#include "AArch64LegalizerInfo.h"
#include "AArch64RegisterBankInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/MathExtras.h"
#include <initializer_list>
#define DEBUG_TYPE "aarch64-legalinfo"
using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;
using namespace MIPatternMatch;
AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
: ST(&ST) {
using namespace TargetOpcode;
const LLT p0 = LLT::pointer(0, 64);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
const LLT v16s8 = LLT::fixed_vector(16, 8);
const LLT v8s8 = LLT::fixed_vector(8, 8);
const LLT v4s8 = LLT::fixed_vector(4, 8);
const LLT v8s16 = LLT::fixed_vector(8, 16);
const LLT v4s16 = LLT::fixed_vector(4, 16);
const LLT v2s16 = LLT::fixed_vector(2, 16);
const LLT v2s32 = LLT::fixed_vector(2, 32);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT v2p0 = LLT::fixed_vector(2, p0);
std::initializer_list<LLT> PackedVectorAllTypeList = {
v16s8, v8s16, v4s32,
v2s64, v2p0,
v8s8, v4s16, v2s32};
const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
if (!ST.hasNEON() || !ST.hasFPARMv8()) {
getLegacyLegalizerInfo().computeTables();
return;
}
const bool HasFP16 = ST.hasFullFP16();
const LLT &MinFPScalar = HasFP16 ? s16 : s32;
getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
.legalFor({p0, s8, s16, s32, s64})
.legalFor(PackedVectorAllTypeList)
.widenScalarToNextPow2(0)
.clampScalar(0, s8, s64)
.fewerElementsIf(
[=](const LegalityQuery &Query) {
return Query.Types[0].isVector() &&
(Query.Types[0].getElementType() != s64 ||
Query.Types[0].getNumElements() != 2);
},
[=](const LegalityQuery &Query) {
LLT EltTy = Query.Types[0].getElementType();
if (EltTy == s64)
return std::make_pair(0, LLT::fixed_vector(2, 64));
return std::make_pair(0, EltTy);
});
getActionDefinitionsBuilder(G_PHI)
.legalFor({p0, s16, s32, s64})
.legalFor(PackedVectorAllTypeList)
.widenScalarToNextPow2(0)
.clampScalar(0, s16, s64)
.clampMaxNumElements(0, s8, 16)
.clampMaxNumElements(0, s16, 8)
.clampMaxNumElements(0, s32, 4)
.clampMaxNumElements(0, s64, 2)
.clampMaxNumElements(0, p0, 2);
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({s32, s64, v4s32, v2s32, v2s64})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64);
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
.legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
.scalarizeIf(
[=](const LegalityQuery &Query) {
return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
},
0)
.legalFor({v2s64})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.clampNumElements(0, v2s32, v4s32)
.clampNumElements(0, v2s64, v2s64)
.moreElementsToNextPow2(0);
getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
.customIf([=](const LegalityQuery &Query) {
const auto &SrcTy = Query.Types[0];
const auto &AmtTy = Query.Types[1];
return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
AmtTy.getSizeInBits() == 32;
})
.legalFor({
{s32, s32},
{s32, s64},
{s64, s64},
{v8s8, v8s8},
{v16s8, v16s8},
{v4s16, v4s16},
{v8s16, v8s16},
{v2s32, v2s32},
{v4s32, v4s32},
{v2s64, v2s64},
})
.widenScalarToNextPow2(0)
.clampScalar(1, s32, s64)
.clampScalar(0, s32, s64)
.clampNumElements(0, v2s32, v4s32)
.clampNumElements(0, v2s64, v2s64)
.moreElementsToNextPow2(0)
.minScalarSameAs(1, 0);
getActionDefinitionsBuilder(G_PTR_ADD)
.legalFor({{p0, s64}, {v2p0, v2s64}})
.clampScalar(1, s64, s64);
getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
getActionDefinitionsBuilder({G_SDIV, G_UDIV})
.legalFor({s32, s64})
.libcallFor({s128})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
.scalarize(0);
getActionDefinitionsBuilder({G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
.lowerFor({s8, s16, s32, s64, v2s64, v4s32, v2s32})
.widenScalarOrEltToNextPow2(0)
.clampScalarOrElt(0, s32, s64)
.clampNumElements(0, v2s32, v4s32)
.clampNumElements(0, v2s64, v2s64)
.moreElementsToNextPow2(0);
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
.widenScalarToNextPow2(0, 32)
.clampScalar(0, s32, s64)
.lower();
getActionDefinitionsBuilder({G_SMULH, G_UMULH})
.legalFor({s64, v8s16, v16s8, v4s32})
.lower();
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
.legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
