#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "mccodeemitter"
namespace {
class X86MCCodeEmitter : public MCCodeEmitter {
const MCInstrInfo &MCII;
MCContext &Ctx;
public:
X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
: MCII(mcii), Ctx(ctx) {}
X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
~X86MCCodeEmitter() override = default;
void emitPrefix(const MCInst &MI, raw_ostream &OS,
const MCSubtargetInfo &STI) const override;
void encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const override;
private:
unsigned getX86RegNum(const MCOperand &MO) const;
unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const;
bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const;
void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
MCFixupKind FixupKind, uint64_t StartByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
raw_ostream &OS) const;
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
raw_ostream &OS) const;
void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
uint64_t TSFlags, bool HasREX, uint64_t StartByte,
raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI,
bool ForceSIB = false) const;
bool emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
const MCSubtargetInfo &STI, raw_ostream &OS) const;
void emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
raw_ostream &OS) const;
void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI,
raw_ostream &OS) const;
bool emitOpcodePrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI, raw_ostream &OS) const;
bool emitREXPrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI, raw_ostream &OS) const;
};
}
static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
return RM | (RegOpcode << 3) | (Mod << 6);
}
static void emitByte(uint8_t C, raw_ostream &OS) { OS << static_cast<char>(C); }
static void emitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) {
for (unsigned i = 0; i != Size; ++i) {
emitByte(Val & 255, OS);
Val >>= 8;
}
}
static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) {
bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
int CD8_Scale =
(TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
if (!HasEVEX || CD8_Scale == 0)
return isInt<8>(Value);
assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!");
if (Value & (CD8_Scale - 1)) return false;
int CDisp8 = Value / CD8_Scale;
if (!isInt<8>(CDisp8))
return false;
ImmOffset = CDisp8 - Value;
return true;
}
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
unsigned Size = X86II::getSizeOfImm(TSFlags);
bool isPCRel = X86II::isImmPCRel(TSFlags);
if (X86II::isImmSigned(TSFlags)) {
switch (Size) {
default:
llvm_unreachable("Unsupported signed fixup size!");
case 4:
return MCFixupKind(X86::reloc_signed_4byte);
}
}
return MCFixup::getKindForSize(Size, isPCRel);
}
enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };
static GlobalOffsetTableExprKind
startsWithGlobalOffsetTable(const MCExpr *Expr) {
const MCExpr *RHS = nullptr;
if (Expr->getKind() == MCExpr::Binary) {
const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
Expr = BE->getLHS();
RHS = BE->getRHS();
}
if (Expr->getKind() != MCExpr::SymbolRef)
return GOT_None;
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
const MCSymbol &S = Ref->getSymbol();
if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
return GOT_None;
if (RHS && RHS->getKind() == MCExpr::SymbolRef)
return GOT_SymDiff;
return GOT_Normal;
}
static bool hasSecRelSymbolRef(const MCExpr *Expr) {
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
}
return false;
}
static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 &&
Opcode != X86::JCC_4) ||
getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
return false;
unsigned CurOp = X86II::getOperandBias(Desc);
const MCOperand &Op = MI.getOperand(CurOp);
if (!Op.isExpr())
return false;
const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
