; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc < %s -mtriple=arm-eabi -mattr=+v6t2 | FileCheck %s --check-prefixes=CHECK,SCALAR ; RUN: llc < %s -mtriple=arm-eabi -mattr=+v6t2 -mattr=+neon | FileCheck %s --check-prefixes=CHECK,NEON declare i8 @llvm.fshl.i8(i8, i8, i8) declare i16 @llvm.fshl.i16(i16, i16, i16) declare i32 @llvm.fshl.i32(i32, i32, i32) declare i64 @llvm.fshl.i64(i64, i64, i64) declare <4 x i32> @llvm.fshl.v4i32(<4 x i32>, <4 x i32>, <4 x i32>) declare i8 @llvm.fshr.i8(i8, i8, i8) declare i16 @llvm.fshr.i16(i16, i16, i16) declare i32 @llvm.fshr.i32(i32, i32, i32) declare i64 @llvm.fshr.i64(i64, i64, i64) declare <4 x i32> @llvm.fshr.v4i32(<4 x i32>, <4 x i32>, <4 x i32>) ; General case - all operands can be variables. define i16 @fshl_i16(i16 %x, i16 %y, i16 %z) { ; CHECK-LABEL: fshl_i16: ; CHECK: @ %bb.0: ; CHECK-NEXT: pkhbt r0, r1, r0, lsl #16 ; CHECK-NEXT: and r1, r2, #15 ; CHECK-NEXT: lsl r0, r0, r1 ; CHECK-NEXT: lsr r0, r0, #16 ; CHECK-NEXT: bx lr %f = call i16 @llvm.fshl.i16(i16 %x, i16 %y, i16 %z) ret i16 %f } define i32 @fshl_i32(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: fshl_i32: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r3, #31 ; CHECK-NEXT: lsr r1, r1, #1 ; CHECK-NEXT: bic r3, r3, r2 ; CHECK-NEXT: and r2, r2, #31 ; CHECK-NEXT: lsl r0, r0, r2 ; CHECK-NEXT: orr r0, r0, r1, lsr r3 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 %z) ret i32 %f } ; Verify that weird types are minimally supported. declare i37 @llvm.fshl.i37(i37, i37, i37) define i37 @fshl_i37(i37 %x, i37 %y, i37 %z) { ; SCALAR-LABEL: fshl_i37: ; SCALAR: @ %bb.0: ; SCALAR-NEXT: .save {r4, r5, r6, r7, r8, r9, r11, lr} ; SCALAR-NEXT: push {r4, r5, r6, r7, r8, r9, r11, lr} ; SCALAR-NEXT: mov r8, r0 ; SCALAR-NEXT: ldr r0, [sp, #36] ; SCALAR-NEXT: mov r4, r1 ; SCALAR-NEXT: mov r6, r3 ; SCALAR-NEXT: and r1, r0, #31 ; SCALAR-NEXT: ldr r0, [sp, #32] ; SCALAR-NEXT: mov r9, r2 ; SCALAR-NEXT: mov r2, #37 ; SCALAR-NEXT: mov r3, #0 ; SCALAR-NEXT: bl __aeabi_uldivmod ; SCALAR-NEXT: lsl r1, r6, #27 ; SCALAR-NEXT: ands r0, r2, #32 ; SCALAR-NEXT: orr r1, r1, r9, lsr #5 ; SCALAR-NEXT: mov r3, r8 ; SCALAR-NEXT: and r6, r2, #31 ; SCALAR-NEXT: mov r7, #31 ; SCALAR-NEXT: movne r3, r1 ; SCALAR-NEXT: cmp r0, #0 ; SCALAR-NEXT: lslne r1, r9, #27 ; SCALAR-NEXT: bic r2, r7, r2 ; SCALAR-NEXT: movne r4, r8 ; SCALAR-NEXT: lsl r5, r3, r6 ; SCALAR-NEXT: lsr r0, r1, #1 ; SCALAR-NEXT: lsl r1, r4, r6 ; SCALAR-NEXT: lsr r3, r3, #1 ; SCALAR-NEXT: orr r0, r5, r0, lsr r2 ; SCALAR-NEXT: orr r1, r1, r3, lsr r2 ; SCALAR-NEXT: pop {r4, r5, r6, r7, r8, r9, r11, pc} ; ; NEON-LABEL: fshl_i37: ; NEON: @ %bb.0: ; NEON-NEXT: .save {r4, r5, r6, r7, r11, lr} ; NEON-NEXT: push {r4, r5, r6, r7, r11, lr} ; NEON-NEXT: mov r4, r1 ; NEON-NEXT: ldr r1, [sp, #28] ; NEON-NEXT: mov r6, r0 ; NEON-NEXT: ldr r0, [sp, #24] ; NEON-NEXT: and r1, r1, #31 ; NEON-NEXT: mov r5, r3 ; NEON-NEXT: mov r7, r2 ; NEON-NEXT: mov r2, #37 ; NEON-NEXT: mov r3, #0 ; NEON-NEXT: bl __aeabi_uldivmod ; NEON-NEXT: mov r0, #31 ; NEON-NEXT: bic r1, r0, r2 ; NEON-NEXT: lsl r0, r5, #27 ; NEON-NEXT: ands r12, r2, #32 ; NEON-NEXT: orr r0, r0, r7, lsr #5 ; NEON-NEXT: mov r5, r6 ; NEON-NEXT: and r2, r2, #31 ; NEON-NEXT: movne r5, r0 ; NEON-NEXT: lslne r0, r7, #27 ; NEON-NEXT: cmp r12, #0 ; NEON-NEXT: lsl r3, r5, r2 ; NEON-NEXT: lsr r0, r0, #1 ; NEON-NEXT: movne r4, r6 ; NEON-NEXT: orr r0, r3, r0, lsr r1 ; NEON-NEXT: lsr r3, r5, #1 ; NEON-NEXT: lsl r2, r4, r2 ; NEON-NEXT: orr r1, r2, r3, lsr r1 ; NEON-NEXT: pop {r4, r5, r6, r7, r11, pc} %f = call i37 @llvm.fshl.i37(i37 %x, i37 %y, i37 %z) ret i37 %f } ; extract(concat(0b1110000, 0b1111111) << 2) = 0b1000011 declare i7 @llvm.fshl.i7(i7, i7, i7) define i7 @fshl_i7_const_fold() { ; CHECK-LABEL: fshl_i7_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #67 ; CHECK-NEXT: bx lr %f = call i7 @llvm.fshl.i7(i7 112, i7 127, i7 2) ret i7 %f } define i8 @fshl_i8_const_fold_overshift_1() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_1: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #128 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ret i8 %f } define i8 @fshl_i8_const_fold_overshift_2() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_2: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #120 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ret i8 %f } define i8 @fshl_i8_const_fold_overshift_3() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_3: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #0 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 0, i8 225, i8 8) ret i8 %f } ; With constant shift amount, this is 'extr'. define i32 @fshl_i32_const_shift(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_const_shift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #9 ; CHECK-NEXT: orr r0, r0, r1, lsr #23 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 9) ret i32 %f } ; Check modulo math on shift amount. define i32 @fshl_i32_const_overshift(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #9 ; CHECK-NEXT: orr r0, r0, r1, lsr #23 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 41) ret i32 %f } ; 64-bit should also work. define i64 @fshl_i64_const_overshift(i64 %x, i64 %y) { ; CHECK-LABEL: fshl_i64_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r1, r3, #9 ; CHECK-NEXT: orr r2, r1, r2, lsr #23 ; CHECK-NEXT: lsl r0, r0, #9 ; CHECK-NEXT: orr r1, r0, r3, lsr #23 ; CHECK-NEXT: mov r0, r2 ; CHECK-NEXT: bx lr %f = call i64 @llvm.fshl.i64(i64 %x, i64 %y, i64 105) ret i64 %f } ; This should work without any node-specific logic. define i8 @fshl_i8_const_fold() { ; CHECK-LABEL: fshl_i8_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #128 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 7) ret i8 %f } ; Repeat everything for funnel shift right. ; General case - all operands can be variables. define i16 @fshr_i16(i16 %x, i16 %y, i16 %z) { ; CHECK-LABEL: fshr_i16: ; CHECK: @ %bb.0: ; CHECK-NEXT: pkhbt r0, r1, r0, lsl #16 ; CHECK-NEXT: and r1, r2, #15 ; CHECK-NEXT: lsr r0, r0, r1 ; CHECK-NEXT: bx lr %f = call i16 @llvm.fshr.i16(i16 %x, i16 %y, i16 %z) ret i16 %f } define i32 @fshr_i32(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: fshr_i32: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r3, #31 ; CHECK-NEXT: lsl r0, r0, #1 ; CHECK-NEXT: bic r3, r3, r2 ; CHECK-NEXT: and r2, r2, #31 ; CHECK-NEXT: lsl r0, r0, r3 ; CHECK-NEXT: orr r0, r0, r1, lsr r2 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 %z) ret i32 %f } ; Verify that weird types are minimally supported. declare i37 @llvm.fshr.i37(i37, i37, i37) define i37 @fshr_i37(i37 %x, i37 %y, i37 %z) { ; SCALAR-LABEL: fshr_i37: ; SCALAR: @ %bb.0: ; SCALAR-NEXT: .save {r4, r5, r6, r7, r8, lr} ; SCALAR-NEXT: push {r4, r5, r6, r7, r8, lr} ; SCALAR-NEXT: mov r8, r0 ; SCALAR-NEXT: ldr r0, [sp, #28] ; SCALAR-NEXT: mov r4, r1 ; SCALAR-NEXT: mov r5, r3 ; SCALAR-NEXT: and r1, r0, #31 ; SCALAR-NEXT: ldr r0, [sp, #24] ; SCALAR-NEXT: mov r7, r2 ; SCALAR-NEXT: mov r2, #37 ; SCALAR-NEXT: mov r3, #0 ; SCALAR-NEXT: bl __aeabi_uldivmod ; SCALAR-NEXT: lsl r3, r5, #27 ; SCALAR-NEXT: add r0, r2, #27 ; SCALAR-NEXT: orr r3, r3, r7, lsr #5 ; SCALAR-NEXT: ands r2, r0, #32 ; SCALAR-NEXT: mov r5, r8 ; SCALAR-NEXT: mov r1, #31 ; SCALAR-NEXT: moveq r5, r3 ; SCALAR-NEXT: lsleq r3, r7, #27 ; SCALAR-NEXT: cmp r2, #0 ; SCALAR-NEXT: bic r1, r1, r0 ; SCALAR-NEXT: moveq r4, r8 ; SCALAR-NEXT: lsl r6, r5, #1 ; SCALAR-NEXT: and r7, r0, #31 ; SCALAR-NEXT: lsl r2, r4, #1 ; SCALAR-NEXT: lsl r6, r6, r1 ; SCALAR-NEXT: lsl r1, r2, r1 ; SCALAR-NEXT: orr r0, r6, r3, lsr r7 ; SCALAR-NEXT: orr r1, r1, r5, lsr r7 ; SCALAR-NEXT: pop {r4, r5, r6, r7, r8, pc} ; ; NEON-LABEL: fshr_i37: ; NEON: @ %bb.0: ; NEON-NEXT: .save {r4, r5, r6, r7, r8, lr} ; NEON-NEXT: push {r4, r5, r6, r7, r8, lr} ; NEON-NEXT: mov r4, r1 ; NEON-NEXT: ldr r1, [sp, #28] ; NEON-NEXT: mov r8, r0 ; NEON-NEXT: ldr r0, [sp, #24] ; NEON-NEXT: and r1, r1, #31 ; NEON-NEXT: mov r5, r3 ; NEON-NEXT: mov r7, r2 ; NEON-NEXT: mov r2, #37 ; NEON-NEXT: mov r3, #0 ; NEON-NEXT: bl __aeabi_uldivmod ; NEON-NEXT: lsl r3, r5, #27 ; NEON-NEXT: add r0, r2, #27 ; NEON-NEXT: orr r3, r3, r7, lsr #5 ; NEON-NEXT: ands r2, r0, #32 ; NEON-NEXT: mov r5, r8 ; NEON-NEXT: mov r1, #31 ; NEON-NEXT: moveq r5, r3 ; NEON-NEXT: lsleq r3, r7, #27 ; NEON-NEXT: cmp r2, #0 ; NEON-NEXT: bic r1, r1, r0 ; NEON-NEXT: moveq r4, r8 ; NEON-NEXT: lsl r6, r5, #1 ; NEON-NEXT: and r7, r0, #31 ; NEON-NEXT: lsl r2, r4, #1 ; NEON-NEXT: lsl r6, r6, r1 ; NEON-NEXT: lsl r1, r2, r1 ; NEON-NEXT: orr r0, r6, r3, lsr r7 ; NEON-NEXT: orr r1, r1, r5, lsr r7 ; NEON-NEXT: pop {r4, r5, r6, r7, r8, pc} %f = call i37 @llvm.fshr.i37(i37 %x, i37 %y, i37 %z) ret i37 %f } ; extract(concat(0b1110000, 0b1111111) >> 2) = 0b0011111 declare i7 @llvm.fshr.i7(i7, i7, i7) define i7 @fshr_i7_const_fold() { ; CHECK-LABEL: fshr_i7_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #31 ; CHECK-NEXT: bx lr %f = call i7 @llvm.fshr.i7(i7 112, i7 127, i7 2) ret i7 %f } define i8 @fshr_i8_const_fold_overshift_1() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_1: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #254 