Compiler projects using llvm
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64TargetLowering class.
//
//===----------------------------------------------------------------------===//

#include "AArch64ISelLowering.h"
#include "AArch64CallingConvention.h"
#include "AArch64ExpandImm.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64PerfectShuffle.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ObjCARCUtil.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "aarch64-lower"

STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");

// FIXME: The necessary dtprel relocations don't seem to be supported
// well in the GNU bfd and gold linkers at the moment. Therefore, by
// default, for now, fall back to GeneralDynamic code generation.
cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
    "aarch64-elf-ldtls-generation", cl::Hidden,
    cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
    cl::init(false));

static cl::opt<bool>
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
                         cl::desc("Enable AArch64 logical imm instruction "
                                  "optimization"),
                         cl::init(true));

// Temporary option added for the purpose of testing functionality added
// to DAGCombiner.cpp in D92230. It is expected that this can be removed
// in future when both implementations will be based off MGATHER rather
// than the GLD1 nodes added for the SVE gather load intrinsics.
static cl::opt<bool>
EnableCombineMGatherIntrinsics("aarch64-enable-mgather-combine", cl::Hidden,
                                cl::desc("Combine extends of AArch64 masked "
                                         "gather intrinsics"),
                                cl::init(true));

/// Value type used for condition codes.
static const MVT MVT_CC = MVT::i32;

static inline EVT getPackedSVEVectorVT(EVT VT) {
  switch (VT.getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("unexpected element type for vector");
  case MVT::i8:
    return MVT::nxv16i8;
  case MVT::i16:
    return MVT::nxv8i16;
  case MVT::i32:
    return MVT::nxv4i32;
  case MVT::i64:
    return MVT::nxv2i64;
  case MVT::f16:
    return MVT::nxv8f16;
  case MVT::f32:
    return MVT::nxv4f32;
  case MVT::f64:
    return MVT::nxv2f64;
  case MVT::bf16:
    return MVT::nxv8bf16;
  }
}

// NOTE: Currently there's only a need to return integer vector types. If this
// changes then just add an extra "type" parameter.
static inline EVT getPackedSVEVectorVT(ElementCount EC) {
  switch (EC.getKnownMinValue()) {
  default:
    llvm_unreachable("unexpected element count for vector");
  case 16:
    return MVT::nxv16i8;
  case 8:
    return MVT::nxv8i16;
  case 4:
    return MVT::nxv4i32;
  case 2:
    return MVT::nxv2i64;
  }
}

static inline EVT getPromotedVTForPredicate(EVT VT) {
  assert(VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) &&
         "Expected scalable predicate vector type!");
  switch (VT.getVectorMinNumElements()) {
  default:
    llvm_unreachable("unexpected element count for vector");
  case 2:
    return MVT::nxv2i64;
  case 4:
    return MVT::nxv4i32;
  case 8:
    return MVT::nxv8i16;
  case 16:
    return MVT::nxv16i8;
  }
}

/// Returns true if VT's elements occupy the lowest bit positions of its
/// associated register class without any intervening space.
///
/// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the
/// same register class, but only nxv8f16 can be treated as a packed vector.
static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) {
  assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
         "Expected legal vector type!");
  return VT.isFixedLengthVector() ||
         VT.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock;
}

// Returns true for ####_MERGE_PASSTHRU opcodes, whose operands have a leading
// predicate and end with a passthru value matching the result type.
static bool isMergePassthruOpcode(unsigned Opc) {
  switch (Opc) {
  default:
    return false;
  case AArch64ISD::BITREVERSE_MERGE_PASSTHRU:
  case AArch64ISD::BSWAP_MERGE_PASSTHRU:
  case AArch64ISD::REVH_MERGE_PASSTHRU:
  case AArch64ISD::REVW_MERGE_PASSTHRU:
  case AArch64ISD::REVD_MERGE_PASSTHRU:
  case AArch64ISD::CTLZ_MERGE_PASSTHRU:
  case AArch64ISD::CTPOP_MERGE_PASSTHRU:
  case AArch64ISD::DUP_MERGE_PASSTHRU:
  case AArch64ISD::ABS_MERGE_PASSTHRU:
  case AArch64ISD::NEG_MERGE_PASSTHRU:
  case AArch64ISD::FNEG_MERGE_PASSTHRU:
  case AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU:
  case AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU:
  case AArch64ISD::FCEIL_MERGE_PASSTHRU:
  case AArch64ISD::FFLOOR_MERGE_PASSTHRU:
  case AArch64ISD::FNEARBYINT_MERGE_PASSTHRU:
  case AArch64ISD::FRINT_MERGE_PASSTHRU:
  case AArch64ISD::FROUND_MERGE_PASSTHRU:
  case AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU:
  case AArch64ISD::FTRUNC_MERGE_PASSTHRU:
  case AArch64ISD::FP_ROUND_MERGE_PASSTHRU:
  case AArch64ISD::FP_EXTEND_MERGE_PASSTHRU:
  case AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU:
  case AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU:
  case AArch64ISD::FCVTZU_MERGE_PASSTHRU:
  case AArch64ISD::FCVTZS_MERGE_PASSTHRU:
  case AArch64ISD::FSQRT_MERGE_PASSTHRU:
  case AArch64ISD::FRECPX_MERGE_PASSTHRU:
  case AArch64ISD::FABS_MERGE_PASSTHRU:
    return true;
  }
}

// Returns true if inactive lanes are known to be zeroed by construction.
static bool isZeroingInactiveLanes(SDValue Op) {
  switch (Op.getOpcode()) {
  default:
    // We guarantee i1 splat_vectors to zero the other lanes by
    // implementing it with ptrue and possibly a punpklo for nxv1i1.
    if (ISD::isConstantSplatVectorAllOnes(Op.getNode()))
      return true;
    return false;
  case AArch64ISD::PTRUE:
  case AArch64ISD::SETCC_MERGE_ZERO:
    return true;
  case ISD::INTRINSIC_WO_CHAIN:
    switch (Op.getConstantOperandVal(0)) {
    default:
      return false;
    case Intrinsic::aarch64_sve_ptrue:
    case Intrinsic::aarch64_sve_pnext:
    case Intrinsic::aarch64_sve_cmpeq:
    case Intrinsic::aarch64_sve_cmpne:
    case Intrinsic::aarch64_sve_cmpge:
    case Intrinsic::aarch64_sve_cmpgt:
    case Intrinsic::aarch64_sve_cmphs:
    case Intrinsic::aarch64_sve_cmphi:
    case Intrinsic::aarch64_sve_cmpeq_wide:
    case Intrinsic::aarch64_sve_cmpne_wide:
    case Intrinsic::aarch64_sve_cmpge_wide:
    case Intrinsic::aarch64_sve_cmpgt_wide:
    case Intrinsic::aarch64_sve_cmplt_wide:
    case Intrinsic::aarch64_sve_cmple_wide:
    case Intrinsic::aarch64_sve_cmphs_wide:
    case Intrinsic::aarch64_sve_cmphi_wide:
    case Intrinsic::aarch64_sve_cmplo_wide:
    case Intrinsic::aarch64_sve_cmpls_wide:
    case Intrinsic::aarch64_sve_fcmpeq:
    case Intrinsic::aarch64_sve_fcmpne:
    case Intrinsic::aarch64_sve_fcmpge:
    case Intrinsic::aarch64_sve_fcmpgt:
    case Intrinsic::aarch64_sve_fcmpuo:
      return true;
    }
  }
}

AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
                                             const AArch64Subtarget &STI)
    : TargetLowering(TM), Subtarget(&STI) {
  // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
  // we have to make something up. Arbitrarily, choose ZeroOrOne.
  setBooleanContents(ZeroOrOneBooleanContent);
  // When comparing vectors the result sets the different elements in the
  // vector to all-one or all-zero.
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);

  // Set up the register classes.
  addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
  addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);

  if (Subtarget->hasLS64()) {
    addRegisterClass(MVT::i64x8, &AArch64::GPR64x8ClassRegClass);
    setOperationAction(ISD::LOAD, MVT::i64x8, Custom);
    setOperationAction(ISD::STORE, MVT::i64x8, Custom);
  }

  if (Subtarget->hasFPARMv8()) {
    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
    addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass);
    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
  }

  if (Subtarget->hasNEON()) {
    addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
    addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
    // Someone set us up the NEON.
    addDRTypeForNEON(MVT::v2f32);
    addDRTypeForNEON(MVT::v8i8);
    addDRTypeForNEON(MVT::v4i16);
    addDRTypeForNEON(MVT::v2i32);
    addDRTypeForNEON(MVT::v1i64);
    addDRTypeForNEON(MVT::v1f64);
    addDRTypeForNEON(MVT::v4f16);
    if (Subtarget->hasBF16())
      addDRTypeForNEON(MVT::v4bf16);

    addQRTypeForNEON(MVT::v4f32);
    addQRTypeForNEON(MVT::v2f64);
    addQRTypeForNEON(MVT::v16i8);
    addQRTypeForNEON(MVT::v8i16);
    addQRTypeForNEON(MVT::v4i32);
    addQRTypeForNEON(MVT::v2i64);
    addQRTypeForNEON(MVT::v8f16);
    if (Subtarget->hasBF16())
      addQRTypeForNEON(MVT::v8bf16);
  }

  if (Subtarget->hasSVE() || Subtarget->hasSME()) {
    // Add legal sve predicate types
    addRegisterClass(MVT::nxv1i1, &AArch64::PPRRegClass);
    addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
    addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
    addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
    addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);

    // Add legal sve data types
    addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);

    addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);

    if (Subtarget->hasBF16()) {
      addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass);
      addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass);
      addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass);
    }

    if (Subtarget->useSVEForFixedLengthVectors()) {
      for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
        if (useSVEForFixedLengthVectorVT(VT))
          addRegisterClass(VT, &AArch64::ZPRRegClass);

      for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
        if (useSVEForFixedLengthVectorVT(VT))
          addRegisterClass(VT, &AArch64::ZPRRegClass);
    }
  }

  // Compute derived properties from the register classes
  computeRegisterProperties(Subtarget->getRegisterInfo());

  // Provide all sorts of operation actions
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
  setOperationAction(ISD::SETCC, MVT::i32, Custom);
  setOperationAction(ISD::SETCC, MVT::i64, Custom);
  setOperationAction(ISD::SETCC, MVT::f16, Custom);
  setOperationAction(ISD::SETCC, MVT::f32, Custom);
  setOperationAction(ISD::SETCC, MVT::f64, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
  setOperationAction(ISD::BR_CC, MVT::f16, Custom);
  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
  setOperationAction(ISD::SELECT, MVT::i32, Custom);
  setOperationAction(ISD::SELECT, MVT::i64, Custom);
  setOperationAction(ISD::SELECT, MVT::f16, Custom);
  setOperationAction(ISD::SELECT, MVT::f32, Custom);
  setOperationAction(ISD::SELECT, MVT::f64, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
  setOperationAction(ISD::JumpTable, MVT::i64, Custom);

  setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
  setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
  setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);

  setOperationAction(ISD::FREM, MVT::f32, Expand);
  setOperationAction(ISD::FREM, MVT::f64, Expand);
  setOperationAction(ISD::FREM, MVT::f80, Expand);

  setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);