}
unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const {
return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
}
unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI,
unsigned OpNum) const {
return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg());
}
bool X86MCCodeEmitter::isREXExtendedReg(const MCInst &MI,
unsigned OpNum) const {
return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
}
void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
unsigned Size, MCFixupKind FixupKind,
uint64_t StartByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
int ImmOffset) const {
const MCExpr *Expr = nullptr;
if (DispOp.isImm()) {
if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
FixupKind != FK_PCRel_4) {
emitConstant(DispOp.getImm() + ImmOffset, Size, OS);
return;
}
Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
} else {
Expr = DispOp.getExpr();
}
if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
if (Kind != GOT_None) {
assert(ImmOffset == 0);
if (Size == 8) {
FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
} else {
assert(Size == 4);
FixupKind = MCFixupKind(X86::reloc_global_offset_table);
}
if (Kind == GOT_Normal)
ImmOffset = static_cast<int>(OS.tell() - StartByte);
} else if (Expr->getKind() == MCExpr::SymbolRef) {
if (hasSecRelSymbolRef(Expr)) {
FixupKind = MCFixupKind(FK_SecRel_4);
}
} else if (Expr->getKind() == MCExpr::Binary) {
const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
if (hasSecRelSymbolRef(Bin->getLHS()) ||
hasSecRelSymbolRef(Bin->getRHS())) {
FixupKind = MCFixupKind(FK_SecRel_4);
}
}
}
if (FixupKind == FK_PCRel_4 ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
ImmOffset -= 4;
if (startsWithGlobalOffsetTable(Expr) != GOT_None)
FixupKind = MCFixupKind(X86::reloc_global_offset_table);
}
if (FixupKind == FK_PCRel_2)
ImmOffset -= 2;
if (FixupKind == FK_PCRel_1)
ImmOffset -= 1;
if (ImmOffset)
Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
Ctx);
Fixups.push_back(MCFixup::create(static_cast<uint32_t>(OS.tell() - StartByte),
Expr, FixupKind, Loc));
emitConstant(0, Size, OS);
}
void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg,
unsigned RegOpcodeFld,
raw_ostream &OS) const {
emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), OS);
}
void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
raw_ostream &OS) const {
emitByte(modRMByte(SS, Index, Base), OS);
}
void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
uint64_t TSFlags, bool HasREX,
uint64_t StartByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI,
bool ForceSIB) const {
const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
unsigned BaseReg = Base.getReg();
if (BaseReg == X86::RIP ||
BaseReg == X86::EIP) { assert(STI.hasFeature(X86::Is64Bit) &&
"Rip-relative addressing requires 64-bit mode");
assert(IndexReg.getReg() == 0 && !ForceSIB &&
"Invalid rip-relative address");
emitByte(modRMByte(0, RegOpcodeField, 5), OS);
unsigned Opcode = MI.getOpcode();
unsigned FixupKind = [&]() {
if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Disp.getExpr())))
return X86::reloc_riprel_4byte;
switch (Opcode) {
default:
return X86::reloc_riprel_4byte;
case X86::MOV64rm:
assert(HasREX);
return X86::reloc_riprel_4byte_movq_load;
case X86::ADC32rm:
case X86::ADD32rm:
case X86::AND32rm:
case X86::CMP32rm:
case X86::MOV32rm:
case X86::OR32rm:
case X86::SBB32rm:
case X86::SUB32rm:
case X86::TEST32mr:
case X86::XOR32rm:
case X86::CALL64m:
case X86::JMP64m:
case X86::TAILJMPm64:
case X86::TEST64mr:
case X86::ADC64rm:
case X86::ADD64rm:
case X86::AND64rm:
case X86::CMP64rm:
case X86::OR64rm:
case X86::SBB64rm:
case X86::SUB64rm:
case X86::XOR64rm:
return HasREX ? X86::reloc_riprel_4byte_relax_rex
: X86::reloc_riprel_4byte_relax;
}
}();
int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
? X86II::getSizeOfImm(TSFlags)
: 0;
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