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ret i8 %f } define i8 @fshr_i8_const_fold_overshift_2() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_2: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #225 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ret i8 %f } define i8 @fshr_i8_const_fold_overshift_3() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_3: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #255 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ret i8 %f } ; With constant shift amount, this is 'extr'. define i32 @fshr_i32_const_shift(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_const_shift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #23 ; CHECK-NEXT: orr r0, r0, r1, lsr #9 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 9) ret i32 %f } ; Check modulo math on shift amount. 41-32=9. define i32 @fshr_i32_const_overshift(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #23 ; CHECK-NEXT: orr r0, r0, r1, lsr #9 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 41) ret i32 %f } ; 64-bit should also work. 105-64 = 41. define i64 @fshr_i64_const_overshift(i64 %x, i64 %y) { ; CHECK-LABEL: fshr_i64_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r2, r0, #23 ; CHECK-NEXT: lsl r1, r1, #23 ; CHECK-NEXT: orr r2, r2, r3, lsr #9 ; CHECK-NEXT: orr r1, r1, r0, lsr #9 ; CHECK-NEXT: mov r0, r2 ; CHECK-NEXT: bx lr %f = call i64 @llvm.fshr.i64(i64 %x, i64 %y, i64 105) ret i64 %f } ; This should work without any node-specific logic. define i8 @fshr_i8_const_fold() { ; CHECK-LABEL: fshr_i8_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #254 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 7) ret i8 %f } define i32 @fshl_i32_shift_by_bitwidth(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_shift_by_bitwidth: ; CHECK: @ %bb.0: ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 32) ret i32 %f } define i32 @fshr_i32_shift_by_bitwidth(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_shift_by_bitwidth: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, r1 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 32) ret i32 %f } define <4 x i32> @fshl_v4i32_shift_by_bitwidth(<4 x i32> %x, <4 x i32> %y) { ; CHECK-LABEL: fshl_v4i32_shift_by_bitwidth: ; CHECK: @ %bb.0: ; CHECK-NEXT: bx lr %f = call <4 x i32> @llvm.fshl.v4i32(<4 x i32> %x, <4 x i32> %y, <4 x i32> <i32 32, i32 32, i32 32, i32 32>) ret <4 x i32> %f } define <4 x i32> @fshr_v4i32_shift_by_bitwidth(<4 x i32> %x, <4 x i32> %y) { ; SCALAR-LABEL: fshr_v4i32_shift_by_bitwidth: ; SCALAR: @ %bb.0: ; SCALAR-NEXT: ldm sp, {r0, r1, r2, r3} ; SCALAR-NEXT: bx lr ; ; NEON-LABEL: fshr_v4i32_shift_by_bitwidth: ; NEON: @ %bb.0: ; NEON-NEXT: mov r0, sp ; NEON-NEXT: vld1.64 {d16, d17}, [r0] ; NEON-NEXT: vmov r0, r1, d16 ; NEON-NEXT: vmov r2, r3, d17 ; NEON-NEXT: bx lr %f = call <4 x i32> @llvm.fshr.v4i32(<4 x i32> %x, <4 x i32> %y, <4 x i32> <i32 32, i32 32, i32 32, i32 32>) ret <4 x i32> %f }