; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py ; RUN: opt -S -disable-output "-passes=print<scalar-evolution>" < %s 2>&1 | FileCheck %s !0 = !{i8 0, i8 127} define void @f0(i8* %len_addr) { ; CHECK-LABEL: 'f0' ; CHECK-NEXT: Classifying expressions for: @f0 ; CHECK-NEXT: %len = load i8, i8* %len_addr, align 1, !range !0 ; CHECK-NEXT: --> %len U: [0,127) S: [0,127) ; CHECK-NEXT: %len_norange = load i8, i8* %len_addr, align 1 ; CHECK-NEXT: --> %len_norange U: full-set S: full-set ; CHECK-NEXT: %t0 = add i8 %len, 1 ; CHECK-NEXT: --> (1 + %len)<nuw><nsw> U: [1,-128) S: [1,-128) ; CHECK-NEXT: %t1 = add i8 %len, 2 ; CHECK-NEXT: --> (2 + %len)<nuw> U: [2,-127) S: [2,-127) ; CHECK-NEXT: %t2 = sub i8 %len, 1 ; CHECK-NEXT: --> (-1 + %len)<nsw> U: [-1,126) S: [-1,126) ; CHECK-NEXT: %t3 = sub i8 %len, 2 ; CHECK-NEXT: --> (-2 + %len)<nsw> U: [-2,125) S: [-2,125) ; CHECK-NEXT: %q0 = add i8 %len_norange, 1 ; CHECK-NEXT: --> (1 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: %q1 = add i8 %len_norange, 2 ; CHECK-NEXT: --> (2 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: %q2 = sub i8 %len_norange, 1 ; CHECK-NEXT: --> (-1 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: %q3 = sub i8 %len_norange, 2 ; CHECK-NEXT: --> (-2 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @f0 ; entry: %len = load i8, i8* %len_addr, !range !0 %len_norange = load i8, i8* %len_addr %t0 = add i8 %len, 1 %t1 = add i8 %len, 2 %t2 = sub i8 %len, 1 %t3 = sub i8 %len, 2 %q0 = add i8 %len_norange, 1 %q1 = add i8 %len_norange, 2 %q2 = sub i8 %len_norange, 1 %q3 = sub i8 %len_norange, 2 ret void } define void @f1(i8* %len_addr) { ; CHECK-LABEL: 'f1' ; CHECK-NEXT: Classifying expressions for: @f1 ; CHECK-NEXT: %len = load i8, i8* %len_addr, align 1, !range !0 ; CHECK-NEXT: --> %len U: [0,127) S: [0,127) ; CHECK-NEXT: %len_norange = load i8, i8* %len_addr, align 1 ; CHECK-NEXT: --> %len_norange U: full-set S: full-set ; CHECK-NEXT: %t0 = add i8 %len, -1 ; CHECK-NEXT: --> (-1 + %len)<nsw> U: [-1,126) S: [-1,126) ; CHECK-NEXT: %t1 = add i8 %len, -2 ; CHECK-NEXT: --> (-2 + %len)<nsw> U: [-2,125) S: [-2,125) ; CHECK-NEXT: %t0.sext = sext i8 %t0 to i16 ; CHECK-NEXT: --> (-1 + (zext i8 %len to i16))<nsw> U: [-1,126) S: [-1,126) ; CHECK-NEXT: %t1.sext = sext i8 %t1 to i16 ; CHECK-NEXT: --> (-2 + (zext i8 %len to i16))<nsw> U: [-2,125) S: [-2,125) ; CHECK-NEXT: %q0 = add i8 %len_norange, 1 ; CHECK-NEXT: --> (1 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: %q1 = add i8 %len_norange, 2 ; CHECK-NEXT: --> (2 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: %q0.sext = sext i8 %q0 to i16 ; CHECK-NEXT: --> (sext i8 (1 + %len_norange) to i16) U: [-128,128) S: [-128,128) ; CHECK-NEXT: %q1.sext = sext i8 %q1 to i16 ; CHECK-NEXT: --> (sext i8 (2 + %len_norange) to i16) U: [-128,128) S: [-128,128) ; CHECK-NEXT: Determining loop execution counts for: @f1 ; entry: %len = load i8, i8* %len_addr, !range !0 %len_norange = load i8, i8* %len_addr %t0 = add i8 %len, -1 %t1 = add i8 %len, -2 %t0.sext = sext i8 %t0 