Fixups, -ImmSize);
return;
}
unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
if (X86_MC::is16BitMemOperand(MI, Op, STI)) {
if (BaseReg) {
static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
unsigned RMfield = R16Table[BaseRegNo];
assert(RMfield && "invalid 16-bit base register");
if (IndexReg.getReg()) {
unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
assert(IndexReg16 && "invalid 16-bit index register");
assert(((IndexReg16 ^ RMfield) & 2) &&
"invalid 16-bit base/index register combination");
assert(Scale.getImm() == 1 &&
"invalid scale for 16-bit memory reference");
if (IndexReg16 & 2)
RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
else
RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
}
if (Disp.isImm() && isInt<8>(Disp.getImm())) {
if (Disp.getImm() == 0 && RMfield != 6) {
emitByte(modRMByte(0, RegOpcodeField, RMfield), OS);
return;
}
emitByte(modRMByte(1, RegOpcodeField, RMfield), OS);
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups);
return;
}
emitByte(modRMByte(2, RegOpcodeField, RMfield), OS);
} else {
assert(IndexReg.getReg() == 0 && "Unexpected index register!");
emitByte(modRMByte(0, RegOpcodeField, 6), OS);
}
emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, OS, Fixups);
return;
}
bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8;
bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32;
bool AllowNoDisp = !UseDisp8 && !UseDisp32;
bool AllowDisp8 = !UseDisp32;
if ( !ForceSIB && IndexReg.getReg() == 0 &&
BaseRegNo != N86::ESP &&
(!STI.hasFeature(X86::Is64Bit) || BaseReg != 0)) {
if (BaseReg == 0) { emitByte(modRMByte(0, RegOpcodeField, 5), OS);
emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, OS, Fixups);
return;
}
if (BaseRegNo != N86::EBP) {
if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) {
emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
return;
}
if (Disp.isExpr()) {
auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
return;
}
}
}
if (Disp.isImm() && AllowDisp8) {
int ImmOffset = 0;
if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), OS);
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
ImmOffset);
return;
}
}
emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), OS);
unsigned Opcode = MI.getOpcode();
unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
: X86::reloc_signed_4byte;
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
Fixups);
return;
}
assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
"Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
int ImmOffset = 0;
if (BaseReg == 0) {
BaseRegNo = 5;
emitByte(modRMByte(0, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp &&
BaseRegNo != N86::EBP) {
emitByte(modRMByte(0, RegOpcodeField, 4), OS);
} else if (Disp.isImm() && AllowDisp8 &&
isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
emitByte(modRMByte(1, RegOpcodeField, 4), OS);
ForceDisp8 = true;
} else {
emitByte(modRMByte(2, RegOpcodeField, 4), OS);
ForceDisp32 = true;
}
static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
unsigned SS = SSTable[Scale.getImm()];
unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4;
emitSIBByte(SS, IndexRegNo, BaseRegNo, OS);
if (ForceDisp8)
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
ImmOffset);
else if (ForceDisp32)
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
StartByte, OS, Fixups);
}
bool X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
const MCSubtargetInfo &STI,
raw_ostream &OS) const {
uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags;
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
if (MemoryOperand != -1) {
MemoryOperand += CurOp;
emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, OS);
}
unsigned Flags = MI.getFlags();
if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
emitByte(0xF3, OS);
if (Flags & X86::IP_HAS_REPEAT_NE)
emitByte(0xF2, OS);