.clampNumElements(0, v8s8, v16s8)
.clampNumElements(0, v4s16, v8s16)
.clampNumElements(0, v2s32, v4s32)
.clampNumElements(0, v2s64, v2s64)
.lower();
getActionDefinitionsBuilder(
{G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
.legalFor({{s32, s32}, {s64, s32}})
.clampScalar(0, s32, s64)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
.legalFor({MinFPScalar, s32, s64, v2s64, v4s32, v2s32})
.clampScalar(0, MinFPScalar, s64)
.clampNumElements(0, v2s32, v4s32)
.clampNumElements(0, v2s64, v2s64);
getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
G_FNEARBYINT, G_INTRINSIC_LRINT})
.fewerElementsIf(
[=, &ST](const LegalityQuery &Query) {
const auto &Ty = Query.Types[0];
return Ty.isVector() && Ty.getElementType() == s16 &&
!ST.hasFullFP16();
},
[=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
.widenScalarIf(
[=, &ST](const LegalityQuery &Query) {
return Query.Types[0] == s16 && !ST.hasFullFP16();
},
[=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
.legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
getActionDefinitionsBuilder(
{G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
.scalarize(0)
.minScalar(0, s32)
.libcallFor({s32, s64, v2s32, v4s32, v2s64});
getActionDefinitionsBuilder(G_INSERT)
.legalIf(all(typeInSet(0, {s32, s64, p0}),
typeInSet(1, {s8, s16, s32}), smallerThan(1, 0)))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(1)
.minScalar(1, s8)
.maxScalarIf(typeInSet(0, {s32}), 1, s16)
.maxScalarIf(typeInSet(0, {s64, p0}), 1, s32);
getActionDefinitionsBuilder(G_EXTRACT)
.legalIf(all(typeInSet(0, {s16, s32, s64, p0}),
typeInSet(1, {s32, s64, s128, p0}), smallerThan(0, 1)))
.widenScalarToNextPow2(1)
.clampScalar(1, s32, s128)
.widenScalarToNextPow2(0)
.minScalar(0, s16)
.maxScalarIf(typeInSet(1, {s32}), 0, s16)
.maxScalarIf(typeInSet(1, {s64, p0}), 0, s32)
.maxScalarIf(typeInSet(1, {s128}), 0, s64);
for (unsigned Op : {G_SEXTLOAD, G_ZEXTLOAD}) {
auto &Actions = getActionDefinitionsBuilder(Op);
if (Op == G_SEXTLOAD)
Actions.lowerIf(atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Unordered));
Actions
.legalForTypesWithMemDesc({{s32, p0, s8, 8},
{s32, p0, s16, 8},
{s32, p0, s32, 8},
{s64, p0, s8, 2},
{s64, p0, s16, 2},
{s64, p0, s32, 4},
{s64, p0, s64, 8},
{p0, p0, s64, 8},
{v2s32, p0, s64, 8}})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.unsupportedIfMemSizeNotPow2()
.lower();
}
auto IsPtrVecPred = [=](const LegalityQuery &Query) {
const LLT &ValTy = Query.Types[0];
if (!ValTy.isVector())
return false;
const LLT EltTy = ValTy.getElementType();
return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
};
getActionDefinitionsBuilder(G_LOAD)
.customIf([=](const LegalityQuery &Query) {
return Query.Types[0] == s128 &&
Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic;
})
.legalForTypesWithMemDesc({{s8, p0, s8, 8},
{s16, p0, s16, 8},
{s32, p0, s32, 8},
{s64, p0, s64, 8},
{p0, p0, s64, 8},
{s128, p0, s128, 8},
{v8s8, p0, s64, 8},
{v16s8, p0, s128, 8},
{v4s16, p0, s64, 8},
{v8s16, p0, s128, 8},
{v2s32, p0, s64, 8},
{v4s32, p0, s128, 8},
{v2s64, p0, s128, 8}})
.legalForTypesWithMemDesc({{s32, p0, s8, 8}, {s32, p0, s16, 8}})
.widenScalarToNextPow2(0, 8)
.lowerIfMemSizeNotByteSizePow2()
.clampScalar(0, s8, s64)
.narrowScalarIf([=](const LegalityQuery &Query) {
return Query.Types[0].isScalar() &&
Query.Types[0] != Query.MMODescrs[0].MemoryTy &&
Query.Types[0].getSizeInBits() > 32;
},
changeTo(0, s32))
.clampMaxNumElements(0, s8, 16)
.clampMaxNumElements(0, s16, 8)
.clampMaxNumElements(0, s32, 4)
.clampMaxNumElements(0, s64, 2)
.clampMaxNumElements(0, p0, 2)
.customIf(IsPtrVecPred)
.scalarizeIf(typeIs(0, v2s16), 0);
getActionDefinitionsBuilder(G_STORE)
.customIf([=](const LegalityQuery &Query) {
return Query.Types[0] == s128 &&
Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic;
})
.legalForTypesWithMemDesc({{s8, p0, s8, 8},
{s16, p0, s8, 8}, {s32, p0, s8, 8}, {s64, p0, s8, 8}, {s16, p0, s16, 8},
{s32, p0, s16, 8}, {s64, p0, s16, 8}, {s32, p0, s8, 8},
{s32, p0, s16, 8},
{s32, p0, s32, 8},
{s64, p0, s64, 8},
{s64, p0, s32, 8}, {p0, p0, s64, 8},
{s128, p0, s128, 8},
{v16s8, p0, s128, 8},