  // Custom lowering hooks are needed for XOR
  // to fold it into CSINC/CSINV.
  setOperationAction(ISD::XOR, MVT::i32, Custom);
  setOperationAction(ISD::XOR, MVT::i64, Custom);

  // Virtually no operation on f128 is legal, but LLVM can't expand them when
  // there's a valid register class, so we need custom operations in most cases.
  setOperationAction(ISD::FABS, MVT::f128, Expand);
  setOperationAction(ISD::FADD, MVT::f128, LibCall);
  setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
  setOperationAction(ISD::FCOS, MVT::f128, Expand);
  setOperationAction(ISD::FDIV, MVT::f128, LibCall);
  setOperationAction(ISD::FMA, MVT::f128, Expand);
  setOperationAction(ISD::FMUL, MVT::f128, LibCall);
  setOperationAction(ISD::FNEG, MVT::f128, Expand);
  setOperationAction(ISD::FPOW, MVT::f128, Expand);
  setOperationAction(ISD::FREM, MVT::f128, Expand);
  setOperationAction(ISD::FRINT, MVT::f128, Expand);
  setOperationAction(ISD::FSIN, MVT::f128, Expand);
  setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
  setOperationAction(ISD::FSQRT, MVT::f128, Expand);
  setOperationAction(ISD::FSUB, MVT::f128, LibCall);
  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
  setOperationAction(ISD::SETCC, MVT::f128, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
  setOperationAction(ISD::BR_CC, MVT::f128, Custom);
  setOperationAction(ISD::SELECT, MVT::f128, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
  setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
  // FIXME: f128 FMINIMUM and FMAXIMUM (including STRICT versions) currently
  // aren't handled.

  // Lowering for many of the conversions is actually specified by the non-f128
  // type. The LowerXXX function will be trivial when f128 isn't involved.
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
  setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
  setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);

  setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);

  // Variable arguments.
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VAARG, MVT::Other, Custom);
  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
  setOperationAction(ISD::VAEND, MVT::Other, Expand);

  // Variable-sized objects.
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);

  if (Subtarget->isTargetWindows())
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
  else
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);

  // Constant pool entries
  setOperationAction(ISD::ConstantPool, MVT::i64, Custom);

  // BlockAddress
  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);

  // AArch64 lacks both left-rotate and popcount instructions.
  setOperationAction(ISD::ROTL, MVT::i32, Expand);
  setOperationAction(ISD::ROTL, MVT::i64, Expand);
  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    setOperationAction(ISD::ROTL, VT, Expand);
    setOperationAction(ISD::ROTR, VT, Expand);
  }

  // AArch64 doesn't have i32 MULH{S|U}.
  setOperationAction(ISD::MULHU, MVT::i32, Expand);
  setOperationAction(ISD::MULHS, MVT::i32, Expand);

  // AArch64 doesn't have {U|S}MUL_LOHI.
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);

  setOperationAction(ISD::CTPOP, MVT::i32, Custom);
  setOperationAction(ISD::CTPOP, MVT::i64, Custom);
  setOperationAction(ISD::CTPOP, MVT::i128, Custom);

  setOperationAction(ISD::PARITY, MVT::i64, Custom);
  setOperationAction(ISD::PARITY, MVT::i128, Custom);

  setOperationAction(ISD::ABS, MVT::i32, Custom);
  setOperationAction(ISD::ABS, MVT::i64, Custom);

  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    setOperationAction(ISD::SDIVREM, VT, Expand);
    setOperationAction(ISD::UDIVREM, VT, Expand);
  }
  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::SREM, MVT::i64, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
  setOperationAction(ISD::UREM, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i64, Expand);

  // Custom lower Add/Sub/Mul with overflow.
  setOperationAction(ISD::SADDO, MVT::i32, Custom);
  setOperationAction(ISD::SADDO, MVT::i64, Custom);
  setOperationAction(ISD::UADDO, MVT::i32, Custom);
  setOperationAction(ISD::UADDO, MVT::i64, Custom);
  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
  setOperationAction(ISD::USUBO, MVT::i32, Custom);
  setOperationAction(ISD::USUBO, MVT::i64, Custom);
  setOperationAction(ISD::SMULO, MVT::i32, Custom);
  setOperationAction(ISD::SMULO, MVT::i64, Custom);
  setOperationAction(ISD::UMULO, MVT::i32, Custom);
  setOperationAction(ISD::UMULO, MVT::i64, Custom);

  setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
  setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
  setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
  setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
  setOperationAction(ISD::SADDO_CARRY, MVT::i32, Custom);
  setOperationAction(ISD::SADDO_CARRY, MVT::i64, Custom);
  setOperationAction(ISD::SSUBO_CARRY, MVT::i32, Custom);
  setOperationAction(ISD::SSUBO_CARRY, MVT::i64, Custom);

  setOperationAction(ISD::FSIN, MVT::f32, Expand);
  setOperationAction(ISD::FSIN, MVT::f64, Expand);
  setOperationAction(ISD::FCOS, MVT::f32, Expand);
  setOperationAction(ISD::FCOS, MVT::f64, Expand);
  setOperationAction(ISD::FPOW, MVT::f32, Expand);
  setOperationAction(ISD::FPOW, MVT::f64, Expand);
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
  if (Subtarget->hasFullFP16())
    setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
  else
    setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);

  for (auto Op : {ISD::FREM,        ISD::FPOW,         ISD::FPOWI,
                  ISD::FCOS,        ISD::FSIN,         ISD::FSINCOS,
                  ISD::FEXP,        ISD::FEXP2,        ISD::FLOG,
                  ISD::FLOG2,       ISD::FLOG10,       ISD::STRICT_FREM,
                  ISD::STRICT_FPOW, ISD::STRICT_FPOWI, ISD::STRICT_FCOS,
                  ISD::STRICT_FSIN, ISD::STRICT_FEXP,  ISD::STRICT_FEXP2,
                  ISD::STRICT_FLOG, ISD::STRICT_FLOG2, ISD::STRICT_FLOG10}) {
    setOperationAction(Op, MVT::f16, Promote);
    setOperationAction(Op, MVT::v4f16, Expand);
    setOperationAction(Op, MVT::v8f16, Expand);
  }

  if (!Subtarget->hasFullFP16()) {
    for (auto Op :
         {ISD::SELECT,         ISD::SELECT_CC,      ISD::SETCC,
          ISD::BR_CC,          ISD::FADD,           ISD::FSUB,
          ISD::FMUL,           ISD::FDIV,           ISD::FMA,
          ISD::FNEG,           ISD::FABS,           ISD::FCEIL,
          ISD::FSQRT,          ISD::FFLOOR,         ISD::FNEARBYINT,
          ISD::FRINT,          ISD::FROUND,         ISD::FROUNDEVEN,
          ISD::FTRUNC,         ISD::FMINNUM,        ISD::FMAXNUM,
          ISD::FMINIMUM,       ISD::FMAXIMUM,       ISD::STRICT_FADD,
          ISD::STRICT_FSUB,    ISD::STRICT_FMUL,    ISD::STRICT_FDIV,
          ISD::STRICT_FMA,     ISD::STRICT_FCEIL,   ISD::STRICT_FFLOOR,
          ISD::STRICT_FSQRT,   ISD::STRICT_FRINT,   ISD::STRICT_FNEARBYINT,
          ISD::STRICT_FROUND,  ISD::STRICT_FTRUNC,  ISD::STRICT_FROUNDEVEN,
          ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FMINIMUM,
          ISD::STRICT_FMAXIMUM})
      setOperationAction(Op, MVT::f16, Promote);

    // Round-to-integer need custom lowering for fp16, as Promote doesn't work
    // because the result type is integer.
    for (auto Op : {ISD::STRICT_LROUND, ISD::STRICT_LLROUND, ISD::STRICT_LRINT,
                    ISD::STRICT_LLRINT})
      setOperationAction(Op, MVT::f16, Custom);

    // promote v4f16 to v4f32 when that is known to be safe.
    setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
    setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
    setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
    setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
    AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
    AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
    AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
    AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);

    setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
    setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
    setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
    setOperationAction(ISD::FROUNDEVEN,  MVT::v4f16, Expand);
    setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
    setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
    setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
    setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
    setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
    setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
    setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
    setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
    setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
    setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
    setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
    setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);

    setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
    setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
    setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
    setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
    setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
    setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
    setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
    setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
    setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
    setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
    setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
    setOperationAction(ISD::FROUNDEVEN,  MVT::v8f16, Expand);
    setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
    setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
    setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
    setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
    setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
    setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
    setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
    setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
    setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
  }

  // AArch64 has implementations of a lot of rounding-like FP operations.
  for (auto Op :
       {ISD::FFLOOR,          ISD::FNEARBYINT,      ISD::FCEIL,
        ISD::FRINT,           ISD::FTRUNC,          ISD::FROUND,
        ISD::FROUNDEVEN,      ISD::FMINNUM,         ISD::FMAXNUM,
        ISD::FMINIMUM,        ISD::FMAXIMUM,        ISD::LROUND,
        ISD::LLROUND,         ISD::LRINT,           ISD::LLRINT,
        ISD::STRICT_FFLOOR,   ISD::STRICT_FCEIL,    ISD::STRICT_FNEARBYINT,
        ISD::STRICT_FRINT,    ISD::STRICT_FTRUNC,   ISD::STRICT_FROUNDEVEN,
        ISD::STRICT_FROUND,   ISD::STRICT_FMINNUM,  ISD::STRICT_FMAXNUM,
        ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, ISD::STRICT_LROUND,
        ISD::STRICT_LLROUND,  ISD::STRICT_LRINT,    ISD::STRICT_LLRINT}) {
    for (MVT Ty : {MVT::f32, MVT::f64})
      setOperationAction(Op, Ty, Legal);
    if (Subtarget->hasFullFP16())
      setOperationAction(Op, MVT::f16, Legal);
  }

  // Basic strict FP operations are legal
  for (auto Op : {ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
                  ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FSQRT}) {
    for (MVT Ty : {MVT::f32, MVT::f64})
      setOperationAction(Op, Ty, Legal);
    if (Subtarget->hasFullFP16())
      setOperationAction(Op, MVT::f16, Legal);
  }

  // Strict conversion to a larger type is legal
  for (auto VT : {MVT::f32, MVT::f64})
    setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);

  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);

  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
  setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);

  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);

