLevel;
OS << ">";
}