{v8s8, p0, s64, 8},
{v4s16, p0, s64, 8},
{v8s16, p0, s128, 8},
{v2s32, p0, s64, 8},
{v4s32, p0, s128, 8},
{v2s64, p0, s128, 8}})
.clampScalar(0, s8, s64)
.lowerIf([=](const LegalityQuery &Query) {
return Query.Types[0].isScalar() &&
Query.Types[0] != Query.MMODescrs[0].MemoryTy;
})
.clampMaxNumElements(0, s8, 16)
.clampMaxNumElements(0, s16, 8)
.clampMaxNumElements(0, s32, 4)
.clampMaxNumElements(0, s64, 2)
.clampMaxNumElements(0, p0, 2)
.lowerIfMemSizeNotPow2()
.customIf(IsPtrVecPred)
.scalarizeIf(typeIs(0, v2s16), 0);
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({p0, s8, s16, s32, s64})
.widenScalarToNextPow2(0)
.clampScalar(0, s8, s64);
getActionDefinitionsBuilder(G_FCONSTANT)
.legalIf([=](const LegalityQuery &Query) {
const auto &Ty = Query.Types[0];
if (HasFP16 && Ty == s16)
return true;
return Ty == s32 || Ty == s64 || Ty == s128;
})
.clampScalar(0, MinFPScalar, s128);
getActionDefinitionsBuilder({G_ICMP, G_FCMP})
.legalFor({{s32, s32},
{s32, s64},
{s32, p0},
{v4s32, v4s32},
{v2s32, v2s32},
{v2s64, v2s64},
{v2s64, v2p0},
{v4s16, v4s16},
{v8s16, v8s16},
{v8s8, v8s8},
{v16s8, v16s8}})
.widenScalarOrEltToNextPow2(1)
.clampScalar(1, s32, s64)
.clampScalar(0, s32, s32)
.minScalarEltSameAsIf(
[=](const LegalityQuery &Query) {
const LLT &Ty = Query.Types[0];
const LLT &SrcTy = Query.Types[1];
return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
Ty.getElementType() != SrcTy.getElementType();
},
0, 1)
.minScalarOrEltIf(
[=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
1, s32)
.minScalarOrEltIf(
[=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
s64)
.clampNumElements(0, v2s32, v4s32);
auto ExtLegalFunc = [=](const LegalityQuery &Query) {
unsigned DstSize = Query.Types[0].getSizeInBits();
if (DstSize == 128 && !Query.Types[0].isVector())
return false;
if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
return false;
const LLT &SrcTy = Query.Types[1];
unsigned SrcSize = SrcTy.getSizeInBits();
if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
return false;
return true;
};
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
.legalIf(ExtLegalFunc)
.clampScalar(0, s64, s64);
getActionDefinitionsBuilder(G_TRUNC)
.minScalarOrEltIf(
[=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
0, s8)
.customIf([=](const LegalityQuery &Query) {
LLT DstTy = Query.Types[0];
LLT SrcTy = Query.Types[1];
return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
})
.alwaysLegal();
getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor(
{{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
.clampMaxNumElements(0, s32, 2);
getActionDefinitionsBuilder(G_FPEXT)
.legalFor(
{{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
.clampMaxNumElements(0, s64, 2);
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(1)
.clampScalar(1, s32, s64);
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
.clampScalar(1, s32, s64)
.minScalarSameAs(1, 0)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_BRCOND)
.legalFor({s32})
.clampScalar(0, s32, s32);
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s32, s32}, {s64, s32}, {p0, s32}})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.clampScalar(1, s32, s32)
.minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
.lowerIf(isVector(0));
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
if (TM.getCodeModel() == CodeModel::Small)
getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
else
getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s8, s16, s32, s64}, {p0})
.legalFor({{v2s64, v2p0}})
.maxScalar(0, s64)
.widenScalarToNextPow2(0, 8);
getActionDefinitionsBuilder(G_INTTOPTR)
.unsupportedIf([&](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
})
.legalFor({{p0, s64}, {v2p0, v2s64}});
getActionDefinitionsBuilder(G_BITCAST)
.legalForCartesianProduct({s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
v2p0});
getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
getActionDefinitionsBuilder(G_VAARG)
.customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
.clampScalar(0, s8, s64)
.widenScalarToNextPow2(0, 8);
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
.lowerIf(