  // Generate outline atomics library calls only if LSE was not specified for
  // subtarget
  if (Subtarget->outlineAtomics() && !Subtarget->hasLSE()) {
    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, LibCall);
    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, LibCall);
    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall);
    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, LibCall);
    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, LibCall);
    setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, LibCall);
    setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, LibCall);
    setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall);
    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i8, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i16, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i32, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i64, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall);
    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, LibCall);
#define LCALLNAMES(A, B, N)                                                    \
  setLibcallName(A##N##_RELAX, #B #N "_relax");                                \
  setLibcallName(A##N##_ACQ, #B #N "_acq");                                    \
  setLibcallName(A##N##_REL, #B #N "_rel");                                    \
  setLibcallName(A##N##_ACQ_REL, #B #N "_acq_rel");
#define LCALLNAME4(A, B)                                                       \
  LCALLNAMES(A, B, 1)                                                          \
  LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8)
#define LCALLNAME5(A, B)                                                       \
  LCALLNAMES(A, B, 1)                                                          \
  LCALLNAMES(A, B, 2)                                                          \
  LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16)
    LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, __aarch64_cas)
    LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, __aarch64_swp)
    LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, __aarch64_ldadd)
    LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, __aarch64_ldset)
    LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, __aarch64_ldclr)
    LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, __aarch64_ldeor)
#undef LCALLNAMES
#undef LCALLNAME4
#undef LCALLNAME5
  }

  // 128-bit loads and stores can be done without expanding
  setOperationAction(ISD::LOAD, MVT::i128, Custom);
  setOperationAction(ISD::STORE, MVT::i128, Custom);

  // Aligned 128-bit loads and stores are single-copy atomic according to the
  // v8.4a spec.
  if (Subtarget->hasLSE2()) {
    setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
    setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
  }

  // 256 bit non-temporal stores can be lowered to STNP. Do this as part of the
  // custom lowering, as there are no un-paired non-temporal stores and
  // legalization will break up 256 bit inputs.
  setOperationAction(ISD::STORE, MVT::v32i8, Custom);
  setOperationAction(ISD::STORE, MVT::v16i16, Custom);
  setOperationAction(ISD::STORE, MVT::v16f16, Custom);
  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
  setOperationAction(ISD::STORE, MVT::v8f32, Custom);
  setOperationAction(ISD::STORE, MVT::v4f64, Custom);
  setOperationAction(ISD::STORE, MVT::v4i64, Custom);

  // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
  // This requires the Performance Monitors extension.
  if (Subtarget->hasPerfMon())
    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);

  if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
      getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
    // Issue __sincos_stret if available.
    setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
  } else {
    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
  }

  if (Subtarget->getTargetTriple().isOSMSVCRT()) {
    // MSVCRT doesn't have powi; fall back to pow
    setLibcallName(RTLIB::POWI_F32, nullptr);
    setLibcallName(RTLIB::POWI_F64, nullptr);
  }

  // Make floating-point constants legal for the large code model, so they don't
  // become loads from the constant pool.
  if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
    setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
    setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
  }

  // AArch64 does not have floating-point extending loads, i1 sign-extending
  // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
  for (MVT VT : MVT::fp_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
  }
  for (MVT VT : MVT::integer_valuetypes())
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);

  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
  setTruncStoreAction(MVT::f128, MVT::f80, Expand);
  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
  setTruncStoreAction(MVT::f128, MVT::f16, Expand);

  setOperationAction(ISD::BITCAST, MVT::i16, Custom);
  setOperationAction(ISD::BITCAST, MVT::f16, Custom);
  setOperationAction(ISD::BITCAST, MVT::bf16, Custom);

  // Indexed loads and stores are supported.
  for (unsigned im = (unsigned)ISD::PRE_INC;
       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    setIndexedLoadAction(im, MVT::i8, Legal);
    setIndexedLoadAction(im, MVT::i16, Legal);
    setIndexedLoadAction(im, MVT::i32, Legal);
    setIndexedLoadAction(im, MVT::i64, Legal);
    setIndexedLoadAction(im, MVT::f64, Legal);
    setIndexedLoadAction(im, MVT::f32, Legal);
    setIndexedLoadAction(im, MVT::f16, Legal);
    setIndexedLoadAction(im, MVT::bf16, Legal);
    setIndexedStoreAction(im, MVT::i8, Legal);
    setIndexedStoreAction(im, MVT::i16, Legal);
    setIndexedStoreAction(im, MVT::i32, Legal);
    setIndexedStoreAction(im, MVT::i64, Legal);
    setIndexedStoreAction(im, MVT::f64, Legal);
    setIndexedStoreAction(im, MVT::f32, Legal);
    setIndexedStoreAction(im, MVT::f16, Legal);
    setIndexedStoreAction(im, MVT::bf16, Legal);
  }

  // Trap.
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
  setOperationAction(ISD::UBSANTRAP, MVT::Other, Legal);

  // We combine OR nodes for bitfield operations.
  setTargetDAGCombine(ISD::OR);
  // Try to create BICs for vector ANDs.
  setTargetDAGCombine(ISD::AND);

  // Vector add and sub nodes may conceal a high-half opportunity.
  // Also, try to fold ADD into CSINC/CSINV..
  setTargetDAGCombine({ISD::ADD, ISD::ABS, ISD::SUB, ISD::XOR, ISD::SINT_TO_FP,
                       ISD::UINT_TO_FP});

  setTargetDAGCombine({ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT,
                       ISD::FP_TO_UINT_SAT, ISD::FDIV});

  // Try and combine setcc with csel
  setTargetDAGCombine(ISD::SETCC);

  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);

  setTargetDAGCombine({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND,
                       ISD::VECTOR_SPLICE, ISD::SIGN_EXTEND_INREG,
                       ISD::CONCAT_VECTORS, ISD::EXTRACT_SUBVECTOR,
                       ISD::INSERT_SUBVECTOR, ISD::STORE, ISD::BUILD_VECTOR});
  if (Subtarget->supportsAddressTopByteIgnored())
    setTargetDAGCombine(ISD::LOAD);

  setTargetDAGCombine(ISD::MSTORE);

  setTargetDAGCombine(ISD::MUL);

  setTargetDAGCombine({ISD::SELECT, ISD::VSELECT});

  setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN,
                       ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
                       ISD::VECREDUCE_ADD, ISD::STEP_VECTOR});

  setTargetDAGCombine({ISD::MGATHER, ISD::MSCATTER});

  setTargetDAGCombine(ISD::FP_EXTEND);

  setTargetDAGCombine(ISD::GlobalAddress);

  // In case of strict alignment, avoid an excessive number of byte wide stores.
  MaxStoresPerMemsetOptSize = 8;
  MaxStoresPerMemset =
      Subtarget->requiresStrictAlign() ? MaxStoresPerMemsetOptSize : 32;

  MaxGluedStoresPerMemcpy = 4;
  MaxStoresPerMemcpyOptSize = 4;
  MaxStoresPerMemcpy =
      Subtarget->requiresStrictAlign() ? MaxStoresPerMemcpyOptSize : 16;

  MaxStoresPerMemmoveOptSize = 4;
  MaxStoresPerMemmove = 4;

  MaxLoadsPerMemcmpOptSize = 4;
  MaxLoadsPerMemcmp =
      Subtarget->requiresStrictAlign() ? MaxLoadsPerMemcmpOptSize : 8;

  setStackPointerRegisterToSaveRestore(AArch64::SP);

  setSchedulingPreference(Sched::Hybrid);

  EnableExtLdPromotion = true;

  // Set required alignment.
  setMinFunctionAlignment(Align(4));
  // Set preferred alignments.
  setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment()));
  setMaxBytesForAlignment(STI.getMaxBytesForLoopAlignment());
  setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment()));

  // Only change the limit for entries in a jump table if specified by
  // the sub target, but not at the command line.
  unsigned MaxJT = STI.getMaximumJumpTableSize();
  if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
    setMaximumJumpTableSize(MaxJT);

  setHasExtractBitsInsn(true);

  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);

  if (Subtarget->hasNEON()) {
    // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
    // silliness like this:
    for (auto Op :
         {ISD::SELECT,         ISD::SELECT_CC,      ISD::SETCC,
          ISD::BR_CC,          ISD::FADD,           ISD::FSUB,
          ISD::FMUL,           ISD::FDIV,           ISD::FMA,
          ISD::FNEG,           ISD::FABS,           ISD::FCEIL,
          ISD::FSQRT,          ISD::FFLOOR,         ISD::FNEARBYINT,
          ISD::FRINT,          ISD::FROUND,         ISD::FROUNDEVEN,
          ISD::FTRUNC,         ISD::FMINNUM,        ISD::FMAXNUM,
          ISD::FMINIMUM,       ISD::FMAXIMUM,       ISD::STRICT_FADD,
          ISD::STRICT_FSUB,    ISD::STRICT_FMUL,    ISD::STRICT_FDIV,
          ISD::STRICT_FMA,     ISD::STRICT_FCEIL,   ISD::STRICT_FFLOOR,
          ISD::STRICT_FSQRT,   ISD::STRICT_FRINT,   ISD::STRICT_FNEARBYINT,
          ISD::STRICT_FROUND,  ISD::STRICT_FTRUNC,  ISD::STRICT_FROUNDEVEN,
          ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FMINIMUM,
          ISD::STRICT_FMAXIMUM})
      setOperationAction(Op, MVT::v1f64, Expand);

    for (auto Op :
         {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP,
          ISD::FP_ROUND, ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, ISD::MUL,
          ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT,
          ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_ROUND})
      setOperationAction(Op, MVT::v1i64, Expand);

    // AArch64 doesn't have a direct vector ->f32 conversion instructions for
    // elements smaller than i32, so promote the input to i32 first.
    setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
    setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);

    // Similarly, there is no direct i32 -> f64 vector conversion instruction.
    // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
    // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
    for (auto Op : {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::STRICT_SINT_TO_FP,
                    ISD::STRICT_UINT_TO_FP})
      for (auto VT : {MVT::v2i32, MVT::v2i64, MVT::v4i32})
        setOperationAction(Op, VT, Custom);

    if (Subtarget->hasFullFP16()) {
      setOperationAction(ISD::ConstantFP, MVT::f16, Legal);

      setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
    } else {
      // when AArch64 doesn't have fullfp16 support, promote the input
      // to i32 first.
      setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
      setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
      setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v16i8, MVT::v16i32);
      setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v16i8, MVT::v16i32);
      setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
      setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
      setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
      setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
    }

    setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
    setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
    setOperationAction(ISD::BITREVERSE, MVT::v8i8, Legal);
    setOperationAction(ISD::BITREVERSE, MVT::v16i8, Legal);
    setOperationAction(ISD::BITREVERSE, MVT::v2i32, Custom);
    setOperationAction(ISD::BITREVERSE, MVT::v4i32, Custom);
    setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom);
    setOperationAction(ISD::BITREVERSE, MVT::v2i64, Custom);
    for (auto VT : {MVT::v1i64, MVT::v2i64}) {
      setOperationAction(ISD::UMAX, VT, Custom);
      setOperationAction(ISD::SMAX, VT, Custom);
      setOperationAction(ISD::UMIN, VT, Custom);
      setOperationAction(ISD::SMIN, VT, Custom);
    }

    // AArch64 doesn't have MUL.2d:
    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
    // Custom handling for some quad-vector types to detect MULL.
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    setOperationAction(ISD::MUL, MVT::v2i64, Custom);