to i16 %t1.sext = sext i8 %t1 to i16 %q0 = add i8 %len_norange, 1 %q1 = add i8 %len_norange, 2 %q0.sext = sext i8 %q0 to i16 %q1.sext = sext i8 %q1 to i16 ret void } define void @f2(i8* %len_addr) { ; CHECK-LABEL: 'f2' ; CHECK-NEXT: Classifying expressions for: @f2 ; CHECK-NEXT: %len = load i8, i8* %len_addr, align 1, !range !0 ; CHECK-NEXT: --> %len U: [0,127) S: [0,127) ; CHECK-NEXT: %len_norange = load i8, i8* %len_addr, align 1 ; CHECK-NEXT: --> %len_norange U: full-set S: full-set ; CHECK-NEXT: %t0 = add i8 %len, 1 ; CHECK-NEXT: --> (1 + %len)<nuw><nsw> U: [1,-128) S: [1,-128) ; CHECK-NEXT: %t1 = add i8 %len, 2 ; CHECK-NEXT: --> (2 + %len)<nuw> U: [2,-127) S: [2,-127) ; CHECK-NEXT: %t0.zext = zext i8 %t0 to i16 ; CHECK-NEXT: --> (1 + (zext i8 %len to i16))<nuw><nsw> U: [1,128) S: [1,128) ; CHECK-NEXT: %t1.zext = zext i8 %t1 to i16 ; CHECK-NEXT: --> (2 + (zext i8 %len to i16))<nuw><nsw> U: [2,129) S: [2,129) ; CHECK-NEXT: %q0 = add i8 %len_norange, 1 ; CHECK-NEXT: --> (1 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: %q1 = add i8 %len_norange, 2 ; CHECK-NEXT: --> (2 + %len_norange) U: full-set S: full-set ; CHECK-NEXT: %q0.zext = zext i8 %q0 to i16 ; CHECK-NEXT: --> (zext i8 (1 + %len_norange) to i16) U: [0,256) S: [0,256) ; CHECK-NEXT: %q1.zext = zext i8 %q1 to i16 ; CHECK-NEXT: --> (zext i8 (2 + %len_norange) to i16) U: [0,256) S: [0,256) ; CHECK-NEXT: Determining loop execution counts for: @f2 ; entry: %len = load i8, i8* %len_addr, !range !0 %len_norange = load i8, i8* %len_addr %t0 = add i8 %len, 1 %t1 = add i8 %len, 2 %t0.zext = zext i8 %t0 to i16 %t1.zext = zext i8 %t1 to i16 %q0 = add i8 %len_norange, 1 %q1 = add i8 %len_norange, 2 %q0.zext = zext i8 %q0 to i16 %q1.zext = zext i8 %q1 to i16 ret void } @z_addr = external global [16 x i8], align 4 @z_addr_noalign = external global [16 x i8] %union = type { [10 x [4 x float]] } @tmp_addr = external unnamed_addr global { %union, [2000 x i8] } define void @f3(i8* %x_addr, i8* %y_addr, i32* %tmp_addr) { ; CHECK-LABEL: 'f3' ; CHECK-NEXT: Classifying expressions for: @f3 ; CHECK-NEXT: %x = load i8, i8* %x_addr, align 1 ; CHECK-NEXT: --> %x U: full-set S: full-set ; CHECK-NEXT: %t0 = mul i8 %x, 4 ; CHECK-NEXT: --> (4 * %x) U: [0,-3) S: [-128,125) ; CHECK-NEXT: %t1 = add i8 %t0, 5 ; CHECK-NEXT: --> (5 + (4 * %x)) U: [5,2) S: [-123,-126) ; CHECK-NEXT: %t1.zext = zext i8 %t1 to i16 ; CHECK-NEXT: --> (1 + (zext i8 (4 + (4 * %x)) to i16))<nuw><nsw> U: [1,254) S: [1,257) ; CHECK-NEXT: %q0 = mul i8 %x, 4 ; CHECK-NEXT: --> (4 * %x) U: [0,-3) S: [-128,125) ; CHECK-NEXT: %q1 = add i8 %q0, 7 ; CHECK-NEXT: --> (7 + (4 * %x)) U: [7,4) S: [-121,-124) ; CHECK-NEXT: %q1.zext = zext i8 %q1 to i16 ; CHECK-NEXT: --> (3 + (zext i8 (4 + (4 * %x)) to i16))<nuw><nsw> U: [3,256) S: [3,259) ; CHECK-NEXT: %p0 = mul i8 %x, 4 ; CHECK-NEXT: --> (4 * %x) U: [0,-3) S: [-128,125) ; CHECK-NEXT: %p1 = add i8 %p0, 8 ; CHECK-NEXT: --> (8 + (4 * %x)) U: [0,-3) S: [-128,125) ; CHECK-NEXT: %p1.zext = zext i8 %p1 to i16 ; CHECK-NEXT: --> (zext i8 (8 + (4 * %x)) to i16) U: [0,253) S: [0,256) ; CHECK-NEXT: %r0 = mul i8 %x, 4 ; CHECK-NEXT: --> (4 * %x) U: [0,-3) S: [-128,125) ; CHECK-NEXT: %r1 = add i8 %r0, -2 ; CHECK-NEXT: --> (-2 + (4 * %x)) U: [0,-1) S: [-128,127) ; CHECK-NEXT: %r1.zext = zext i8 %r1 to i16 ; CHECK-NEXT: --> (2 + (zext i8 (-4 + (4 * %x)) to i16))<nuw><nsw> U: [2,255) S: [2,258) ; CHECK-NEXT: %y = load i8, i8* %y_addr, align 1 ; CHECK-NEXT: --> %y U: full-set S: full-set ; CHECK-NEXT: %s0 = mul i8 %x, 32 ; CHECK-NEXT: --> (32 * %x) U: [0,-31) S: [-128,97) ; CHECK-NEXT: %s1 = mul i8 %y, 36 ; CHECK-NEXT: --> (36 * %y) U: [0,-3) S: [-128,125) ; CHECK-NEXT: %s2 = add i8 %s0, %s1 ; CHECK-NEXT: --> ((32 * %x) + (36 * %y)) U: [0,-3) S: [-128,125) ; CHECK-NEXT: %s3 = add i8 %s2, 5 ; CHECK-NEXT: --> (5 + (32 * %x) + (36 * %y)) U: full-set S: full-set ; CHECK-NEXT: %s3.zext = zext i8 %s3 to i16 ; CHECK-NEXT: --> (1 + (zext i8 (4 + (32 * %x) + (36 * %y)) to i16))<nuw><nsw> U: [1,254) S: [1,257) ; CHECK-NEXT: %ptr = bitcast [16 x i8]* @z_addr to i8* ; CHECK-NEXT: --> @z_addr U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: %int0 = ptrtoint i8* %ptr to i32 ; CHECK-NEXT: --> (trunc i64 (ptrtoint [16 x i8]* @z_addr to i64) to i32) U: [0,-3) S: [-2147483648,2147483645) ; CHECK-NEXT: %int5 = add i32 %int0, 5 ; CHECK-NEXT: --> (5 + (trunc i64 (ptrtoint [16 x i8]* @z_addr to i64) to i32)) U: [5,2) S: [-2147483643,-2147483646) ; CHECK-NEXT: %int.zext = zext i32 %int5 to i64 ; CHECK-NEXT: --> (1 + (zext i32 (4 + (trunc i64 (ptrtoint [16 x i8]* @z_addr to i64) to i32)) to i64))<nuw><nsw> U: [1,4294967294) S: [1,4294967297) ; CHECK-NEXT: %ptr_noalign = bitcast [16 x i8]* @z_addr_noalign to i8* ; CHECK-NEXT: --> @z_addr_noalign U: full-set S: full-set ; CHECK-NEXT: %int0_na = ptrtoint i8* %ptr_noalign to i32 ; CHECK-NEXT: --> (trunc i64 (ptrtoint [16 x i8]* @z_addr_noalign to i64) to i32) U: full-set S: full-set ; CHECK-NEXT: %int5_na = add i32 %int0_na, 5 ; CHECK-NEXT: --> (5 + (trunc i64 (ptrtoint [16 x i8]* @z_addr_noalign to i64) to i32)) U: full-set S: full-set ; CHECK-NEXT: %int.zext_na = zext i32 %int5_na to i64 ; CHECK-NEXT: --> (zext i32 (5 + (trunc i64 (ptrtoint [16 x i8]* @z_addr_noalign to i64) to i32)) to i64) U: [0,4294967296) S: [0,4294967296) ; CHECK-NEXT: %tmp = load i32, i32* %tmp_addr, align 4 ; CHECK-NEXT: --> %tmp U: full-set S: full-set ; CHECK-NEXT: %mul = and i32 %tmp, -4 ; CHECK-NEXT: --> (4 * (%tmp /u 4))<nuw> U: [0,-3) S: [-2147483648,2147483645) ; CHECK-NEXT: %add4 = add i32 %mul, 4 ; CHECK-NEXT: --> (4 + (4 * (%tmp /u 4))<nuw>) U: [0,-3) S: [-2147483648,2147483645) ; CHECK-NEXT: %add4.zext = zext i32 %add4 to i64 ; CHECK-NEXT: --> (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64) U: [0,4294967293) S: [0,4294967296) ; CHECK-NEXT: %sunkaddr3 = mul i64 %add4.zext, 4 ; CHECK-NEXT: --> (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> U: [0,17179869169) S: [0,17179869181) ; CHECK-NEXT: %sunkaddr4 = getelementptr inbounds i8, i8* bitcast ({ %union, [2000 x i8] }* @tmp_addr to i8*), i64 %sunkaddr3 ; CHECK-NEXT: --> ((4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> + @tmp_addr) U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: %sunkaddr5 = getelementptr inbounds i8, i8* %sunkaddr4, i64 4096 ; CHECK-NEXT: --> (4096 + (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> + @tmp_addr) U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: %addr4.cast = bitcast i8* %sunkaddr5 to i32* ; CHECK-NEXT: --> (4096 + (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> + @tmp_addr) U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: %addr4.incr = getelementptr i32, i32* %addr4.cast, i64 1 ; CHECK-NEXT: --> (4100 + (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> + @tmp_addr) U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: %add5 = add i32 %mul, 5 ; CHECK-NEXT: --> (5 + (4 * (%tmp /u 4))<nuw>) U: [5,2) S: [-2147483643,-2147483646) ; CHECK-NEXT: %add5.zext = zext i32 %add5 to i64 ; CHECK-NEXT: --> (1 + (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> U: [1,4294967294) S: [1,4294967297) ; CHECK-NEXT: %sunkaddr0 = mul i64 %add5.zext, 4 ; CHECK-NEXT: --> (4 + (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw>)<nuw><nsw> U: [4,17179869173) S: [4,17179869185) ; CHECK-NEXT: %sunkaddr1 = getelementptr inbounds i8, i8* bitcast ({ %union, [2000 x i8] }* @tmp_addr to i8*), i64 %sunkaddr0 ; CHECK-NEXT: --> (4 + (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> + @tmp_addr) U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: %sunkaddr2 = getelementptr inbounds i8, i8* %sunkaddr1, i64 4096 ; CHECK-NEXT: --> (4100 + (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> + @tmp_addr) U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: %addr5.cast = bitcast i8* %sunkaddr2 to i32* ; CHECK-NEXT: --> (4100 + (4 * (zext i32 (4 + (4 * (%tmp /u 4))<nuw>) to i64))<nuw><nsw> + @tmp_addr) U: [0,-3) S: [-9223372036854775808,9223372036854775805) ; CHECK-NEXT: Determining loop execution counts for: @f3 ; entry: %x = load i8, i8* %x_addr %t0 = mul i8 %x, 4 %t1 = add i8 %t0, 5 %t1.zext = zext i8 %t1 to i16 %q0 = mul i8 %x, 4 %q1 = add i8 %q0, 7 %q1.zext = zext i8 %q1 to i16 %p0 = mul i8 %x, 4 %p1 = add i8 %p0, 8 %p1.zext = zext i8 %p1 to i16 %r0 = mul i8 %x, 4 %r1 = add i8 %r0, 254 %r1.zext = zext i8 %r1 to i16 %y = load i8, i8* %y_addr %s0 = mul i8 %x, 32 %s1 = mul i8 %y, 36 %s2 = add i8 %s0, %s1 %s3 = add i8 %s2, 5 %s3.zext = zext i8 %s3 to i16 %ptr = bitcast [16 x i8]* @z_addr to i8* %int0 = ptrtoint i8* %ptr to i32 %int5 = add i32 %int0, 5 %int.zext = zext i32 %int5 to i64 %ptr_noalign = bitcast [16 x i8]* @z_addr_noalign to i8* %int0_na = ptrtoint i8* %ptr_noalign to i32 %int5_na = add i32 %int0_na, 5 %int.zext_na = zext i32 %int5_na to i64 %tmp = load i32, i32* %tmp_addr %mul = and i32 %tmp, -4 %add4 = add i32 %mul, 4 %add4.zext = zext i32 %add4 to i64 %sunkaddr3 = mul i64 %add4.zext, 4 %sunkaddr4 = getelementptr inbounds i8, i8* bitcast ({ %union, [2000 x i8] }* @tmp_addr to i8*), i64 %sunkaddr3 %sunkaddr5 = getelementptr inbounds i8, i8* %sunkaddr4, i64 