all(typeInSet(0, {s8, s16, s32, s64, s128}), typeIs(2, p0)));
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
.customIf([](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() == 128;
})
.clampScalar(0, s32, s64)
.legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
.clampScalar(0, s32, s64)
.legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
getActionDefinitionsBuilder(Op)
.widenScalarToNextPow2(LitTyIdx, 8)
.widenScalarToNextPow2(BigTyIdx, 32)
.clampScalar(LitTyIdx, s8, s64)
.clampScalar(BigTyIdx, s32, s128)
.legalIf([=](const LegalityQuery &Q) {
switch (Q.Types[BigTyIdx].getSizeInBits()) {
case 32:
case 64:
case 128:
break;
default:
return false;
}
switch (Q.Types[LitTyIdx].getSizeInBits()) {
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
});
}
getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
.unsupportedIf([=](const LegalityQuery &Query) {
const LLT &EltTy = Query.Types[1].getElementType();
return Query.Types[0] != EltTy;
})
.minScalar(2, s64)
.legalIf([=](const LegalityQuery &Query) {
const LLT &VecTy = Query.Types[1];
return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
VecTy == v8s8 || VecTy == v16s8 || VecTy == v2s32 ||
VecTy == v2p0;
})
.minScalarOrEltIf(
[=](const LegalityQuery &Query) {
return Query.Types[1].getNumElements() <= 2;
},
0, s64)
.minScalarOrEltIf(
[=](const LegalityQuery &Query) {
return Query.Types[1].getNumElements() <= 4;
},
0, s32)
.minScalarOrEltIf(
[=](const LegalityQuery &Query) {
return Query.Types[1].getNumElements() <= 8;
},
0, s16)
.minScalarOrEltIf(
[=](const LegalityQuery &Query) {
return Query.Types[1].getNumElements() <= 16;
},
0, s8)
.minScalarOrElt(0, s8) .clampMaxNumElements(1, s64, 2)
.clampMaxNumElements(1, s32, 4)
.clampMaxNumElements(1, s16, 8)
.clampMaxNumElements(1, p0, 2);
getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
.legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
getActionDefinitionsBuilder(G_BUILD_VECTOR)
.legalFor({{v8s8, s8},
{v16s8, s8},
{v2s16, s16},
{v4s16, s16},
{v8s16, s16},
{v2s32, s32},
{v4s32, s32},
{v2p0, p0},
{v2s64, s64}})
.clampNumElements(0, v4s32, v4s32)
.clampNumElements(0, v2s64, v2s64)
.minScalarOrElt(0, s8)
.minScalarSameAs(1, 0);
getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC).lower();
getActionDefinitionsBuilder(G_CTLZ)
.legalForCartesianProduct(
{s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
.scalarize(1);
getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF).lower();
getActionDefinitionsBuilder(G_BITREVERSE)
.legalFor({s32, s64, v8s8, v16s8})
.widenScalarToNextPow2(0, 32)
.clampScalar(0, s32, s64);
getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF).lower();
getActionDefinitionsBuilder(G_CTTZ)
.lowerIf(isVector(0))
.clampScalar(0, s32, s64)
.scalarSameSizeAs(1, 0)
.customFor({s32, s64});
getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
.legalIf([=](const LegalityQuery &Query) {
const LLT &DstTy = Query.Types[0];
const LLT &SrcTy = Query.Types[1];
if (DstTy != SrcTy)
return false;
for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
if (DstTy == Ty)
return true;
}
return false;
})
.lowerIf([=](const LegalityQuery &Query) {
return !Query.Types[1].isVector();
})
.moreElementsToNextPow2(0)
.clampNumElements(0, v4s32, v4s32)
.clampNumElements(0, v2s64, v2s64);
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalFor({{v4s32, v2s32}, {v8s16, v4s16}, {v16s8, v8s8}});
getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
return Query.Types[0] == p0 && Query.Types[1] == s64;
});
getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
if (ST.hasMOPS()) {
getActionDefinitionsBuilder(G_BZERO).unsupported();
getActionDefinitionsBuilder(G_MEMSET)
.legalForCartesianProduct({p0}, {s64}, {s64})
.customForCartesianProduct({p0}, {s8}, {s64})
.immIdx(0);
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE})
.legalForCartesianProduct({p0}, {p0}, {s64})
.immIdx(0);
getActionDefinitionsBuilder(G_MEMCPY_INLINE)
.legalForCartesianProduct({p0}, {p0}, {s64});
} else {
getActionDefinitionsBuilder({G_BZERO, G_MEMCPY, G_MEMMOVE, G_MEMSET})
.libcall();
}
getActionDefinitionsBuilder(G_ABS)
.lowerIf(isScalar(0))