    // Saturates
    for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
                    MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
      setOperationAction(ISD::SADDSAT, VT, Legal);
      setOperationAction(ISD::UADDSAT, VT, Legal);
      setOperationAction(ISD::SSUBSAT, VT, Legal);
      setOperationAction(ISD::USUBSAT, VT, Legal);
    }

    for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16,
                   MVT::v4i32}) {
      setOperationAction(ISD::AVGFLOORS, VT, Legal);
      setOperationAction(ISD::AVGFLOORU, VT, Legal);
      setOperationAction(ISD::AVGCEILS, VT, Legal);
      setOperationAction(ISD::AVGCEILU, VT, Legal);
      setOperationAction(ISD::ABDS, VT, Legal);
      setOperationAction(ISD::ABDU, VT, Legal);
    }

    // Vector reductions
    for (MVT VT : { MVT::v4f16, MVT::v2f32,
                    MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
      if (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()) {
        setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
        setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);

        setOperationAction(ISD::VECREDUCE_FADD, VT, Legal);
      }
    }
    for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
                    MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
      setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
      setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
      setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
      setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
      setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
    }
    setOperationAction(ISD::VECREDUCE_ADD, MVT::v2i64, Custom);

    setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
    setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
    // Likewise, narrowing and extending vector loads/stores aren't handled
    // directly.
    for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);

      if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
        setOperationAction(ISD::MULHS, VT, Legal);
        setOperationAction(ISD::MULHU, VT, Legal);
      } else {
        setOperationAction(ISD::MULHS, VT, Expand);
        setOperationAction(ISD::MULHU, VT, Expand);
      }
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
      setOperationAction(ISD::UMUL_LOHI, VT, Expand);

      setOperationAction(ISD::BSWAP, VT, Expand);
      setOperationAction(ISD::CTTZ, VT, Expand);

      for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
        setTruncStoreAction(VT, InnerVT, Expand);
        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
      }
    }

    // AArch64 has implementations of a lot of rounding-like FP operations.
    for (auto Op :
         {ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT, ISD::FTRUNC,
          ISD::FROUND, ISD::FROUNDEVEN, ISD::STRICT_FFLOOR,
          ISD::STRICT_FNEARBYINT, ISD::STRICT_FCEIL, ISD::STRICT_FRINT,
          ISD::STRICT_FTRUNC, ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN}) {
      for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64})
        setOperationAction(Op, Ty, Legal);
      if (Subtarget->hasFullFP16())
        for (MVT Ty : {MVT::v4f16, MVT::v8f16})
          setOperationAction(Op, Ty, Legal);
    }

    setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);

    setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Custom);
    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Custom);
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Custom);
    setLoadExtAction(ISD::EXTLOAD,  MVT::v4i32, MVT::v4i8, Custom);
    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Custom);
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Custom);

    // ADDP custom lowering
    for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
      setOperationAction(ISD::ADD, VT, Custom);
    // FADDP custom lowering
    for (MVT VT : { MVT::v16f16, MVT::v8f32, MVT::v4f64 })
      setOperationAction(ISD::FADD, VT, Custom);
  }

  if (Subtarget->hasSME()) {
    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
  }

  // FIXME: Move lowering for more nodes here if those are common between
  // SVE and SME.
  if (Subtarget->hasSVE() || Subtarget->hasSME()) {
    for (auto VT :
         {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) {
      setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    }
  }

  if (Subtarget->hasSVE()) {
    for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}) {
      setOperationAction(ISD::BITREVERSE, VT, Custom);
      setOperationAction(ISD::BSWAP, VT, Custom);
      setOperationAction(ISD::CTLZ, VT, Custom);
      setOperationAction(ISD::CTPOP, VT, Custom);
      setOperationAction(ISD::CTTZ, VT, Custom);
      setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
      setOperationAction(ISD::UINT_TO_FP, VT, Custom);
      setOperationAction(ISD::SINT_TO_FP, VT, Custom);
      setOperationAction(ISD::FP_TO_UINT, VT, Custom);
      setOperationAction(ISD::FP_TO_SINT, VT, Custom);
      setOperationAction(ISD::MGATHER, VT, Custom);
      setOperationAction(ISD::MSCATTER, VT, Custom);
      setOperationAction(ISD::MLOAD, VT, Custom);
      setOperationAction(ISD::MUL, VT, Custom);
      setOperationAction(ISD::MULHS, VT, Custom);
      setOperationAction(ISD::MULHU, VT, Custom);
      setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
      setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
      setOperationAction(ISD::SELECT, VT, Custom);
      setOperationAction(ISD::SETCC, VT, Custom);
      setOperationAction(ISD::SDIV, VT, Custom);
      setOperationAction(ISD::UDIV, VT, Custom);
      setOperationAction(ISD::SMIN, VT, Custom);
      setOperationAction(ISD::UMIN, VT, Custom);
      setOperationAction(ISD::SMAX, VT, Custom);
      setOperationAction(ISD::UMAX, VT, Custom);
      setOperationAction(ISD::SHL, VT, Custom);
      setOperationAction(ISD::SRL, VT, Custom);
      setOperationAction(ISD::SRA, VT, Custom);
      setOperationAction(ISD::ABS, VT, Custom);
      setOperationAction(ISD::ABDS, VT, Custom);
      setOperationAction(ISD::ABDU, VT, Custom);
      setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
      setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
      setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
      setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
      setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
      setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
      setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
      setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);

      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
      setOperationAction(ISD::SELECT_CC, VT, Expand);
      setOperationAction(ISD::ROTL, VT, Expand);
      setOperationAction(ISD::ROTR, VT, Expand);

      setOperationAction(ISD::SADDSAT, VT, Legal);
      setOperationAction(ISD::UADDSAT, VT, Legal);
      setOperationAction(ISD::SSUBSAT, VT, Legal);
      setOperationAction(ISD::USUBSAT, VT, Legal);
      setOperationAction(ISD::UREM, VT, Expand);
      setOperationAction(ISD::SREM, VT, Expand);
      setOperationAction(ISD::SDIVREM, VT, Expand);
      setOperationAction(ISD::UDIVREM, VT, Expand);
    }

    // Illegal unpacked integer vector types.
    for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) {
      setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
      setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
    }

    // Legalize unpacked bitcasts to REINTERPRET_CAST.
    for (auto VT : {MVT::nxv2i16, MVT::nxv4i16, MVT::nxv2i32, MVT::nxv2bf16,
                    MVT::nxv4bf16, MVT::nxv2f16, MVT::nxv4f16, MVT::nxv2f32})
      setOperationAction(ISD::BITCAST, VT, Custom);

    for (auto VT :
         { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8,
           MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 })
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal);

    for (auto VT :
         {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) {
      setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
      setOperationAction(ISD::SELECT, VT, Custom);
      setOperationAction(ISD::SETCC, VT, Custom);
      setOperationAction(ISD::TRUNCATE, VT, Custom);
      setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
      setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
      setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);

      setOperationAction(ISD::SELECT_CC, VT, Expand);
      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
      setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);

      // There are no legal MVT::nxv16f## based types.
      if (VT != MVT::nxv16i1) {
        setOperationAction(ISD::SINT_TO_FP, VT, Custom);
        setOperationAction(ISD::UINT_TO_FP, VT, Custom);
      }
    }

    // NEON doesn't support masked loads/stores/gathers/scatters, but SVE does
    for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v1f64,
                    MVT::v2f64, MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
                    MVT::v2i32, MVT::v4i32, MVT::v1i64, MVT::v2i64}) {
      setOperationAction(ISD::MLOAD, VT, Custom);
      setOperationAction(ISD::MSTORE, VT, Custom);
      setOperationAction(ISD::MGATHER, VT, Custom);
      setOperationAction(ISD::MSCATTER, VT, Custom);
    }

    // Firstly, exclude all scalable vector extending loads/truncating stores,
    // include both integer and floating scalable vector.
    for (MVT VT : MVT::scalable_vector_valuetypes()) {
      for (MVT InnerVT : MVT::scalable_vector_valuetypes()) {
        setTruncStoreAction(VT, InnerVT, Expand);
        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
      }
    }

    // Then, selectively enable those which we directly support.
    setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i8, Legal);
    setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i16, Legal);
    setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i32, Legal);
    setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i8, Legal);
    setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i16, Legal);
    setTruncStoreAction(MVT::nxv8i16, MVT::nxv8i8, Legal);
    for (auto Op : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) {
      setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i8, Legal);
      setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i16, Legal);
      setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i32, Legal);
      setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i8, Legal);
      setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i16, Legal);
      setLoadExtAction(Op, MVT::nxv8i16, MVT::nxv8i8, Legal);
    }

    // SVE supports truncating stores of 64 and 128-bit vectors
    setTruncStoreAction(MVT::v2i64, MVT::v2i8, Custom);
    setTruncStoreAction(MVT::v2i64, MVT::v2i16, Custom);
    setTruncStoreAction(MVT::v2i64, MVT::v2i32, Custom);
    setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
    setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);

    for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32,
                    MVT::nxv4f32, MVT::nxv2f64}) {
      setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
      setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
      setOperationAction(ISD::MGATHER, VT, Custom);
      setOperationAction(ISD::MSCATTER, VT, Custom);
      setOperationAction(ISD::MLOAD, VT, Custom);
      setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
      setOperationAction(ISD::SELECT, VT, Custom);
      setOperationAction(ISD::FADD, VT, Custom);
      setOperationAction(ISD::FCOPYSIGN, VT, Custom);
      setOperationAction(ISD::FDIV, VT, Custom);
      setOperationAction(ISD::FMA, VT, Custom);
      setOperationAction(ISD::FMAXIMUM, VT, Custom);
      setOperationAction(ISD::FMAXNUM, VT, Custom);
      setOperationAction(ISD::FMINIMUM, VT, Custom);
      setOperationAction(ISD::FMINNUM, VT, Custom);
      setOperationAction(ISD::FMUL, VT, Custom);
      setOperationAction(ISD::FNEG, VT, Custom);
      setOperationAction(ISD::FSUB, VT, Custom);
      setOperationAction(ISD::FCEIL, VT, Custom);
      setOperationAction(ISD::FFLOOR, VT, Custom);
      setOperationAction(ISD::FNEARBYINT, VT, Custom);
      setOperationAction(ISD::FRINT, VT, Custom);
      setOperationAction(ISD::FROUND, VT, Custom);
      setOperationAction(ISD::FROUNDEVEN, VT, Custom);
      setOperationAction(ISD::FTRUNC, VT, Custom);
      setOperationAction(ISD::FSQRT, VT, Custom);
      setOperationAction(ISD::FABS, VT, Custom);
      setOperationAction(ISD::FP_EXTEND, VT, Custom);
      setOperationAction(ISD::FP_ROUND, VT, Custom);
      setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
      setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
      setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
      setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
      setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);

      setOperationAction(ISD::SELECT_CC, VT, Expand);
      setOperationAction(ISD::FREM, VT, Expand);
      setOperationAction(ISD::FPOW, VT, Expand);
      setOperationAction(ISD::FPOWI, VT, Expand);
      setOperationAction(ISD::FCOS, VT, Expand);
      setOperationAction(ISD::FSIN, VT, Expand);
      setOperationAction(ISD::FSINCOS, VT, Expand);
      setOperationAction(ISD::FEXP, VT, Expand);
      setOperationAction(ISD::FEXP2, VT, Expand);
      setOperationAction(ISD::FLOG, VT, Expand);
      setOperationAction(ISD::FLOG2, VT, Expand);
      setOperationAction(ISD::FLOG10, VT, Expand);

      setCondCodeAction(ISD::SETO, VT, Expand);
      setCondCodeAction(ISD::SETOLT, VT, Expand);
      setCondCodeAction(ISD::SETLT, VT, Expand);
      setCondCodeAction(ISD::SETOLE, VT, Expand);
      setCondCodeAction(ISD::SETLE, VT, Expand);
      setCondCodeAction(ISD::SETULT, VT, Expand);
      setCondCodeAction(ISD::SETULE, VT, Expand);
      setCondCodeAction(ISD::SETUGE, VT, Expand);
      setCondCodeAction(ISD::SETUGT, VT, Expand);
      setCondCodeAction(ISD::SETUEQ, VT, Expand);
      setCondCodeAction(ISD::SETONE, VT, Expand);
    }

    for (auto VT : {MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16}) {
      setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
      setOperationAction(ISD::MGATHER, VT, Custom);
      setOperationAction(ISD::MSCATTER, VT, Custom);
      setOperationAction(ISD::MLOAD, VT, Custom);
      setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
      setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
    }

    setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
    setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);