if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) ||
Flags & X86::IP_HAS_AD_SIZE)
emitByte(0x67, OS);
uint64_t Form = TSFlags & X86II::FormMask;
switch (Form) {
default:
break;
case X86II::RawFrmDstSrc: {
if (MI.getOperand(2).getReg() != X86::DS)
emitSegmentOverridePrefix(2, MI, OS);
CurOp += 3; break;
}
case X86II::RawFrmSrc: {
if (MI.getOperand(1).getReg() != X86::DS)
emitSegmentOverridePrefix(1, MI, OS);
CurOp += 2; break;
}
case X86II::RawFrmDst: {
++CurOp; break;
}
case X86II::RawFrmMemOffs: {
emitSegmentOverridePrefix(1, MI, OS);
break;
}
}
uint64_t Encoding = TSFlags & X86II::EncodingMask;
bool HasREX = false;
if (Encoding)
emitVEXOpcodePrefix(MemoryOperand, MI, OS);
else
HasREX = emitOpcodePrefix(MemoryOperand, MI, STI, OS);
return HasREX;
}
void X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
raw_ostream &OS) const {
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
uint64_t Encoding = TSFlags & X86II::EncodingMask;
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
uint8_t VEX_R = 0x1;
uint8_t EVEX_R2 = 0x1;
uint8_t VEX_X = 0x1;
uint8_t VEX_B = 0x1;
uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
uint8_t VEX_5M;
switch (TSFlags & X86II::OpMapMask) {
default:
llvm_unreachable("Invalid prefix!");
case X86II::TB:
VEX_5M = 0x1;
break; case X86II::T8:
VEX_5M = 0x2;
break; case X86II::TA:
VEX_5M = 0x3;
break; case X86II::XOP8:
VEX_5M = 0x8;
break;
case X86II::XOP9:
VEX_5M = 0x9;
break;
case X86II::XOPA:
VEX_5M = 0xA;
break;
case X86II::T_MAP5:
VEX_5M = 0x5;
break;
case X86II::T_MAP6:
VEX_5M = 0x6;
break;
}
uint8_t VEX_4V = 0xf;
uint8_t EVEX_V2 = 0x1;
uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
uint8_t VEX_PP = 0;
switch (TSFlags & X86II::OpPrefixMask) {
case X86II::PD:
VEX_PP = 0x1;
break; case X86II::XS:
VEX_PP = 0x2;
break; case X86II::XD:
VEX_PP = 0x3;
break; }
uint8_t EVEX_U = 1;
uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
uint8_t EVEX_rc = 0;
uint8_t EVEX_aaa = 0;
bool EncodeRC = false;
unsigned NumOps = Desc.getNumOperands();
unsigned CurOp = X86II::getOperandBias(Desc);
switch (TSFlags & X86II::FormMask) {
default:
llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
case X86II::MRM_C0:
case X86II::RawFrm:
case X86II::PrefixByte:
break;
case X86II::MRMDestMemFSIB:
case X86II::MRMDestMem: {
unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
VEX_B = ~(BaseRegEnc >> 3) & 1;
unsigned IndexRegEnc =
getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
VEX_X = ~(IndexRegEnc >> 3) & 1;
if (!HasVEX_4V) EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
CurOp += X86::AddrNumOperands;
if (HasEVEX_K)
EVEX_aaa = getX86RegEncoding(MI, CurOp++);
if (HasVEX_4V) {
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
EVEX_V2 = ~(VRegEnc >> 4) & 1;
}
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
EVEX_R2 = ~(RegEnc >> 4) & 1;
break;
}
case X86II::MRMSrcMemFSIB:
case X86II::MRMSrcMem: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
EVEX_R2 = ~(RegEnc >> 4) & 1;
if (HasEVEX_K)
EVEX_aaa = getX86RegEncoding(MI, CurOp++);
if (HasVEX_4V) {
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
EVEX_V2 = ~(VRegEnc >> 4) & 1;
}
unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
VEX_B = ~(BaseRegEnc >> 3) & 1;
unsigned IndexRegEnc =
getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
VEX_X = ~(IndexRegEnc >> 3) & 1;
if (!HasVEX_4V) EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
break;
}
case X86II::MRMSrcMem4VOp3: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
VEX_B = ~(BaseRegEnc >> 3) & 1;
unsigned IndexRegEnc =
getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
VEX_X = ~(IndexRegEnc >> 3) & 1;
VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
break;
}
case X86II::MRMSrcMemOp4: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
VEX_B = ~(BaseRegEnc >> 3) & 1;
unsigned IndexRegEnc =
getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