.legalFor(PackedVectorAllTypeList);
getActionDefinitionsBuilder(G_VECREDUCE_FADD)
.legalFor({{s32, v2s32}, {s64, v2s64}})
.clampMaxNumElements(1, s64, 2)
.clampMaxNumElements(1, s32, 2)
.lower();
getActionDefinitionsBuilder(G_VECREDUCE_ADD)
.legalFor(
{{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s32, v2s32}, {s64, v2s64}})
.clampMaxNumElements(1, s64, 2)
.clampMaxNumElements(1, s32, 4)
.lower();
getActionDefinitionsBuilder(
{G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
.fewerElementsIf(
[=](const LegalityQuery &Q) {
LLT SrcTy = Q.Types[1];
if (SrcTy.isScalar())
return false;
if (!isPowerOf2_32(SrcTy.getNumElements()))
return false;
return SrcTy.getSizeInBits() > 64;
},
[=](const LegalityQuery &Q) {
LLT SrcTy = Q.Types[1];
return std::make_pair(1, SrcTy.divide(2));
})
.scalarize(1)
.lower();
getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
.lowerIf([=](const LegalityQuery &Q) { return Q.Types[0].isScalar(); });
getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
getActionDefinitionsBuilder(G_ROTR)
.legalFor({{s32, s64}, {s64, s64}})
.customIf([=](const LegalityQuery &Q) {
return Q.Types[0].isScalar() && Q.Types[1].getScalarSizeInBits() < 64;
})
.lower();
getActionDefinitionsBuilder(G_ROTL).lower();
getActionDefinitionsBuilder({G_SBFX, G_UBFX})
.customFor({{s32, s32}, {s64, s64}});
auto always = [=](const LegalityQuery &Q) { return true; };
getActionDefinitionsBuilder(G_CTPOP)
.legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
.clampScalar(0, s32, s128)
.widenScalarToNextPow2(0)
.minScalarEltSameAsIf(always, 1, 0)
.maxScalarEltSameAsIf(always, 1, 0)
.customFor({{s32, s32},
{s64, s64},
{s128, s128},
{v2s64, v2s64},
{v2s32, v2s32},
{v4s32, v4s32},
{v4s16, v4s16},
{v8s16, v8s16}});
getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT}).lowerIf(isScalar(0));
getActionDefinitionsBuilder({G_FMAXNUM, G_FMINNUM})
.legalFor({MinFPScalar, s32, s64})
.libcallFor({s128})
.minScalar(0, MinFPScalar);
getActionDefinitionsBuilder({G_FMAXIMUM, G_FMINIMUM})
.legalFor({MinFPScalar, s32, s64})
.minScalar(0, MinFPScalar);
getActionDefinitionsBuilder({G_LROUND, G_LLROUND})
.legalFor({{s64, s32}, {s64, s64}});
getLegacyLegalizerInfo().computeTables();
verify(*ST.getInstrInfo());
}
bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
MachineInstr &MI) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
GISelChangeObserver &Observer = Helper.Observer;
switch (MI.getOpcode()) {
default:
return false;
case TargetOpcode::G_VAARG:
return legalizeVaArg(MI, MRI, MIRBuilder);
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
case TargetOpcode::G_SHL:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
case TargetOpcode::G_GLOBAL_VALUE:
return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
case TargetOpcode::G_TRUNC:
return legalizeVectorTrunc(MI, Helper);
case TargetOpcode::G_SBFX:
case TargetOpcode::G_UBFX:
return legalizeBitfieldExtract(MI, MRI, Helper);
case TargetOpcode::G_ROTR:
return legalizeRotate(MI, MRI, Helper);
case TargetOpcode::G_CTPOP:
return legalizeCTPOP(MI, MRI, Helper);
case TargetOpcode::G_ATOMIC_CMPXCHG:
return legalizeAtomicCmpxchg128(MI, MRI, Helper);
case TargetOpcode::G_CTTZ:
return legalizeCTTZ(MI, Helper);
case TargetOpcode::G_BZERO:
case TargetOpcode::G_MEMCPY:
case TargetOpcode::G_MEMMOVE:
case TargetOpcode::G_MEMSET:
return legalizeMemOps(MI, Helper);
}
llvm_unreachable("expected switch to return");
}
bool AArch64LegalizerInfo::legalizeRotate(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
Register AmtReg = MI.getOperand(2).getReg();
LLT AmtTy = MRI.getType(AmtReg);
(void)AmtTy;
assert(AmtTy.isScalar() && "Expected a scalar rotate");
assert(AmtTy.getSizeInBits() < 64 && "Expected this rotate to be legal");
auto NewAmt = Helper.MIRBuilder.buildSExt(LLT::scalar(64), AmtReg);
Helper.Observer.changingInstr(MI);
MI.getOperand(2).setReg(NewAmt.getReg(0));
Helper.Observer.changedInstr(MI);
return true;
}
static void extractParts(Register Reg, MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
SmallVectorImpl<Register> &VRegs) {
for (int I = 0; I < NumParts; ++I)
VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