    // NEON doesn't support integer divides, but SVE does
    for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
                    MVT::v4i32, MVT::v1i64, MVT::v2i64}) {
      setOperationAction(ISD::SDIV, VT, Custom);
      setOperationAction(ISD::UDIV, VT, Custom);
    }

    // NEON doesn't support 64-bit vector integer muls, but SVE does.
    setOperationAction(ISD::MUL, MVT::v1i64, Custom);
    setOperationAction(ISD::MUL, MVT::v2i64, Custom);

    // NOTE: Currently this has to happen after computeRegisterProperties rather
    // than the preferred option of combining it with the addRegisterClass call.
    if (Subtarget->useSVEForFixedLengthVectors()) {
      for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
        if (useSVEForFixedLengthVectorVT(VT))
          addTypeForFixedLengthSVE(VT);
      for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
        if (useSVEForFixedLengthVectorVT(VT))
          addTypeForFixedLengthSVE(VT);

      // 64bit results can mean a bigger than NEON input.
      for (auto VT : {MVT::v8i8, MVT::v4i16})
        setOperationAction(ISD::TRUNCATE, VT, Custom);
      setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom);

      // 128bit results imply a bigger than NEON input.
      for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
        setOperationAction(ISD::TRUNCATE, VT, Custom);
      for (auto VT : {MVT::v8f16, MVT::v4f32})
        setOperationAction(ISD::FP_ROUND, VT, Custom);

      // These operations are not supported on NEON but SVE can do them.
      setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom);
      setOperationAction(ISD::CTLZ, MVT::v1i64, Custom);
      setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
      setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
      setOperationAction(ISD::MULHS, MVT::v1i64, Custom);
      setOperationAction(ISD::MULHS, MVT::v2i64, Custom);
      setOperationAction(ISD::MULHU, MVT::v1i64, Custom);
      setOperationAction(ISD::MULHU, MVT::v2i64, Custom);
      setOperationAction(ISD::SMAX, MVT::v1i64, Custom);
      setOperationAction(ISD::SMAX, MVT::v2i64, Custom);
      setOperationAction(ISD::SMIN, MVT::v1i64, Custom);
      setOperationAction(ISD::SMIN, MVT::v2i64, Custom);
      setOperationAction(ISD::UMAX, MVT::v1i64, Custom);
      setOperationAction(ISD::UMAX, MVT::v2i64, Custom);
      setOperationAction(ISD::UMIN, MVT::v1i64, Custom);
      setOperationAction(ISD::UMIN, MVT::v2i64, Custom);
      setOperationAction(ISD::VECREDUCE_SMAX, MVT::v2i64, Custom);
      setOperationAction(ISD::VECREDUCE_SMIN, MVT::v2i64, Custom);
      setOperationAction(ISD::VECREDUCE_UMAX, MVT::v2i64, Custom);
      setOperationAction(ISD::VECREDUCE_UMIN, MVT::v2i64, Custom);

      // Int operations with no NEON support.
      for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
                      MVT::v2i32, MVT::v4i32, MVT::v2i64}) {
        setOperationAction(ISD::BITREVERSE, VT, Custom);
        setOperationAction(ISD::CTTZ, VT, Custom);
        setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
        setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
        setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
      }

      // FP operations with no NEON support.
      for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32,
                      MVT::v1f64, MVT::v2f64})
        setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);

      // Use SVE for vectors with more than 2 elements.
      for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v4f32})
        setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
    }

    setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv2i1, MVT::nxv2i64);
    setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv4i1, MVT::nxv4i32);
    setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv8i1, MVT::nxv8i16);
    setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv16i1, MVT::nxv16i8);

    setOperationAction(ISD::VSCALE, MVT::i32, Custom);
  }

  if (Subtarget->hasMOPS() && Subtarget->hasMTE()) {
    // Only required for llvm.aarch64.mops.memset.tag
    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
  }

  PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();

  IsStrictFPEnabled = true;
}

void AArch64TargetLowering::addTypeForNEON(MVT VT) {
  assert(VT.isVector() && "VT should be a vector type");

  if (VT.isFloatingPoint()) {
    MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
    setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
    setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
  }

  // Mark vector float intrinsics as expand.
  if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
    setOperationAction(ISD::FSIN, VT, Expand);
    setOperationAction(ISD::FCOS, VT, Expand);
    setOperationAction(ISD::FPOW, VT, Expand);
    setOperationAction(ISD::FLOG, VT, Expand);
    setOperationAction(ISD::FLOG2, VT, Expand);
    setOperationAction(ISD::FLOG10, VT, Expand);
    setOperationAction(ISD::FEXP, VT, Expand);
    setOperationAction(ISD::FEXP2, VT, Expand);
  }

  // But we do support custom-lowering for FCOPYSIGN.
  if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
      ((VT == MVT::v4f16 || VT == MVT::v8f16) && Subtarget->hasFullFP16()))
    setOperationAction(ISD::FCOPYSIGN, VT, Custom);

  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
  setOperationAction(ISD::SRA, VT, Custom);
  setOperationAction(ISD::SRL, VT, Custom);
  setOperationAction(ISD::SHL, VT, Custom);
  setOperationAction(ISD::OR, VT, Custom);
  setOperationAction(ISD::SETCC, VT, Custom);
  setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);

  setOperationAction(ISD::SELECT, VT, Expand);
  setOperationAction(ISD::SELECT_CC, VT, Expand);
  setOperationAction(ISD::VSELECT, VT, Expand);
  for (MVT InnerVT : MVT::all_valuetypes())
    setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);

  // CNT supports only B element sizes, then use UADDLP to widen.
  if (VT != MVT::v8i8 && VT != MVT::v16i8)
    setOperationAction(ISD::CTPOP, VT, Custom);

  setOperationAction(ISD::UDIV, VT, Expand);
  setOperationAction(ISD::SDIV, VT, Expand);
  setOperationAction(ISD::UREM, VT, Expand);
  setOperationAction(ISD::SREM, VT, Expand);
  setOperationAction(ISD::FREM, VT, Expand);

  for (unsigned Opcode :
       {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT,
        ISD::FP_TO_UINT_SAT, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT})
    setOperationAction(Opcode, VT, Custom);

  if (!VT.isFloatingPoint())
    setOperationAction(ISD::ABS, VT, Legal);

  // [SU][MIN|MAX] are available for all NEON types apart from i64.
  if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
    for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
      setOperationAction(Opcode, VT, Legal);

  // F[MIN|MAX][NUM|NAN] and simple strict operations are available for all FP
  // NEON types.
  if (VT.isFloatingPoint() &&
      VT.getVectorElementType() != MVT::bf16 &&
      (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
    for (unsigned Opcode :
         {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM,
          ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, ISD::STRICT_FMINNUM,
          ISD::STRICT_FMAXNUM, ISD::STRICT_FADD, ISD::STRICT_FSUB,
          ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FMA,
          ISD::STRICT_FSQRT})
      setOperationAction(Opcode, VT, Legal);

  // Strict fp extend and trunc are legal
  if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 16)
    setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
  if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 64)
    setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);

  // FIXME: We could potentially make use of the vector comparison instructions
  // for STRICT_FSETCC and STRICT_FSETCSS, but there's a number of
  // complications:
  //  * FCMPEQ/NE are quiet comparisons, the rest are signalling comparisons,
  //    so we would need to expand when the condition code doesn't match the
  //    kind of comparison.
  //  * Some kinds of comparison require more than one FCMXY instruction so
  //    would need to be expanded instead.
  //  * The lowering of the non-strict versions involves target-specific ISD
  //    nodes so we would likely need to add strict versions of all of them and
  //    handle them appropriately.
  setOperationAction(ISD::STRICT_FSETCC, VT, Expand);
  setOperationAction(ISD::STRICT_FSETCCS, VT, Expand);

  if (Subtarget->isLittleEndian()) {
    for (unsigned im = (unsigned)ISD::PRE_INC;
         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
      setIndexedLoadAction(im, VT, Legal);
      setIndexedStoreAction(im, VT, Legal);
    }
  }
}

bool AArch64TargetLowering::shouldExpandGetActiveLaneMask(EVT ResVT,
                                                          EVT OpVT) const {
  // Only SVE has a 1:1 mapping from intrinsic -> instruction (whilelo).
  if (!Subtarget->hasSVE())
    return true;

  // We can only support legal predicate result types. We can use the SVE
  // whilelo instruction for generating fixed-width predicates too.
  if (ResVT != MVT::nxv2i1 && ResVT != MVT::nxv4i1 && ResVT != MVT::nxv8i1 &&
      ResVT != MVT::nxv16i1 && ResVT != MVT::v2i1 && ResVT != MVT::v4i1 &&
      ResVT != MVT::v8i1 && ResVT != MVT::v16i1)
    return true;

  // The whilelo instruction only works with i32 or i64 scalar inputs.
  if (OpVT != MVT::i32 && OpVT != MVT::i64)
    return true;

  return false;
}

void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) {
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  // By default everything must be expanded.
  for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
    setOperationAction(Op, VT, Expand);

  // We use EXTRACT_SUBVECTOR to "cast" a scalable vector to a fixed length one.
  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);

  if (VT.isFloatingPoint()) {
    setCondCodeAction(ISD::SETO, VT, Expand);
    setCondCodeAction(ISD::SETOLT, VT, Expand);
    setCondCodeAction(ISD::SETLT, VT, Expand);
    setCondCodeAction(ISD::SETOLE, VT, Expand);
    setCondCodeAction(ISD::SETLE, VT, Expand);
    setCondCodeAction(ISD::SETULT, VT, Expand);
    setCondCodeAction(ISD::SETULE, VT, Expand);
    setCondCodeAction(ISD::SETUGE, VT, Expand);
    setCondCodeAction(ISD::SETUGT, VT, Expand);
    setCondCodeAction(ISD::SETUEQ, VT, Expand);
    setCondCodeAction(ISD::SETONE, VT, Expand);
  }