VEX_X = ~(IndexRegEnc >> 3) & 1;
break;
}
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m: {
if (HasVEX_4V) {
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
EVEX_V2 = ~(VRegEnc >> 4) & 1;
}
if (HasEVEX_K)
EVEX_aaa = getX86RegEncoding(MI, CurOp++);
unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
VEX_B = ~(BaseRegEnc >> 3) & 1;
unsigned IndexRegEnc =
getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
VEX_X = ~(IndexRegEnc >> 3) & 1;
if (!HasVEX_4V) EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
break;
}
case X86II::MRMSrcReg: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
EVEX_R2 = ~(RegEnc >> 4) & 1;
if (HasEVEX_K)
EVEX_aaa = getX86RegEncoding(MI, CurOp++);
if (HasVEX_4V) {
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
EVEX_V2 = ~(VRegEnc >> 4) & 1;
}
RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_B = ~(RegEnc >> 3) & 1;
VEX_X = ~(RegEnc >> 4) & 1;
if (EVEX_b) {
if (HasEVEX_RC) {
unsigned RcOperand = NumOps - 1;
assert(RcOperand >= CurOp);
EVEX_rc = MI.getOperand(RcOperand).getImm();
assert(EVEX_rc <= 3 && "Invalid rounding control!");
}
EncodeRC = true;
}
break;
}
case X86II::MRMSrcReg4VOp3: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_B = ~(RegEnc >> 3) & 1;
VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
break;
}
case X86II::MRMSrcRegOp4: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
++CurOp;
RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_B = ~(RegEnc >> 3) & 1;
VEX_X = ~(RegEnc >> 4) & 1;
break;
}
case X86II::MRMDestReg: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_B = ~(RegEnc >> 3) & 1;
VEX_X = ~(RegEnc >> 4) & 1;
if (HasEVEX_K)
EVEX_aaa = getX86RegEncoding(MI, CurOp++);
if (HasVEX_4V) {
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
EVEX_V2 = ~(VRegEnc >> 4) & 1;
}
RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
EVEX_R2 = ~(RegEnc >> 4) & 1;
if (EVEX_b)
EncodeRC = true;
break;
}
case X86II::MRMr0: {
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_R = ~(RegEnc >> 3) & 1;
EVEX_R2 = ~(RegEnc >> 4) & 1;
break;
}
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r: {
if (HasVEX_4V) {
unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
VEX_4V = ~VRegEnc & 0xf;
EVEX_V2 = ~(VRegEnc >> 4) & 1;
}
if (HasEVEX_K)
EVEX_aaa = getX86RegEncoding(MI, CurOp++);
unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
VEX_B = ~(RegEnc >> 3) & 1;
VEX_X = ~(RegEnc >> 4) & 1;
break;
}
}
if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX &&
VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
emitByte(0xC5, OS);
emitByte(LastByte | (VEX_R << 7), OS);
return;
}
emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, OS);
emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, OS);
emitByte(LastByte | (VEX_W << 7), OS);
} else {
assert(Encoding == X86II::EVEX && "unknown encoding!");
assert((VEX_5M & 0x7) == VEX_5M &&
"More than 3 significant bits in VEX.m-mmmm fields for EVEX!");
emitByte(0x62, OS);
emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) |
VEX_5M,
OS);
emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, OS);
if (EncodeRC)
emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) |
EVEX_aaa,
OS);
else
emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) |
(EVEX_V2 << 3) | EVEX_aaa,
OS);
}
}
bool X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
raw_ostream &OS) const {
uint8_t REX = [&, MemOperand]() {
uint8_t REX = 0;
bool UsesHighByteReg = false;
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
if (TSFlags & X86II::REX_W)
REX |= 1 << 3;
if (MI.getNumOperands() == 0)
return REX;
unsigned NumOps = MI.getNumOperands();
unsigned CurOp = X86II::getOperandBias(Desc);
for (unsigned i = CurOp; i != NumOps; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
unsigned Reg = MO.getReg();
if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH ||