4096 %addr4.cast = bitcast i8* %sunkaddr5 to i32* %addr4.incr = getelementptr i32, i32* %addr4.cast, i64 1 %add5 = add i32 %mul, 5 %add5.zext = zext i32 %add5 to i64 %sunkaddr0 = mul i64 %add5.zext, 4 %sunkaddr1 = getelementptr inbounds i8, i8* bitcast ({ %union, [2000 x i8] }* @tmp_addr to i8*), i64 %sunkaddr0 %sunkaddr2 = getelementptr inbounds i8, i8* %sunkaddr1, i64 4096 %addr5.cast = bitcast i8* %sunkaddr2 to i32* ret void } ; The next two tests demonstrate that (at the time of being written), SCEV ; will incorrectly propagate flags from an add in one scope to an add in ; another scope. Note as well that the results are visit order dependent ; and (as shown in the _b variant) the printer frequently makes the actual ; bug very hard to see. define i1 @test2_a(i32 %a, i32 %b, i1 %will_overflow) { ; CHECK-LABEL: 'test2_a' ; CHECK-NEXT: Classifying expressions for: @test2_a ; CHECK-NEXT: %iv = phi i32 [ %a, %entry ], [ %iv.next, %loop ] ; CHECK-NEXT: --> {%a,+,%b}<nuw><nsw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %iv.next = add nuw nsw i32 %iv, %b ; CHECK-NEXT: --> {(%a + %b),+,%b}<nuw><nsw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %trap = udiv i32 %a, %iv.next ; CHECK-NEXT: --> (%a /u {(%a + %b),+,%b}<nuw><nsw><%loop>) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %c = add i32 %a, %b ; CHECK-NEXT: --> (%a + %b) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @test2_a ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable predicated backedge-taken count. ; entry: br i1 %will_overflow, label %exit1, label %loop loop: %iv = phi i32 [%a, %entry], [%iv.next, %loop] %iv.next = add nuw nsw i32 %iv, %b %trap = udiv i32 %a, %iv.next ;; Use to force poison -> UB %ret2 = icmp ult i32 %iv.next, %a ; Note: backedge is unreachable here br i1 %ret2, label %loop, label %exit2 exit2: ret i1 false exit1: %c = add i32 %a, %b %ret1 = icmp ult i32 %c, %a ret i1 false } define i1 @test2_b(i32 %a, i32 %b, i1 %will_overflow) { ; CHECK-LABEL: 'test2_b' ; CHECK-NEXT: Classifying expressions for: @test2_b ; CHECK-NEXT: %c = add i32 %a, %b ; CHECK-NEXT: --> (%a + %b) U: full-set S: full-set ; CHECK-NEXT: %iv = phi i32 [ %a, %entry ], [ %iv.next, %loop ] ; CHECK-NEXT: --> {%a,+,%b}<nuw><nsw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %iv.next = add nuw nsw i32 %iv, %b ; CHECK-NEXT: --> {(%a + %b),+,%b}<nuw><nsw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %trap = udiv i32 %a, %iv.next ; CHECK-NEXT: --> (%a /u {(%a + %b),+,%b}<nuw><nsw><%loop>) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test2_b ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable predicated backedge-taken count. ; entry: br i1 %will_overflow, label %exit1, label %loop exit1: %c = add i32 %a, %b %ret1 = icmp ult i32 %c, %a ret i1 false loop: %iv = phi i32 [%a, %entry], [%iv.next, %loop] %iv.next = add nuw nsw i32 %iv, %b %trap = udiv i32 %a, %iv.next %ret2 = icmp ult i32 %iv.next, %a ; Note: backedge is unreachable here br i1 %ret2, label %loop, label %exit2 exit2: ret i1 false }