#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
#include "AArch64.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include <cstdint>
namespace llvm {
class APInt;
class Instruction;
class IntrinsicInst;
class Loop;
class SCEV;
class ScalarEvolution;
class Type;
class Value;
class VectorType;
class AArch64TTIImpl : public BasicTTIImplBase<AArch64TTIImpl> {
using BaseT = BasicTTIImplBase<AArch64TTIImpl>;
using TTI = TargetTransformInfo;
friend BaseT;
const AArch64Subtarget *ST;
const AArch64TargetLowering *TLI;
const AArch64Subtarget *getST() const { return ST; }
const AArch64TargetLowering *getTLI() const { return TLI; }
enum MemIntrinsicType {
VECTOR_LDST_TWO_ELEMENTS,
VECTOR_LDST_THREE_ELEMENTS,
VECTOR_LDST_FOUR_ELEMENTS
};
bool isWideningInstruction(Type *Ty, unsigned Opcode,
ArrayRef<const Value *> Args);
public:
explicit AArch64TTIImpl(const AArch64TargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
TLI(ST->getTargetLowering()) {}
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const;
using BaseT::getIntImmCost;
InstructionCost getIntImmCost(int64_t Val);
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind);
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst = nullptr);
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind);
TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
bool enableInterleavedAccessVectorization() { return true; }
unsigned getNumberOfRegisters(unsigned ClassID) const {
bool Vector = (ClassID == 1);
if (Vector) {
if (ST->hasNEON())
return 32;
return 0;
}
return 31;
}
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind);
Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const;
Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const;
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(64);
case TargetTransformInfo::RGK_FixedWidthVector:
if (ST->hasSVE())
return TypeSize::getFixed(
std::max(ST->getMinSVEVectorSizeInBits(), 128u));
return TypeSize::getFixed(ST->hasNEON() ? 128 : 0);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(ST->hasSVE() ? 128 : 0);
}
llvm_unreachable("Unsupported register kind");
}
unsigned getMinVectorRegisterBitWidth() const {
return ST->getMinVectorRegisterBitWidth();
}
Optional<unsigned> getVScaleForTuning() const {
return ST->getVScaleForTuning();
}
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
unsigned getMaxNumElements(ElementCount VF) const {
if (!VF.isScalable())
return VF.getFixedValue();
return VF.getKnownMinValue() * ST->getVScaleForTuning();
}
unsigned getMaxInterleaveFactor(unsigned VF);
bool prefersVectorizedAddressing() const;
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind);
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy, unsigned Index);
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index);
InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsUnsigned,
TTI::TargetCostKind CostKind);
InstructionCost getArithmeticReductionCostSVE(unsigned Opcode,
VectorType *ValTy,
TTI::TargetCostKind CostKind);
InstructionCost getSpliceCost(VectorType *Tp, int Index);
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr);
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
const SCEV *Ptr);
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
bool IsZeroCmp) const;
bool useNeonVector(const Type *Ty) const;
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src,
MaybeAlign Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys);
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE);
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP);
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType);
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info);
bool isElementTypeLegalForScalableVector(Type *Ty) const {
if (Ty->isPointerTy())
return true;
if (Ty->isBFloatTy() && ST->hasBF16())
return true;
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
return true;
if (Ty->isIntegerTy(8) || Ty->isIntegerTy(16) ||
Ty->isIntegerTy(32) || Ty->isIntegerTy(64))
return true;
return false;
}
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
if (!ST->hasSVE())
return false;
if (isa<FixedVectorType>(DataType) && !ST->useSVEForFixedLengthVectors())
return false;
return isElementTypeLegalForScalableVector(DataType->getScalarType());
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalMaskedStore(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalMaskedGatherScatter(Type *DataType) const {
if (!ST->hasSVE())
return false;
auto *DataTypeFVTy = dyn_cast<FixedVectorType>(DataType);
if (DataTypeFVTy && (!ST->useSVEForFixedLengthVectors() ||
DataTypeFVTy->getNumElements() < 2))
return false;
return isElementTypeLegalForScalableVector(DataType->getScalarType());
}
bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
return isLegalMaskedGatherScatter(DataType);
}
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
return isLegalMaskedGatherScatter(DataType);
}
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const {
if (!ST->hasNEON() || NumElements.isScalable())
return false;
switch (unsigned ElementBits = ElementTy->getScalarSizeInBits()) {
case 8:
case 16:
case 32:
case 64: {
unsigned VectorBits = NumElements.getFixedValue() * ElementBits;
return VectorBits >= 64;
}
}
return false;
}
bool isLegalNTStore(Type *DataType, Align Alignment) {
if (auto *DataTypeVTy = dyn_cast<VectorType>(DataType)) {
unsigned NumElements =
cast<FixedVectorType>(DataTypeVTy)->getNumElements();
unsigned EltSize = DataTypeVTy->getElementType()->getScalarSizeInBits();
return NumElements > 1 && isPowerOf2_64(NumElements) && EltSize >= 8 &&
EltSize <= 128 && isPowerOf2_64(EltSize);
}
return BaseT::isLegalNTStore(DataType, Alignment);
}
bool enableOrderedReductions() const { return true; }
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond = false, bool UseMaskForGaps = false);
bool
shouldConsiderAddressTypePromotion(const Instruction &I,
bool &AllowPromotionWithoutCommonHeader);
bool shouldExpandReduction(const IntrinsicInst *II) const { return false; }
unsigned getGISelRematGlobalCost() const {
return 2;
}
unsigned getMinTripCountTailFoldingThreshold() const {
return ST->hasSVE() ? 5 : 0;
}
PredicationStyle emitGetActiveLaneMask() const {
if (ST->hasSVE())
return PredicationStyle::DataAndControlFlow;
return PredicationStyle::None;
}
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
LoopVectorizationLegality *LVL);
bool supportsScalableVectors() const { return ST->hasSVE(); }
bool enableScalableVectorization() const { return ST->hasSVE(); }
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const;
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
TTI::ReductionFlags Flags) const {
return ST->hasSVE();
}
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
Optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind);
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask, int Index,
VectorType *SubTp,
ArrayRef<const Value *> Args = None);
};
}
#endif