Reg == X86::DH)
UsesHighByteReg = true;
if (X86II::isX86_64NonExtLowByteReg(Reg))
REX |= 0x40; } else if (MO.isExpr() && STI.getTargetTriple().isX32()) {
const auto *Ref = dyn_cast<MCSymbolRefExpr>(MO.getExpr());
if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF ||
Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) {
REX |= 0x40; }
}
}
switch (TSFlags & X86II::FormMask) {
case X86II::AddRegFrm:
REX |= isREXExtendedReg(MI, CurOp++) << 0; break;
case X86II::MRMSrcReg:
case X86II::MRMSrcRegCC:
REX |= isREXExtendedReg(MI, CurOp++) << 2; REX |= isREXExtendedReg(MI, CurOp++) << 0; break;
case X86II::MRMSrcMem:
case X86II::MRMSrcMemCC:
REX |= isREXExtendedReg(MI, CurOp++) << 2; REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; CurOp += X86::AddrNumOperands;
break;
case X86II::MRMDestReg:
REX |= isREXExtendedReg(MI, CurOp++) << 0; REX |= isREXExtendedReg(MI, CurOp++) << 2; break;
case X86II::MRMDestMem:
REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; CurOp += X86::AddrNumOperands;
REX |= isREXExtendedReg(MI, CurOp++) << 2; break;
case X86II::MRMXmCC:
case X86II::MRMXm:
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m:
REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; break;
case X86II::MRMXrCC:
case X86II::MRMXr:
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r:
REX |= isREXExtendedReg(MI, CurOp++) << 0; break;
case X86II::MRMr0:
REX |= isREXExtendedReg(MI, CurOp++) << 2; break;
case X86II::MRMDestMemFSIB:
llvm_unreachable("FSIB format never need REX prefix!");
}
if (REX && UsesHighByteReg)
report_fatal_error(
"Cannot encode high byte register in REX-prefixed instruction");
return REX;
}();
if (!REX)
return false;
emitByte(0x40 | REX, OS);
return true;
}
void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned SegOperand,
const MCInst &MI,
raw_ostream &OS) const {
if (unsigned Reg = MI.getOperand(SegOperand).getReg())
emitByte(X86::getSegmentOverridePrefixForReg(Reg), OS);
}
bool X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
raw_ostream &OS) const {
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
if ((TSFlags & X86II::OpSizeMask) ==
(STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16))
emitByte(0x66, OS);
if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
emitByte(0xF0, OS);
if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
emitByte(0x3E, OS);
switch (TSFlags & X86II::OpPrefixMask) {
case X86II::PD: emitByte(0x66, OS);
break;
case X86II::XS: emitByte(0xF3, OS);
break;
case X86II::XD: emitByte(0xF2, OS);
break;
}
assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) &&
"REX.W requires 64bit mode.");
bool HasREX = STI.hasFeature(X86::Is64Bit)
? emitREXPrefix(MemOperand, MI, STI, OS)
: false;
switch (TSFlags & X86II::OpMapMask) {
case X86II::TB: case X86II::T8: case X86II::TA: case X86II::ThreeDNow: emitByte(0x0F, OS);
break;
}
switch (TSFlags & X86II::OpMapMask) {
case X86II::T8: emitByte(0x38, OS);
break;
case X86II::TA: emitByte(0x3A, OS);
break;
}
return HasREX;
}
void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS,
const MCSubtargetInfo &STI) const {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
if (X86II::isPseudo(TSFlags))
return;
unsigned CurOp = X86II::getOperandBias(Desc);
emitPrefixImpl(CurOp, MI, STI, OS);
}
void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
if (X86II::isPseudo(TSFlags))
return;
unsigned NumOps = Desc.getNumOperands();
unsigned CurOp = X86II::getOperandBias(Desc);
uint64_t StartByte = OS.tell();
bool HasREX = emitPrefixImpl(CurOp, MI, STI, OS);
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
unsigned I8RegNum = 0;
uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
BaseOpcode = 0x0F;
unsigned OpcodeOffset = 0;
uint64_t Form = TSFlags & X86II::FormMask;
switch (Form) {
default:
errs() << "FORM: " << Form << "\n";
llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
case X86II::Pseudo:
