; This test is designed to run twice, once with function attributes and once ; with target attributes added on the command line. ; ; RUN: cat %s > %t.tgtattr ; RUN: echo 'attributes #0 = { nounwind }' >> %t.tgtattr ; RUN: llc -mtriple=riscv32 -mattr=+c -filetype=obj \ ; RUN: -disable-block-placement < %t.tgtattr \ ; RUN: | llvm-objdump -d --triple=riscv32 --mattr=+c -M no-aliases - \ ; RUN: | FileCheck -check-prefix=RV32IC %s ; ; RUN: cat %s > %t.fnattr ; RUN: echo 'attributes #0 = { nounwind "target-features"="+c" }' >> %t.fnattr ; RUN: llc -mtriple=riscv32 -filetype=obj \ ; RUN: -disable-block-placement < %t.fnattr \ ; RUN: | llvm-objdump -d --triple=riscv32 --mattr=+c -M no-aliases - \ ; RUN: | FileCheck -check-prefix=RV32IC %s ; This acts as a basic correctness check for the codegen instruction compression ; path, verifying that the assembled file contains compressed instructions when ; expected. Handling of the compressed ISA is implemented so the same ; transformation patterns should be used whether compressing an input .s file or ; compressing codegen output. This file contains basic functionality checks to ; ensure that is working as expected. Particular care should be taken to test ; pseudo instructions. ; Note: TODOs in this file are only appropriate if they highlight a case where ; a generated instruction that can be compressed by an existing pattern isn't. ; It may be useful to have tests that indicate where better compression would be ; possible if alternative codegen choices were made, but they belong in a ; different test file. define i32 @simple_arith(i32 %a, i32 %b) #0 { ; RV32IC-LABEL: <simple_arith>: ; RV32IC: addi a2, a0, 1 ; RV32IC-NEXT: c.andi a2, 11 ; RV32IC-NEXT: c.slli a2, 7 ; RV32IC-NEXT: c.srai a1, 9 ; RV32IC-NEXT: c.add a1, a2 ; RV32IC-NEXT: sub a0, a1, a0 ; RV32IC-NEXT: c.jr ra %1 = add i32 %a, 1 %2 = and i32 %1, 11 %3 = shl i32 %2, 7 %4 = ashr i32 %b, 9 %5 = add i32 %3, %4 %6 = sub i32 %5, %a ret i32 %6 } define i32 @select(i32 %a, i32 *%b) #0 { ; RV32IC-LABEL: <select>: ; RV32IC: c.lw a2, 0(a1) ; RV32IC-NEXT: c.beqz a2, 0x18 ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: c.bnez a2, 0x1e ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: bltu a2, a0, 0x26 ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: bgeu a0, a2, 0x2e ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: bltu a0, a2, 0x36 ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: bgeu a2, a0, 0x3e ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: blt a2, a0, 0x46 ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: bge a0, a2, 0x4e ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a2, 0(a1) ; RV32IC-NEXT: blt a0, a2, 0x56 ; RV32IC-NEXT: c.mv a0, a2 ; RV32IC-NEXT: c.lw a1, 0(a1) ; RV32IC-NEXT: bge a1, a0, 0x5e ; RV32IC-NEXT: c.mv a0, a1 ; RV32IC-NEXT: c.jr ra %val1 = load volatile i32, i32* %b %tst1 = icmp eq i32 0, %val1 %val2 = select i1 %tst1, i32 %a, i32 %val1 %val3 = load volatile i32, i32* %b %tst2 = icmp ne i32 0, %val3 %val4 = select i1 %tst2, i32 %val2, i32 %val3 %val5 = load volatile i32, i32* %b %tst3 = icmp ugt i32 %val4, %val5 %val6 = select i1 %tst3, i32 %val4, i32 %val5 %val7 = load volatile i32, i32* %b %tst4 = icmp uge i32 %val6, %val7 %val8 = select i1 %tst4, i32 %val6, i32 %val7 %val9 = load volatile i32, i32* %b %tst5 = icmp ult i32 %val8, %val9 %val10 = select i1 %tst5, i32 %val8, i32 %val9 %val11 = load volatile i32, i32* %b %tst6 = icmp ule i32 %val10, %val11 %val12 = select i1 %tst6, i32 %val10, i32 %val11 %val13 = load volatile i32, i32* %b %tst7 = icmp sgt i32 %val12, %val13 %val14 = select i1 %tst7, i32 %val12, i32 %val13 %val15 = load volatile i32, i32* %b %tst8 = icmp sge i32 %val14, %val15 %val16 = select i1 %tst8, i32 %val14, i32 %val15 %val17 = load volatile i32, i32* %b %tst9 = icmp slt i32 %val16, %val17 %val18 = select i1 %tst9, i32 %val16, i32 %val17 %val19 = load volatile i32, i32* %b %tst10 = icmp sle i32 %val18, %val19 %val20 = select i1 %tst10, i32 %val18, i32 %val19 ret i32 %val20 } define i32 @pos_tiny() #0 { ; RV32IC-LABEL: <pos_tiny>: ; RV32IC: c.li a0, 18 ; RV32IC-NEXT: c.jr ra ret i32 18 } define i32 @pos_i32() #0 { ; RV32IC-LABEL: <pos_i32>: ; RV32IC: lui a0, 423811 ; RV32IC-NEXT: addi a0, a0, -1297 ; RV32IC-NEXT: c.jr ra ret i32 1735928559 } define i32 @pos_i32_half_compressible() #0 { ; RV32IC-LABEL: <pos_i32_half_compressible>: ; RV32IC: lui a0, 423810 ; RV32IC-NEXT: c.addi a0, 28 ; RV32IC-NEXT: c.jr ra ret i32 1735925788 } define i32 @neg_tiny() #0 { ; RV32IC-LABEL: <neg_tiny>: ; RV32IC: c.li a0, -19 ; RV32IC-NEXT: c.jr ra ret i32 -19 } define i32 @neg_i32() #0 { ; RV32IC-LABEL: <neg_i32>: ; RV32IC: lui a0, 912092 ; RV32IC-NEXT: addi a0, a0, -273 ; RV32IC-NEXT: c.jr ra ret i32 -559038737 } define i32 @pos_i32_hi20_only() #0 { ; RV32IC-LABEL: <pos_i32_hi20_only>: ; RV32IC: c.lui a0, 16 ; RV32IC-NEXT: c.jr ra ret i32 65536 } define i32 @neg_i32_hi20_only() #0 { ; RV32IC-LABEL: <neg_i32_hi20_only>: ; RV32IC: c.lui a0, 1048560 ; RV32IC-NEXT: c.jr ra ret i32 -65536 }