Compiler projects using llvm
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -guard-widening -dce < %s | FileCheck %s

; FIXME: All the tests below must be fixed.

declare void @llvm.experimental.guard(i1,...)

; This tests shows the incorrect behavior of guard widening in terms of
; interaction with poison values.

; Let x incoming parameter is used for rane checks.
; Test generates 5 checks. One of them (c2) is used to get the corretness
; of nuw/nsw flags for x3 and x5. Others are used in guards and represent
; the checks x + 10 u< L, x + 15 u< L, x + 20 u< L and x + 3 u< L.
; The first two checks are in the first basic block and guard widening
; considers them as profitable to combine.
; When c4 and c3 are considered, number of check becomes more than two
; and combineRangeCheck consider them as profitable even if they are in
; different basic blocks.
; Accoding to algorithm of combineRangeCheck it detects that c3 and c4
; are enough to cover c1 and c5, so it ends up with guard of c3 && c4
; while both of them are poison at entry. This is a bug.

define void @combine_range_checks(i32 %x) {
; CHECK-LABEL: @combine_range_checks(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[X2:%.*]] = add i32 [[X:%.*]], 0
; CHECK-NEXT:    [[C2:%.*]] = icmp ult i32 [[X2]], 200
; CHECK-NEXT:    [[X3:%.*]] = add nuw nsw i32 [[X]], 3
; CHECK-NEXT:    [[C3:%.*]] = icmp ult i32 [[X3]], 100
; CHECK-NEXT:    [[X4:%.*]] = add nuw nsw i32 [[X]], 20
; CHECK-NEXT:    [[C4:%.*]] = icmp ult i32 [[X4]], 100
; CHECK-NEXT:    [[WIDE_CHK2:%.*]] = and i1 [[C4]], [[C3]]
; CHECK-NEXT:    call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK2]]) [ "deopt"(i64 1) ]
; CHECK-NEXT:    br i1 [[C2]], label [[OK:%.*]], label [[OUT:%.*]]
; CHECK:       ok:
; CHECK-NEXT:    br label [[OUT]]
; CHECK:       out:
; CHECK-NEXT:    ret void
;
entry:
  %x1 = add i32 %x, 10
  %c1 = icmp ult i32 %x1, 100
  %x2 = add i32 %x, 0
  %c2 = icmp ult i32 %x2, 200
  %x3 = add nuw nsw i32 %x, 3
  %c3 = icmp ult i32 %x3, 100
  %x4 = add nuw nsw i32 %x, 20
  %c4 = icmp ult i32 %x4, 100
  %x5 = add i32 %x, 15
  %c5 = icmp ult i32 %x5, 100
  call void(i1, ...) @llvm.experimental.guard(i1 %c1) [ "deopt"(i64 1) ]
  call void(i1, ...) @llvm.experimental.guard(i1 %c5) [ "deopt"(i64 5) ]
  br i1 %c2, label %ok, label %out
ok:
  call void(i1, ...) @llvm.experimental.guard(i1 %c4) [ "deopt"(i64 4) ]
  call void(i1, ...) @llvm.experimental.guard(i1 %c3) [ "deopt"(i64 3) ]
  br label %out
out:
  ret void
}