MIRBuilder.buildUnmerge(VRegs, Reg);
}
bool AArch64LegalizerInfo::legalizeVectorTrunc(
MachineInstr &MI, LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(SrcReg);
assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
isPowerOf2_32(SrcTy.getSizeInBits()));
LLT SplitSrcTy =
SrcTy.changeElementCount(SrcTy.getElementCount().divideCoefficientBy(2));
SmallVector<Register, 2> SplitSrcs;
extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
for (unsigned I = 0; I < SplitSrcs.size(); ++I)
SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
auto Concat = MIRBuilder.buildConcatVectors(
DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
Helper.Observer.changingInstr(MI);
MI.getOperand(1).setReg(Concat.getReg(0));
Helper.Observer.changedInstr(MI);
return true;
}
bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
GISelChangeObserver &Observer) const {
assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
auto &GlobalOp = MI.getOperand(1);
const auto* GV = GlobalOp.getGlobal();
if (GV->isThreadLocal())
return true;
auto &TM = ST->getTargetLowering()->getTargetMachine();
unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
if (OpFlags & AArch64II::MO_GOT)
return true;
auto Offset = GlobalOp.getOffset();
Register DstReg = MI.getOperand(0).getReg();
auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
.addGlobalAddress(GV, Offset, OpFlags | AArch64II::MO_PAGE);
MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
if (OpFlags & AArch64II::MO_TAGGED) {
assert(!Offset &&
"Should not have folded in an offset for a tagged global!");
ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
.addGlobalAddress(GV, 0x100000000,
AArch64II::MO_PREL | AArch64II::MO_G3)
.addImm(48);
MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
}
MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
.addGlobalAddress(GV, Offset,
OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
MI.eraseFromParent();
return true;
}
bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
switch (MI.getIntrinsicID()) {
case Intrinsic::vacopy: {
unsigned PtrSize = ST->isTargetILP32() ? 4 : 8;
unsigned VaListSize =
(ST->isTargetDarwin() || ST->isTargetWindows())
? PtrSize
: ST->isTargetILP32() ? 20 : 32;
MachineFunction &MF = *MI.getMF();
auto Val = MF.getRegInfo().createGenericVirtualRegister(
LLT::scalar(VaListSize * 8));
MachineIRBuilder MIB(MI);
MIB.buildLoad(Val, MI.getOperand(2),
*MF.getMachineMemOperand(MachinePointerInfo(),
MachineMemOperand::MOLoad,
VaListSize, Align(PtrSize)));
MIB.buildStore(Val, MI.getOperand(1),
*MF.getMachineMemOperand(MachinePointerInfo(),
MachineMemOperand::MOStore,
VaListSize, Align(PtrSize)));
MI.eraseFromParent();
return true;
}
case Intrinsic::get_dynamic_area_offset: {
MachineIRBuilder &MIB = Helper.MIRBuilder;
MIB.buildConstant(MI.getOperand(0).getReg(), 0);
MI.eraseFromParent();
return true;
}
case Intrinsic::aarch64_mops_memset_tag: {
assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
MachineIRBuilder MIB(MI);
auto &Value = MI.getOperand(3);
Register ZExtValueReg = MIB.buildAnyExt(LLT::scalar(64), Value).getReg(0);
Value.setReg(ZExtValueReg);
return true;
}
}
return true;
}
bool AArch64LegalizerInfo::legalizeShlAshrLshr(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
GISelChangeObserver &Observer) const {
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
MI.getOpcode() == TargetOpcode::G_LSHR ||
MI.getOpcode() == TargetOpcode::G_SHL);
Register AmtReg = MI.getOperand(2).getReg();
auto VRegAndVal = getIConstantVRegValWithLookThrough(AmtReg, MRI);
if (!VRegAndVal)
return true;
int64_t Amount = VRegAndVal->Value.getSExtValue();
if (Amount > 31)
return true; auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(ExtCst.getReg(0));
Observer.changedInstr(MI);
return true;
}
static void matchLDPSTPAddrMode(Register Root, Register &Base, int &Offset,
MachineRegisterInfo &MRI) {
Base = Root;
Offset = 0;
Register NewBase;
int64_t NewOffset;
if (mi_match(Root, MRI, m_GPtrAdd(m_Reg(NewBase), m_ICst(NewOffset))) &&
isShiftedInt<7, 3>(NewOffset)) {
Base = NewBase;
Offset = NewOffset;
}
}
bool AArch64LegalizerInfo::legalizeLoadStore(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