  // Mark integer truncating stores/extending loads as having custom lowering
  if (VT.isInteger()) {
    MVT InnerVT = VT.changeVectorElementType(MVT::i8);
    while (InnerVT != VT) {
      setTruncStoreAction(VT, InnerVT, Custom);
      setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Custom);
      setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Custom);
      InnerVT = InnerVT.changeVectorElementType(
          MVT::getIntegerVT(2 * InnerVT.getScalarSizeInBits()));
    }
  }

  // Mark floating-point truncating stores/extending loads as having custom
  // lowering
  if (VT.isFloatingPoint()) {
    MVT InnerVT = VT.changeVectorElementType(MVT::f16);
    while (InnerVT != VT) {
      setTruncStoreAction(VT, InnerVT, Custom);
      setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Custom);
      InnerVT = InnerVT.changeVectorElementType(
          MVT::getFloatingPointVT(2 * InnerVT.getScalarSizeInBits()));
    }
  }

  // Lower fixed length vector operations to scalable equivalents.
  setOperationAction(ISD::ABS, VT, Custom);
  setOperationAction(ISD::ADD, VT, Custom);
  setOperationAction(ISD::AND, VT, Custom);
  setOperationAction(ISD::ANY_EXTEND, VT, Custom);
  setOperationAction(ISD::BITCAST, VT, Custom);
  setOperationAction(ISD::BITREVERSE, VT, Custom);
  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
  setOperationAction(ISD::BSWAP, VT, Custom);
  setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
  setOperationAction(ISD::CTLZ, VT, Custom);
  setOperationAction(ISD::CTPOP, VT, Custom);
  setOperationAction(ISD::CTTZ, VT, Custom);
  setOperationAction(ISD::FABS, VT, Custom);
  setOperationAction(ISD::FADD, VT, Custom);
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
  setOperationAction(ISD::FCEIL, VT, Custom);
  setOperationAction(ISD::FDIV, VT, Custom);
  setOperationAction(ISD::FFLOOR, VT, Custom);
  setOperationAction(ISD::FMA, VT, Custom);
  setOperationAction(ISD::FMAXIMUM, VT, Custom);
  setOperationAction(ISD::FMAXNUM, VT, Custom);
  setOperationAction(ISD::FMINIMUM, VT, Custom);
  setOperationAction(ISD::FMINNUM, VT, Custom);
  setOperationAction(ISD::FMUL, VT, Custom);
  setOperationAction(ISD::FNEARBYINT, VT, Custom);
  setOperationAction(ISD::FNEG, VT, Custom);
  setOperationAction(ISD::FP_EXTEND, VT, Custom);
  setOperationAction(ISD::FP_ROUND, VT, Custom);
  setOperationAction(ISD::FP_TO_SINT, VT, Custom);
  setOperationAction(ISD::FP_TO_UINT, VT, Custom);
  setOperationAction(ISD::FRINT, VT, Custom);
  setOperationAction(ISD::FROUND, VT, Custom);
  setOperationAction(ISD::FROUNDEVEN, VT, Custom);
  setOperationAction(ISD::FSQRT, VT, Custom);
  setOperationAction(ISD::FSUB, VT, Custom);
  setOperationAction(ISD::FTRUNC, VT, Custom);
  setOperationAction(ISD::LOAD, VT, Custom);
  setOperationAction(ISD::MGATHER, VT, Custom);
  setOperationAction(ISD::MLOAD, VT, Custom);
  setOperationAction(ISD::MSCATTER, VT, Custom);
  setOperationAction(ISD::MSTORE, VT, Custom);
  setOperationAction(ISD::MUL, VT, Custom);
  setOperationAction(ISD::MULHS, VT, Custom);
  setOperationAction(ISD::MULHU, VT, Custom);
  setOperationAction(ISD::OR, VT, Custom);
  setOperationAction(ISD::SDIV, VT, Custom);
  setOperationAction(ISD::SELECT, VT, Custom);
  setOperationAction(ISD::SETCC, VT, Custom);
  setOperationAction(ISD::SHL, VT, Custom);
  setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom);
  setOperationAction(ISD::SINT_TO_FP, VT, Custom);
  setOperationAction(ISD::SMAX, VT, Custom);
  setOperationAction(ISD::SMIN, VT, Custom);
  setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
  setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
  setOperationAction(ISD::SRA, VT, Custom);
  setOperationAction(ISD::SRL, VT, Custom);
  setOperationAction(ISD::STORE, VT, Custom);
  setOperationAction(ISD::SUB, VT, Custom);
  setOperationAction(ISD::TRUNCATE, VT, Custom);
  setOperationAction(ISD::UDIV, VT, Custom);
  setOperationAction(ISD::UINT_TO_FP, VT, Custom);
  setOperationAction(ISD::UMAX, VT, Custom);
  setOperationAction(ISD::UMIN, VT, Custom);
  setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
  setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
  setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
  setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
  setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
  setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
  setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
  setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
  setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
  setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
  setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
  setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
  setOperationAction(ISD::VSELECT, VT, Custom);
  setOperationAction(ISD::XOR, VT, Custom);
  setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
}

void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
  addRegisterClass(VT, &AArch64::FPR64RegClass);
  addTypeForNEON(VT);
}

void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
  addRegisterClass(VT, &AArch64::FPR128RegClass);
  addTypeForNEON(VT);
}

EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &,
                                              LLVMContext &C, EVT VT) const {
  if (!VT.isVector())
    return MVT::i32;
  if (VT.isScalableVector())
    return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount());
  return VT.changeVectorElementTypeToInteger();
}

static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
                               const APInt &Demanded,
                               TargetLowering::TargetLoweringOpt &TLO,
                               unsigned NewOpc) {
  uint64_t OldImm = Imm, NewImm, Enc;
  uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;

  // Return if the immediate is already all zeros, all ones, a bimm32 or a
  // bimm64.
  if (Imm == 0 || Imm == Mask ||
      AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
    return false;

  unsigned EltSize = Size;
  uint64_t DemandedBits = Demanded.getZExtValue();

  // Clear bits that are not demanded.
  Imm &= DemandedBits;

  while (true) {
    // The goal here is to set the non-demanded bits in a way that minimizes
    // the number of switching between 0 and 1. In order to achieve this goal,
    // we set the non-demanded bits to the value of the preceding demanded bits.
    // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
    // non-demanded bit), we copy bit0 (1) to the least significant 'x',
    // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
    // The final result is 0b11000011.
    uint64_t NonDemandedBits = ~DemandedBits;
    uint64_t InvertedImm = ~Imm & DemandedBits;
    uint64_t RotatedImm =
        ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
        NonDemandedBits;
    uint64_t Sum = RotatedImm + NonDemandedBits;
    bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
    uint64_t Ones = (Sum + Carry) & NonDemandedBits;
    NewImm = (Imm | Ones) & Mask;

    // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
    // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
    // we halve the element size and continue the search.
    if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
      break;

    // We cannot shrink the element size any further if it is 2-bits.
    if (EltSize == 2)
      return false;

    EltSize /= 2;
    Mask >>= EltSize;
    uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;

    // Return if there is mismatch in any of the demanded bits of Imm and Hi.
    if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
      return false;

    // Merge the upper and lower halves of Imm and DemandedBits.
    Imm |= Hi;
    DemandedBits |= DemandedBitsHi;
  }

  ++NumOptimizedImms;

  // Replicate the element across the register width.
  while (EltSize < Size) {
    NewImm |= NewImm << EltSize;
    EltSize *= 2;
  }

  (void)OldImm;
  assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
         "demanded bits should never be altered");
  assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");

  // Create the new constant immediate node.
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  SDValue New;

  // If the new constant immediate is all-zeros or all-ones, let the target
  // independent DAG combine optimize this node.
  if (NewImm == 0 || NewImm == OrigMask) {
    New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
                          TLO.DAG.getConstant(NewImm, DL, VT));
  // Otherwise, create a machine node so that target independent DAG combine
  // doesn't undo this optimization.
  } else {
    Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
    SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
    New = SDValue(
        TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
  }

  return TLO.CombineTo(Op, New);
}

bool AArch64TargetLowering::targetShrinkDemandedConstant(
    SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
    TargetLoweringOpt &TLO) const {
  // Delay this optimization to as late as possible.
  if (!TLO.LegalOps)
    return false;

  if (!EnableOptimizeLogicalImm)
    return false;

  EVT VT = Op.getValueType();
  if (VT.isVector())
    return false;

  unsigned Size = VT.getSizeInBits();
  assert((Size == 32 || Size == 64) &&
         "i32 or i64 is expected after legalization.");

  // Exit early if we demand all bits.
  if (DemandedBits.countPopulation() == Size)
    return false;

  unsigned NewOpc;
  switch (Op.getOpcode()) {
  default:
    return false;
  case ISD::AND:
    NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
    break;
  case ISD::OR:
    NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
    break;
  case ISD::XOR:
    NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
    break;
  }
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
  if (!C)
    return false;
  uint64_t Imm = C->getZExtValue();
  return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc);
}

/// computeKnownBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them Known.
void AArch64TargetLowering::computeKnownBitsForTargetNode(
    const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
    const SelectionDAG &DAG, unsigned Depth) const {
  switch (Op.getOpcode()) {
  default:
    break;
  case AArch64ISD::DUP: {
    SDValue SrcOp = Op.getOperand(0);
    Known = DAG.computeKnownBits(SrcOp, Depth + 1);
    if (SrcOp.getValueSizeInBits() != Op.getScalarValueSizeInBits()) {
      assert(SrcOp.getValueSizeInBits() > Op.getScalarValueSizeInBits() &&
             "Expected DUP implicit truncation");
      Known = Known.trunc(Op.getScalarValueSizeInBits());
    }
    break;
  }
  case AArch64ISD::CSEL: {
    KnownBits Known2;
    Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
    Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
    Known = KnownBits::commonBits(Known, Known2);
    break;
  }
  case AArch64ISD::BICi: {
    // Compute the bit cleared value.
    uint64_t Mask =
        ~(Op->getConstantOperandVal(1) << Op->getConstantOperandVal(2));
    Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
    Known &= KnownBits::makeConstant(APInt(Known.getBitWidth(), Mask));
    break;
  }
  case AArch64ISD::VLSHR: {
    KnownBits Known2;
    Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
    Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
    Known = KnownBits::lshr(Known, Known2);
    break;
  }
  case AArch64ISD::VASHR: {
    KnownBits Known2;
    Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
    Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
    Known = KnownBits::ashr(Known, Known2);
    break;
  }
  case AArch64ISD::LOADgot:
  case AArch64ISD::ADDlow: {
    if (!Subtarget->isTargetILP32())
      break;
    // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
    Known.Zero = APInt::getHighBitsSet(64, 32);
    break;
  }
  case AArch64ISD::ASSERT_ZEXT_BOOL: {
    Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
    Known.Zero |= APInt(Known.getBitWidth(), 0xFE);
    break;
  }
  case ISD::INTRINSIC_W_CHAIN: {
    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
    switch (IntID) {
    default: return;
    case Intrinsic::aarch64_ldaxr:
    case Intrinsic::aarch64_ldxr: {
      unsigned BitWidth = Known.getBitWidth();
      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
      unsigned MemBits = VT.getScalarSizeInBits();
      Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
      return;
    }
    }
    break;
  }
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_VOID: {
    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    switch (IntNo) {
    default:
      break;
    case Intrinsic::aarch64_neon_umaxv:
    case Intrinsic::aarch64_neon_uminv: {
      // Figure out the datatype of the vector operand. The UMINV instruction
      // will zero extend the result, so we can mark as known zero all the
      // bits larger than the element datatype. 32-bit or larget doesn't need
      // this as those are legal types and will be handled by isel directly.
      MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
      unsigned BitWidth = Known.getBitWidth();
      if (VT == MVT::v8i8 || VT == MVT::v16i8) {
        assert(BitWidth >= 8 && "Unexpected width!");
        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
        Known.Zero |= Mask;
      } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
        assert(BitWidth >= 16 && "Unexpected width!");
        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
        Known.Zero |= Mask;
      }
      break;
    } break;
    }
  }
  }
}

MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
                                                  EVT) const {
  return MVT::i64;
}

bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
    EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
    bool *Fast) const {
  if (Subtarget->requiresStrictAlign())
    return false;

  if (Fast) {
    // Some CPUs are fine with unaligned stores except for 128-bit ones.
    *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
            // See comments in performSTORECombine() for more details about
            // these conditions.