; This is similar to @combine_range_checks but shows that simple freeze
; over c3 and c4 will not help due to with X = SMAX_INT, guard with c1 will
; go to deoptimization. But after guard widening freeze of c3 and c4 may return
; true due to c3 and c4 are poisons and we pass guard executing side effect store
; which never been executed in original program.
define void @combine_range_checks_with_side_effect(i32 %x, i32* %p) {
; CHECK-LABEL: @combine_range_checks_with_side_effect(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[X2:%.*]] = add i32 [[X:%.*]], 0
; CHECK-NEXT:    [[C2:%.*]] = icmp ult i32 [[X2]], 200
; CHECK-NEXT:    [[X3:%.*]] = add nuw nsw i32 [[X]], 3
; CHECK-NEXT:    [[C3:%.*]] = icmp ult i32 [[X3]], 100
; CHECK-NEXT:    [[X4:%.*]] = add nuw nsw i32 [[X]], 20
; CHECK-NEXT:    [[C4:%.*]] = icmp ult i32 [[X4]], 100
; CHECK-NEXT:    [[WIDE_CHK2:%.*]] = and i1 [[C4]], [[C3]]
; CHECK-NEXT:    call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK2]]) [ "deopt"(i64 1) ]
; CHECK-NEXT:    store i32 0, i32* [[P:%.*]], align 4
; CHECK-NEXT:    br i1 [[C2]], label [[OK:%.*]], label [[OUT:%.*]]
; CHECK:       ok:
; CHECK-NEXT:    br label [[OUT]]
; CHECK:       out:
; CHECK-NEXT:    ret void
;
entry:
  %x1 = add i32 %x, 10
  %c1 = icmp ult i32 %x1, 100
  %x2 = add i32 %x, 0
  %c2 = icmp ult i32 %x2, 200
  %x3 = add nuw nsw i32 %x, 3
  %c3 = icmp ult i32 %x3, 100
  %x4 = add nuw nsw i32 %x, 20
  %c4 = icmp ult i32 %x4, 100
  %x5 = add i32 %x, 15
  %c5 = icmp ult i32 %x5, 100
  call void(i1, ...) @llvm.experimental.guard(i1 %c1) [ "deopt"(i64 1) ]
  call void(i1, ...) @llvm.experimental.guard(i1 %c5) [ "deopt"(i64 5) ]
  store i32 0, i32* %p
  br i1 %c2, label %ok, label %out
ok:
  call void(i1, ...) @llvm.experimental.guard(i1 %c4) [ "deopt"(i64 4) ]
  call void(i1, ...) @llvm.experimental.guard(i1 %c3) [ "deopt"(i64 3) ]
  br label %out
out:
  ret void
}


; The test shows the bug in guard widening. Critical pieces.
; There is a %cond_1 check which provides the correctness of nuw nsw in %b.shift.
; %b.shift and %cond_2 are poisons and after guard widening it leads to UB
; for both arithmetic and logcal and.
define void @simple_case(i32 %a, i32 %b, i1 %cnd) {
; CHECK-LABEL: @simple_case(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[COND_0:%.*]] = icmp ult i32 [[A:%.*]], 10
; CHECK-NEXT:    [[B_SHIFT:%.*]] = add nuw nsw i32 [[B:%.*]], 5
; CHECK-NEXT:    [[COND_2:%.*]] = icmp ult i32 [[B_SHIFT]], 10
; CHECK-NEXT:    [[WIDE_CHK:%.*]] = and i1 [[COND_0]], [[COND_2]]
; CHECK-NEXT:    call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT:    br label [[LOOP:%.*]]
; CHECK:       loop:
; CHECK-NEXT:    [[COND_1:%.*]] = icmp ult i32 [[B]], 10
; CHECK-NEXT:    br i1 [[COND_1]], label [[OK:%.*]], label [[LEAVE_LOOPEXIT:%.*]]
; CHECK:       ok:
; CHECK-NEXT:    br i1 [[CND:%.*]], label [[LOOP]], label [[LEAVE_LOOPEXIT]]
; CHECK:       leave.loopexit:
; CHECK-NEXT:    br label [[LEAVE:%.*]]
; CHECK:       leave:
; CHECK-NEXT:    ret void
;
entry:
  %cond_0 = icmp ult i32 %a, 10
  %b.shift = add nuw nsw i32 %b, 5
  %cond_2 = icmp ult i32 %b.shift, 10
  call void (i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
  br label %loop

loop:
  %cond_1 = icmp ult i32 %b, 10
  br i1 %cond_1, label %ok, label %leave.loopexit
ok:
  call void (i1, ...) @llvm.experimental.guard(i1 %cond_2) [ "deopt"() ]
  br i1 %cnd, label %loop, label %leave.loopexit

leave.loopexit:
  br label %leave

leave:
  ret void
}