GISelChangeObserver &Observer) const {
assert(MI.getOpcode() == TargetOpcode::G_STORE ||
MI.getOpcode() == TargetOpcode::G_LOAD);
Register ValReg = MI.getOperand(0).getReg();
const LLT ValTy = MRI.getType(ValReg);
if (ValTy == LLT::scalar(128)) {
assert((*MI.memoperands_begin())->getSuccessOrdering() ==
AtomicOrdering::Monotonic ||
(*MI.memoperands_begin())->getSuccessOrdering() ==
AtomicOrdering::Unordered);
assert(ST->hasLSE2() && "ldp/stp not single copy atomic without +lse2");
LLT s64 = LLT::scalar(64);
MachineInstrBuilder NewI;
if (MI.getOpcode() == TargetOpcode::G_LOAD) {
NewI = MIRBuilder.buildInstr(AArch64::LDPXi, {s64, s64}, {});
MIRBuilder.buildMerge(ValReg, {NewI->getOperand(0), NewI->getOperand(1)});
} else {
auto Split = MIRBuilder.buildUnmerge(s64, MI.getOperand(0));
NewI = MIRBuilder.buildInstr(
AArch64::STPXi, {}, {Split->getOperand(0), Split->getOperand(1)});
}
Register Base;
int Offset;
matchLDPSTPAddrMode(MI.getOperand(1).getReg(), Base, Offset, MRI);
NewI.addUse(Base);
NewI.addImm(Offset / 8);
NewI.cloneMemRefs(MI);
constrainSelectedInstRegOperands(*NewI, *ST->getInstrInfo(),
*MRI.getTargetRegisterInfo(),
*ST->getRegBankInfo());
MI.eraseFromParent();
return true;
}
if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
ValTy.getElementType().getAddressSpace() != 0) {
LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
return false;
}
unsigned PtrSize = ValTy.getElementType().getSizeInBits();
const LLT NewTy = LLT::vector(ValTy.getElementCount(), PtrSize);
auto &MMO = **MI.memoperands_begin();
MMO.setType(NewTy);
if (MI.getOpcode() == TargetOpcode::G_STORE) {
auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
} else {
auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
MIRBuilder.buildBitcast(ValReg, NewLoad);
}
MI.eraseFromParent();
return true;
}
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MachineFunction &MF = MIRBuilder.getMF();
Align Alignment(MI.getOperand(2).getImm());
Register Dst = MI.getOperand(0).getReg();
Register ListPtr = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(ListPtr);
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
const Align PtrAlign = Align(PtrSize);
auto List = MIRBuilder.buildLoad(
PtrTy, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
PtrTy, PtrAlign));
MachineInstrBuilder DstPtr;
if (Alignment > PtrAlign) {
auto AlignMinus1 =
MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
} else
DstPtr = List;
LLT ValTy = MRI.getType(Dst);
uint64_t ValSize = ValTy.getSizeInBits() / 8;
MIRBuilder.buildLoad(
Dst, DstPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
ValTy, std::max(Alignment, PtrAlign)));
auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
MIRBuilder.buildStore(NewList, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(),
MachineMemOperand::MOStore,
PtrTy, PtrAlign));
MI.eraseFromParent();
return true;
}
bool AArch64LegalizerInfo::legalizeBitfieldExtract(
MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
return getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI) &&
getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
}
bool AArch64LegalizerInfo::legalizeCTPOP(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
if (!ST->hasNEON() ||
MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat))
return false;
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
Register Dst = MI.getOperand(0).getReg();
Register Val = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Val);
assert(Ty == MRI.getType(Dst) &&
"Expected src and dst to have the same type!");
unsigned Size = Ty.getSizeInBits();
LLT VTy = Size == 128 ? LLT::fixed_vector(16, 8) : LLT::fixed_vector(8, 8);
if (Ty.isScalar()) {
assert((Size == 32 || Size == 64 || Size == 128) && "Expected only 32, 64, or 128 bit scalars!");
if (Size == 32) {
Val = MIRBuilder.buildZExt(LLT::scalar(64), Val).getReg(0);
}
}
Val = MIRBuilder.buildBitcast(VTy, Val).getReg(0);
auto CTPOP = MIRBuilder.buildCTPOP(VTy, Val);
Register HSum = CTPOP.getReg(0);
unsigned Opc;
SmallVector<LLT> HAddTys;
if (Ty.isScalar()) {
Opc = Intrinsic::aarch64_neon_uaddlv;
HAddTys.push_back(LLT::scalar(32));