llvm_unreachable("Pseudo instruction shouldn't be emitted");
case X86II::RawFrmDstSrc:
case X86II::RawFrmSrc:
case X86II::RawFrmDst:
case X86II::PrefixByte:
emitByte(BaseOpcode, OS);
break;
case X86II::AddCCFrm: {
OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
--NumOps; LLVM_FALLTHROUGH;
case X86II::RawFrm:
emitByte(BaseOpcode + OpcodeOffset, OS);
if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII))
break;
const MCOperand &Op = MI.getOperand(CurOp++);
emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, OS,
Fixups);
break;
}
case X86II::RawFrmMemOffs:
emitByte(BaseOpcode, OS);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, OS, Fixups);
++CurOp; break;
case X86II::RawFrmImm8:
emitByte(BaseOpcode, OS);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, OS, Fixups);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte,
OS, Fixups);
break;
case X86II::RawFrmImm16:
emitByte(BaseOpcode, OS);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, OS, Fixups);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte,
OS, Fixups);
break;
case X86II::AddRegFrm:
emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), OS);
break;
case X86II::MRMDestReg: {
emitByte(BaseOpcode, OS);
unsigned SrcRegNum = CurOp + 1;
if (HasEVEX_K) ++SrcRegNum;
if (HasVEX_4V) ++SrcRegNum;
emitRegModRMByte(MI.getOperand(CurOp),
getX86RegNum(MI.getOperand(SrcRegNum)), OS);
CurOp = SrcRegNum + 1;
break;
}
case X86II::MRMDestMemFSIB:
case X86II::MRMDestMem: {
emitByte(BaseOpcode, OS);
unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
if (HasEVEX_K) ++SrcRegNum;
if (HasVEX_4V) ++SrcRegNum;
bool ForceSIB = (Form == X86II::MRMDestMemFSIB);
emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
HasREX, StartByte, OS, Fixups, STI, ForceSIB);
CurOp = SrcRegNum + 1;
break;
}
case X86II::MRMSrcReg: {
emitByte(BaseOpcode, OS);
unsigned SrcRegNum = CurOp + 1;
if (HasEVEX_K) ++SrcRegNum;
if (HasVEX_4V) ++SrcRegNum;
emitRegModRMByte(MI.getOperand(SrcRegNum),
getX86RegNum(MI.getOperand(CurOp)), OS);
CurOp = SrcRegNum + 1;
if (HasVEX_I8Reg)
I8RegNum = getX86RegEncoding(MI, CurOp++);
if (HasEVEX_RC)
--NumOps;
break;
}
case X86II::MRMSrcReg4VOp3: {
emitByte(BaseOpcode, OS);
unsigned SrcRegNum = CurOp + 1;
emitRegModRMByte(MI.getOperand(SrcRegNum),
getX86RegNum(MI.getOperand(CurOp)), OS);
CurOp = SrcRegNum + 1;
++CurOp; break;
}
case X86II::MRMSrcRegOp4: {
emitByte(BaseOpcode, OS);
unsigned SrcRegNum = CurOp + 1;
++SrcRegNum;
assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
emitRegModRMByte(MI.getOperand(SrcRegNum),
getX86RegNum(MI.getOperand(CurOp)), OS);
CurOp = SrcRegNum + 1;
break;
}
case X86II::MRMSrcRegCC: {
unsigned FirstOp = CurOp++;
unsigned SecondOp = CurOp++;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, OS);
emitRegModRMByte(MI.getOperand(SecondOp),
getX86RegNum(MI.getOperand(FirstOp)), OS);
break;
}
case X86II::MRMSrcMemFSIB:
case X86II::MRMSrcMem: {
unsigned FirstMemOp = CurOp + 1;
if (HasEVEX_K) ++FirstMemOp;
if (HasVEX_4V)
++FirstMemOp;
emitByte(BaseOpcode, OS);
bool ForceSIB = (Form == X86II::MRMSrcMemFSIB);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
TSFlags, HasREX, StartByte, OS, Fixups, STI, ForceSIB);
CurOp = FirstMemOp + X86::AddrNumOperands;
if (HasVEX_I8Reg)
I8RegNum = getX86RegEncoding(MI, CurOp++);
break;
}
case X86II::MRMSrcMem4VOp3: {
unsigned FirstMemOp = CurOp + 1;
emitByte(BaseOpcode, OS);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
TSFlags, HasREX, StartByte, OS, Fixups, STI);
CurOp = FirstMemOp + X86::AddrNumOperands;
++CurOp; break;
}
case X86II::MRMSrcMemOp4: {
unsigned FirstMemOp = CurOp + 1;
++FirstMemOp;
assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
emitByte(BaseOpcode, OS);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
TSFlags, HasREX, StartByte, OS, Fixups, STI);
CurOp = FirstMemOp + X86::AddrNumOperands;
break;
}
case X86II::MRMSrcMemCC: {