} else if (Ty == LLT::fixed_vector(8, 16)) {
Opc = Intrinsic::aarch64_neon_uaddlp;
HAddTys.push_back(LLT::fixed_vector(8, 16));
} else if (Ty == LLT::fixed_vector(4, 32)) {
Opc = Intrinsic::aarch64_neon_uaddlp;
HAddTys.push_back(LLT::fixed_vector(8, 16));
HAddTys.push_back(LLT::fixed_vector(4, 32));
} else if (Ty == LLT::fixed_vector(2, 64)) {
Opc = Intrinsic::aarch64_neon_uaddlp;
HAddTys.push_back(LLT::fixed_vector(8, 16));
HAddTys.push_back(LLT::fixed_vector(4, 32));
HAddTys.push_back(LLT::fixed_vector(2, 64));
} else if (Ty == LLT::fixed_vector(4, 16)) {
Opc = Intrinsic::aarch64_neon_uaddlp;
HAddTys.push_back(LLT::fixed_vector(4, 16));
} else if (Ty == LLT::fixed_vector(2, 32)) {
Opc = Intrinsic::aarch64_neon_uaddlp;
HAddTys.push_back(LLT::fixed_vector(4, 16));
HAddTys.push_back(LLT::fixed_vector(2, 32));
} else
llvm_unreachable("unexpected vector shape");
MachineInstrBuilder UADD;
for (LLT HTy : HAddTys) {
UADD = MIRBuilder.buildIntrinsic(Opc, {HTy}, false)
.addUse(HSum);
HSum = UADD.getReg(0);
}
if (Ty.isScalar() && (Size == 64 || Size == 128))
MIRBuilder.buildZExt(Dst, UADD);
else
UADD->getOperand(0).setReg(Dst);
MI.eraseFromParent();
return true;
}
bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
LLT s64 = LLT::scalar(64);
auto Addr = MI.getOperand(1).getReg();
auto DesiredI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(2));
auto NewI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(3));
auto DstLo = MRI.createGenericVirtualRegister(s64);
auto DstHi = MRI.createGenericVirtualRegister(s64);
MachineInstrBuilder CAS;
if (ST->hasLSE()) {
auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
unsigned Opcode;
switch (Ordering) {
case AtomicOrdering::Acquire:
Opcode = AArch64::CASPAX;
break;
case AtomicOrdering::Release:
Opcode = AArch64::CASPLX;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
Opcode = AArch64::CASPALX;
break;
default:
Opcode = AArch64::CASPX;
break;
}
LLT s128 = LLT::scalar(128);
auto CASDst = MRI.createGenericVirtualRegister(s128);
auto CASDesired = MRI.createGenericVirtualRegister(s128);
auto CASNew = MRI.createGenericVirtualRegister(s128);
MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
.addUse(DesiredI->getOperand(0).getReg())
.addImm(AArch64::sube64)
.addUse(DesiredI->getOperand(1).getReg())
.addImm(AArch64::subo64);
MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
.addUse(NewI->getOperand(0).getReg())
.addImm(AArch64::sube64)
.addUse(NewI->getOperand(1).getReg())
.addImm(AArch64::subo64);
CAS = MIRBuilder.buildInstr(Opcode, {CASDst}, {CASDesired, CASNew, Addr});
MIRBuilder.buildExtract({DstLo}, {CASDst}, 0);
MIRBuilder.buildExtract({DstHi}, {CASDst}, 64);
} else {
auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
unsigned Opcode;
switch (Ordering) {
case AtomicOrdering::Acquire:
Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
break;
case AtomicOrdering::Release:
Opcode = AArch64::CMP_SWAP_128_RELEASE;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
Opcode = AArch64::CMP_SWAP_128;
break;
default:
Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
break;
}
auto Scratch = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
CAS = MIRBuilder.buildInstr(Opcode, {DstLo, DstHi, Scratch},
{Addr, DesiredI->getOperand(0),
DesiredI->getOperand(1), NewI->getOperand(0),
NewI->getOperand(1)});
}
CAS.cloneMemRefs(MI);
constrainSelectedInstRegOperands(*CAS, *ST->getInstrInfo(),
*MRI.getTargetRegisterInfo(),
*ST->getRegBankInfo());
MIRBuilder.buildMerge(MI.getOperand(0), {DstLo, DstHi});
MI.eraseFromParent();
return true;
}
bool AArch64LegalizerInfo::legalizeCTTZ(MachineInstr &MI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
auto BitReverse = MIRBuilder.buildBitReverse(Ty, MI.getOperand(1));
MIRBuilder.buildCTLZ(MI.getOperand(0).getReg(), BitReverse);
MI.eraseFromParent();
return true;
}
bool AArch64LegalizerInfo::legalizeMemOps(MachineInstr &MI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
if (MI.getOpcode() == TargetOpcode::G_MEMSET) {
auto &Value = MI.getOperand(1);
Register ZExtValueReg =
MIRBuilder.buildAnyExt(LLT::scalar(64), Value).getReg(0);
Value.setReg(ZExtValueReg);
return true;
}
return false;
}