unsigned RegOp = CurOp++;
unsigned FirstMemOp = CurOp;
CurOp = FirstMemOp + X86::AddrNumOperands;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, OS);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
TSFlags, HasREX, StartByte, OS, Fixups, STI);
break;
}
case X86II::MRMXrCC: {
unsigned RegOp = CurOp++;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, OS);
emitRegModRMByte(MI.getOperand(RegOp), 0, OS);
break;
}
case X86II::MRMXr:
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r:
if (HasVEX_4V) ++CurOp;
if (HasEVEX_K) ++CurOp;
emitByte(BaseOpcode, OS);
emitRegModRMByte(MI.getOperand(CurOp++),
(Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, OS);
break;
case X86II::MRMr0:
emitByte(BaseOpcode, OS);
emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)),0), OS);
break;
case X86II::MRMXmCC: {
unsigned FirstMemOp = CurOp;
CurOp = FirstMemOp + X86::AddrNumOperands;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, OS);
emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, HasREX, StartByte, OS, Fixups,
STI);
break;
}
case X86II::MRMXm:
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m:
if (HasVEX_4V) ++CurOp;
if (HasEVEX_K) ++CurOp;
emitByte(BaseOpcode, OS);
emitMemModRMByte(MI, CurOp,
(Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
HasREX, StartByte, OS, Fixups, STI);
CurOp += X86::AddrNumOperands;
break;
case X86II::MRM0X:
case X86II::MRM1X:
case X86II::MRM2X:
case X86II::MRM3X:
case X86II::MRM4X:
case X86II::MRM5X:
case X86II::MRM6X:
case X86II::MRM7X:
emitByte(BaseOpcode, OS);
emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), OS);
break;
case X86II::MRM_C0:
case X86II::MRM_C1:
case X86II::MRM_C2:
case X86II::MRM_C3:
case X86II::MRM_C4:
case X86II::MRM_C5:
case X86II::MRM_C6:
case X86II::MRM_C7:
case X86II::MRM_C8:
case X86II::MRM_C9:
case X86II::MRM_CA:
case X86II::MRM_CB:
case X86II::MRM_CC:
case X86II::MRM_CD:
case X86II::MRM_CE:
case X86II::MRM_CF:
case X86II::MRM_D0:
case X86II::MRM_D1:
case X86II::MRM_D2:
case X86II::MRM_D3:
case X86II::MRM_D4:
case X86II::MRM_D5:
case X86II::MRM_D6:
case X86II::MRM_D7:
case X86II::MRM_D8:
case X86II::MRM_D9:
case X86II::MRM_DA:
case X86II::MRM_DB:
case X86II::MRM_DC:
case X86II::MRM_DD:
case X86II::MRM_DE:
case X86II::MRM_DF:
case X86II::MRM_E0:
case X86II::MRM_E1:
case X86II::MRM_E2:
case X86II::MRM_E3:
case X86II::MRM_E4:
case X86II::MRM_E5:
case X86II::MRM_E6:
case X86II::MRM_E7:
case X86II::MRM_E8:
case X86II::MRM_E9:
case X86II::MRM_EA:
case X86II::MRM_EB:
case X86II::MRM_EC:
case X86II::MRM_ED:
case X86II::MRM_EE:
case X86II::MRM_EF:
case X86II::MRM_F0:
case X86II::MRM_F1:
case X86II::MRM_F2:
case X86II::MRM_F3:
case X86II::MRM_F4:
case X86II::MRM_F5:
case X86II::MRM_F6:
case X86II::MRM_F7:
case X86II::MRM_F8:
case X86II::MRM_F9:
case X86II::MRM_FA:
case X86II::MRM_FB:
case X86II::MRM_FC:
case X86II::MRM_FD:
case X86II::MRM_FE:
case X86II::MRM_FF:
emitByte(BaseOpcode, OS);
emitByte(0xC0 + Form - X86II::MRM_C0, OS);
break;
}
if (HasVEX_I8Reg) {
assert(I8RegNum < 16 && "Register encoding out of range");
I8RegNum <<= 4;
if (CurOp != NumOps) {
unsigned Val = MI.getOperand(CurOp++).getImm();
assert(Val < 16 && "Immediate operand value out of range");
I8RegNum |= Val;
}
emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
StartByte, OS, Fixups);
} else {
while (CurOp != NumOps && NumOps - CurOp <= 2) {
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, OS, Fixups);
}
}
if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
emitByte(X86II::getBaseOpcodeFor(TSFlags), OS);
assert(OS.tell() - StartByte <= 15 &&
"The size of instruction must be no longer than 15.");
#ifndef NDEBUG
if ( CurOp != NumOps) {
errs() << "Cannot encode all operands of: ";
MI.dump();
errs() << '\n';
abort();
}
#endif
}
MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
MCContext &Ctx) {
return new X86MCCodeEmitter(MCII, Ctx);
}