            // Code that uses clang vector extensions can mark that it
            // wants unaligned accesses to be treated as fast by
            // underspecifying alignment to be 1 or 2.
            Alignment <= 2 ||

            // Disregard v2i64. Memcpy lowering produces those and splitting
            // them regresses performance on micro-benchmarks and olden/bh.
            VT == MVT::v2i64;
  }
  return true;
}

// Same as above but handling LLTs instead.
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
    LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
    bool *Fast) const {
  if (Subtarget->requiresStrictAlign())
    return false;

  if (Fast) {
    // Some CPUs are fine with unaligned stores except for 128-bit ones.
    *Fast = !Subtarget->isMisaligned128StoreSlow() ||
            Ty.getSizeInBytes() != 16 ||
            // See comments in performSTORECombine() for more details about
            // these conditions.

            // Code that uses clang vector extensions can mark that it
            // wants unaligned accesses to be treated as fast by
            // underspecifying alignment to be 1 or 2.
            Alignment <= 2 ||

            // Disregard v2i64. Memcpy lowering produces those and splitting
            // them regresses performance on micro-benchmarks and olden/bh.
            Ty == LLT::fixed_vector(2, 64);
  }
  return true;
}

FastISel *
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
                                      const TargetLibraryInfo *libInfo) const {
  return AArch64::createFastISel(funcInfo, libInfo);
}

const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
#define MAKE_CASE(V)                                                           \
  case V:                                                                      \
    return #V;
  switch ((AArch64ISD::NodeType)Opcode) {
  case AArch64ISD::FIRST_NUMBER:
    break;
    MAKE_CASE(AArch64ISD::CALL)
    MAKE_CASE(AArch64ISD::ADRP)
    MAKE_CASE(AArch64ISD::ADR)
    MAKE_CASE(AArch64ISD::ADDlow)
    MAKE_CASE(AArch64ISD::LOADgot)
    MAKE_CASE(AArch64ISD::RET_FLAG)
    MAKE_CASE(AArch64ISD::BRCOND)
    MAKE_CASE(AArch64ISD::CSEL)
    MAKE_CASE(AArch64ISD::CSINV)
    MAKE_CASE(AArch64ISD::CSNEG)
    MAKE_CASE(AArch64ISD::CSINC)
    MAKE_CASE(AArch64ISD::THREAD_POINTER)
    MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ)
    MAKE_CASE(AArch64ISD::ABDS_PRED)
    MAKE_CASE(AArch64ISD::ABDU_PRED)
    MAKE_CASE(AArch64ISD::MUL_PRED)
    MAKE_CASE(AArch64ISD::MULHS_PRED)
    MAKE_CASE(AArch64ISD::MULHU_PRED)
    MAKE_CASE(AArch64ISD::SDIV_PRED)
    MAKE_CASE(AArch64ISD::SHL_PRED)
    MAKE_CASE(AArch64ISD::SMAX_PRED)
    MAKE_CASE(AArch64ISD::SMIN_PRED)
    MAKE_CASE(AArch64ISD::SRA_PRED)
    MAKE_CASE(AArch64ISD::SRL_PRED)
    MAKE_CASE(AArch64ISD::UDIV_PRED)
    MAKE_CASE(AArch64ISD::UMAX_PRED)
    MAKE_CASE(AArch64ISD::UMIN_PRED)
    MAKE_CASE(AArch64ISD::SRAD_MERGE_OP1)
    MAKE_CASE(AArch64ISD::FNEG_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FCEIL_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FFLOOR_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FRINT_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FROUND_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FTRUNC_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FP_ROUND_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FCVTZU_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FCVTZS_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FSQRT_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FRECPX_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::FABS_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::ABS_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::NEG_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::ADC)
    MAKE_CASE(AArch64ISD::SBC)
    MAKE_CASE(AArch64ISD::ADDS)
    MAKE_CASE(AArch64ISD::SUBS)
    MAKE_CASE(AArch64ISD::ADCS)
    MAKE_CASE(AArch64ISD::SBCS)
    MAKE_CASE(AArch64ISD::ANDS)
    MAKE_CASE(AArch64ISD::CCMP)
    MAKE_CASE(AArch64ISD::CCMN)
    MAKE_CASE(AArch64ISD::FCCMP)
    MAKE_CASE(AArch64ISD::FCMP)
    MAKE_CASE(AArch64ISD::STRICT_FCMP)
    MAKE_CASE(AArch64ISD::STRICT_FCMPE)
    MAKE_CASE(AArch64ISD::DUP)
    MAKE_CASE(AArch64ISD::DUPLANE8)
    MAKE_CASE(AArch64ISD::DUPLANE16)
    MAKE_CASE(AArch64ISD::DUPLANE32)
    MAKE_CASE(AArch64ISD::DUPLANE64)
    MAKE_CASE(AArch64ISD::DUPLANE128)
    MAKE_CASE(AArch64ISD::MOVI)
    MAKE_CASE(AArch64ISD::MOVIshift)
    MAKE_CASE(AArch64ISD::MOVIedit)
    MAKE_CASE(AArch64ISD::MOVImsl)
    MAKE_CASE(AArch64ISD::FMOV)
    MAKE_CASE(AArch64ISD::MVNIshift)
    MAKE_CASE(AArch64ISD::MVNImsl)
    MAKE_CASE(AArch64ISD::BICi)
    MAKE_CASE(AArch64ISD::ORRi)
    MAKE_CASE(AArch64ISD::BSP)
    MAKE_CASE(AArch64ISD::EXTR)
    MAKE_CASE(AArch64ISD::ZIP1)
    MAKE_CASE(AArch64ISD::ZIP2)
    MAKE_CASE(AArch64ISD::UZP1)
    MAKE_CASE(AArch64ISD::UZP2)
    MAKE_CASE(AArch64ISD::TRN1)
    MAKE_CASE(AArch64ISD::TRN2)
    MAKE_CASE(AArch64ISD::REV16)
    MAKE_CASE(AArch64ISD::REV32)
    MAKE_CASE(AArch64ISD::REV64)
    MAKE_CASE(AArch64ISD::EXT)
    MAKE_CASE(AArch64ISD::SPLICE)
    MAKE_CASE(AArch64ISD::VSHL)
    MAKE_CASE(AArch64ISD::VLSHR)
    MAKE_CASE(AArch64ISD::VASHR)
    MAKE_CASE(AArch64ISD::VSLI)
    MAKE_CASE(AArch64ISD::VSRI)
    MAKE_CASE(AArch64ISD::CMEQ)
    MAKE_CASE(AArch64ISD::CMGE)
    MAKE_CASE(AArch64ISD::CMGT)
    MAKE_CASE(AArch64ISD::CMHI)
    MAKE_CASE(AArch64ISD::CMHS)
    MAKE_CASE(AArch64ISD::FCMEQ)
    MAKE_CASE(AArch64ISD::FCMGE)
    MAKE_CASE(AArch64ISD::FCMGT)
    MAKE_CASE(AArch64ISD::CMEQz)
    MAKE_CASE(AArch64ISD::CMGEz)
    MAKE_CASE(AArch64ISD::CMGTz)
    MAKE_CASE(AArch64ISD::CMLEz)
    MAKE_CASE(AArch64ISD::CMLTz)
    MAKE_CASE(AArch64ISD::FCMEQz)
    MAKE_CASE(AArch64ISD::FCMGEz)
    MAKE_CASE(AArch64ISD::FCMGTz)
    MAKE_CASE(AArch64ISD::FCMLEz)
    MAKE_CASE(AArch64ISD::FCMLTz)
    MAKE_CASE(AArch64ISD::SADDV)
    MAKE_CASE(AArch64ISD::UADDV)
    MAKE_CASE(AArch64ISD::SDOT)
    MAKE_CASE(AArch64ISD::UDOT)
    MAKE_CASE(AArch64ISD::SMINV)
    MAKE_CASE(AArch64ISD::UMINV)
    MAKE_CASE(AArch64ISD::SMAXV)
    MAKE_CASE(AArch64ISD::UMAXV)
    MAKE_CASE(AArch64ISD::SADDV_PRED)
    MAKE_CASE(AArch64ISD::UADDV_PRED)
    MAKE_CASE(AArch64ISD::SMAXV_PRED)
    MAKE_CASE(AArch64ISD::UMAXV_PRED)
    MAKE_CASE(AArch64ISD::SMINV_PRED)
    MAKE_CASE(AArch64ISD::UMINV_PRED)
    MAKE_CASE(AArch64ISD::ORV_PRED)
    MAKE_CASE(AArch64ISD::EORV_PRED)
    MAKE_CASE(AArch64ISD::ANDV_PRED)
    MAKE_CASE(AArch64ISD::CLASTA_N)
    MAKE_CASE(AArch64ISD::CLASTB_N)
    MAKE_CASE(AArch64ISD::LASTA)
    MAKE_CASE(AArch64ISD::LASTB)
    MAKE_CASE(AArch64ISD::REINTERPRET_CAST)
    MAKE_CASE(AArch64ISD::LS64_BUILD)
    MAKE_CASE(AArch64ISD::LS64_EXTRACT)
    MAKE_CASE(AArch64ISD::TBL)
    MAKE_CASE(AArch64ISD::FADD_PRED)
    MAKE_CASE(AArch64ISD::FADDA_PRED)
    MAKE_CASE(AArch64ISD::FADDV_PRED)
    MAKE_CASE(AArch64ISD::FDIV_PRED)
    MAKE_CASE(AArch64ISD::FMA_PRED)
    MAKE_CASE(AArch64ISD::FMAX_PRED)
    MAKE_CASE(AArch64ISD::FMAXV_PRED)
    MAKE_CASE(AArch64ISD::FMAXNM_PRED)
    MAKE_CASE(AArch64ISD::FMAXNMV_PRED)
    MAKE_CASE(AArch64ISD::FMIN_PRED)
    MAKE_CASE(AArch64ISD::FMINV_PRED)
    MAKE_CASE(AArch64ISD::FMINNM_PRED)
    MAKE_CASE(AArch64ISD::FMINNMV_PRED)
    MAKE_CASE(AArch64ISD::FMUL_PRED)
    MAKE_CASE(AArch64ISD::FSUB_PRED)
    MAKE_CASE(AArch64ISD::RDSVL)
    MAKE_CASE(AArch64ISD::BIC)
    MAKE_CASE(AArch64ISD::BIT)
    MAKE_CASE(AArch64ISD::CBZ)
    MAKE_CASE(AArch64ISD::CBNZ)
    MAKE_CASE(AArch64ISD::TBZ)
    MAKE_CASE(AArch64ISD::TBNZ)
    MAKE_CASE(AArch64ISD::TC_RETURN)
    MAKE_CASE(AArch64ISD::PREFETCH)
    MAKE_CASE(AArch64ISD::SITOF)
    MAKE_CASE(AArch64ISD::UITOF)
    MAKE_CASE(AArch64ISD::NVCAST)
    MAKE_CASE(AArch64ISD::MRS)
    MAKE_CASE(AArch64ISD::SQSHL_I)
    MAKE_CASE(AArch64ISD::UQSHL_I)
    MAKE_CASE(AArch64ISD::SRSHR_I)
    MAKE_CASE(AArch64ISD::URSHR_I)
    MAKE_CASE(AArch64ISD::SQSHLU_I)
    MAKE_CASE(AArch64ISD::WrapperLarge)
    MAKE_CASE(AArch64ISD::LD2post)
    MAKE_CASE(AArch64ISD::LD3post)
    MAKE_CASE(AArch64ISD::LD4post)
    MAKE_CASE(AArch64ISD::ST2post)
    MAKE_CASE(AArch64ISD::ST3post)
    MAKE_CASE(AArch64ISD::ST4post)
    MAKE_CASE(AArch64ISD::LD1x2post)
    MAKE_CASE(AArch64ISD::LD1x3post)
    MAKE_CASE(AArch64ISD::LD1x4post)
    MAKE_CASE(AArch64ISD::ST1x2post)
    MAKE_CASE(AArch64ISD::ST1x3post)
    MAKE_CASE(AArch64ISD::ST1x4post)
    MAKE_CASE(AArch64ISD::LD1DUPpost)
    MAKE_CASE(AArch64ISD::LD2DUPpost)
    MAKE_CASE(AArch64ISD::LD3DUPpost)
    MAKE_CASE(AArch64ISD::LD4DUPpost)
    MAKE_CASE(AArch64ISD::LD1LANEpost)
    MAKE_CASE(AArch64ISD::LD2LANEpost)
    MAKE_CASE(AArch64ISD::LD3LANEpost)
    MAKE_CASE(AArch64ISD::LD4LANEpost)
    MAKE_CASE(AArch64ISD::ST2LANEpost)
    MAKE_CASE(AArch64ISD::ST3LANEpost)
    MAKE_CASE(AArch64ISD::ST4LANEpost)
    MAKE_CASE(AArch64ISD::SMULL)
    MAKE_CASE(AArch64ISD::UMULL)
    MAKE_CASE(AArch64ISD::FRECPE)
    MAKE_CASE(AArch64ISD::FRECPS)
    MAKE_CASE(AArch64ISD::FRSQRTE)
    MAKE_CASE(AArch64ISD::FRSQRTS)
    MAKE_CASE(AArch64ISD::STG)
    MAKE_CASE(AArch64ISD::STZG)
    MAKE_CASE(AArch64ISD::ST2G)
    MAKE_CASE(AArch64ISD::STZ2G)
    MAKE_CASE(AArch64ISD::SUNPKHI)
    MAKE_CASE(AArch64ISD::SUNPKLO)
    MAKE_CASE(AArch64ISD::UUNPKHI)
    MAKE_CASE(AArch64ISD::UUNPKLO)
    MAKE_CASE(AArch64ISD::INSR)
    MAKE_CASE(AArch64ISD::PTEST)
    MAKE_CASE(AArch64ISD::PTRUE)
    MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO)
    MAKE_CASE(AArch64ISD::ST1_PRED)
    MAKE_CASE(AArch64ISD::SST1_PRED)
    MAKE_CASE(AArch64ISD::SST1_SCALED_PRED)
    MAKE_CASE(AArch64ISD::SST1_SXTW_PRED)
    MAKE_CASE(AArch64ISD::SST1_UXTW_PRED)
    MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED)
    MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED)
    MAKE_CASE(AArch64ISD::SST1_IMM_PRED)
    MAKE_CASE(AArch64ISD::SSTNT1_PRED)
    MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED)
    MAKE_CASE(AArch64ISD::LDP)
    MAKE_CASE(AArch64ISD::STP)
    MAKE_CASE(AArch64ISD::STNP)
    MAKE_CASE(AArch64ISD::BITREVERSE_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::BSWAP_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::REVH_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::REVW_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::REVD_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::CTLZ_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::CTPOP_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU)
    MAKE_CASE(AArch64ISD::INDEX_VECTOR)
    MAKE_CASE(AArch64ISD::ADDP)
    MAKE_CASE(AArch64ISD::SADDLP)
    MAKE_CASE(AArch64ISD::UADDLP)
    MAKE_CASE(AArch64ISD::CALL_RVMARKER)
    MAKE_CASE(AArch64ISD::ASSERT_ZEXT_BOOL)
    MAKE_CASE(AArch64ISD::MOPS_MEMSET)
    MAKE_CASE(AArch64ISD::MOPS_MEMSET_TAGGING)
    MAKE_CASE(AArch64ISD::MOPS_MEMCOPY)
    MAKE_CASE(AArch64ISD::MOPS_MEMMOVE)
    MAKE_CASE(AArch64ISD::CALL_BTI)
  }
#undef MAKE_CASE
  return nullptr;
}

MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
                                    MachineBasicBlock *MBB) const {
  // We materialise the F128CSEL pseudo-instruction as some control flow and a
  // phi node:

  // OrigBB:
  //     [... previous instrs leading to comparison ...]
  //     b.ne TrueBB
  //     b EndBB
  // TrueBB:
  //     ; Fallthrough
  // EndBB:
  //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]

  MachineFunction *MF = MBB->getParent();
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
  DebugLoc DL = MI.getDebugLoc();
  MachineFunction::iterator It = ++MBB->getIterator();

  Register DestReg = MI.getOperand(0).getReg();
  Register IfTrueReg = MI.getOperand(1).getReg();
  Register IfFalseReg = MI.getOperand(2).getReg();
  unsigned CondCode = MI.getOperand(3).getImm();
  bool NZCVKilled = MI.getOperand(4).isKill();

  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(It, TrueBB);
  MF->insert(It, EndBB);

  // Transfer rest of current basic-block to EndBB
  EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
                MBB->end());
  EndBB->transferSuccessorsAndUpdatePHIs(MBB);

  BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
  BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
  MBB->addSuccessor(TrueBB);
  MBB->addSuccessor(EndBB);

  // TrueBB falls through to the end.
  TrueBB->addSuccessor(EndBB);

  if (!NZCVKilled) {
    TrueBB->addLiveIn(AArch64::NZCV);
    EndBB->addLiveIn(AArch64::NZCV);
  }

  BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
      .addReg(IfTrueReg)
      .addMBB(TrueBB)
      .addReg(IfFalseReg)
      .addMBB(MBB);

  MI.eraseFromParent();
  return EndBB;
}

MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
       MachineInstr &MI, MachineBasicBlock *BB) const {
  assert(!isAsynchronousEHPersonality(classifyEHPersonality(
             BB->getParent()->getFunction().getPersonalityFn())) &&
         "SEH does not use catchret!");
  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitTileLoad(unsigned Opc, unsigned BaseReg,
                                    MachineInstr &MI,
                                    MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc));

  MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define);
  MIB.add(MI.getOperand(1)); // slice index register
  MIB.add(MI.getOperand(2)); // slice index offset
  MIB.add(MI.getOperand(3)); // pg
  MIB.add(MI.getOperand(4)); // base
  MIB.add(MI.getOperand(5)); // offset

  MI.eraseFromParent(); // The pseudo is gone now.
  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitFill(MachineInstr &MI, MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineInstrBuilder MIB =
      BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::LDR_ZA));

  MIB.addReg(AArch64::ZA, RegState::Define);
  MIB.add(MI.getOperand(0)); // Vector select register
  MIB.add(MI.getOperand(1)); // Vector select offset
  MIB.add(MI.getOperand(2)); // Base
  MIB.add(MI.getOperand(1)); // Offset, same as vector select offset

  MI.eraseFromParent(); // The pseudo is gone now.
  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitMopa(unsigned Opc, unsigned BaseReg,
                                MachineInstr &MI, MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc));

  MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define);
  MIB.addReg(BaseReg + MI.getOperand(0).getImm());
  MIB.add(MI.getOperand(1)); // pn
  MIB.add(MI.getOperand(2)); // pm
  MIB.add(MI.getOperand(3)); // zn
  MIB.add(MI.getOperand(4)); // zm

  MI.eraseFromParent(); // The pseudo is gone now.
  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitInsertVectorToTile(unsigned Opc, unsigned BaseReg,
                                              MachineInstr &MI,
                                              MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc));

  MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define);
  MIB.addReg(BaseReg + MI.getOperand(0).getImm());
  MIB.add(MI.getOperand(1)); // Slice index register
  MIB.add(MI.getOperand(2)); // Slice index offset
  MIB.add(MI.getOperand(3)); // pg
  MIB.add(MI.getOperand(4)); // zn

  MI.eraseFromParent(); // The pseudo is gone now.
  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitZero(MachineInstr &MI, MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineInstrBuilder MIB =
      BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::ZERO_M));
  MIB.add(MI.getOperand(0)); // Mask

  unsigned Mask = MI.getOperand(0).getImm();
  for (unsigned I = 0; I < 8; I++) {
    if (Mask & (1 << I))
      MIB.addDef(AArch64::ZAD0 + I, RegState::ImplicitDefine);
  }

  MI.eraseFromParent(); // The pseudo is gone now.
  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitAddVectorToTile(unsigned Opc, unsigned BaseReg,
                                           MachineInstr &MI,
                                           MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc));

  MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define);
  MIB.addReg(BaseReg + MI.getOperand(0).getImm());
  MIB.add(MI.getOperand(1)); // pn
  MIB.add(MI.getOperand(2)); // pm
  MIB.add(MI.getOperand(3)); // zn

  MI.eraseFromParent(); // The pseudo is gone now.
  return BB;
}

MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
    MachineInstr &MI, MachineBasicBlock *BB) const {
  switch (MI.getOpcode()) {
  default:
#ifndef NDEBUG
    MI.dump();
#endif
    llvm_unreachable("Unexpected instruction for custom inserter!");

  case AArch64::F128CSEL:
    return EmitF128CSEL(MI, BB);

  case TargetOpcode::STATEPOINT:
    // STATEPOINT is a pseudo instruction which has no implicit defs/uses
    // while bl call instruction (where statepoint will be lowered at the end)
    // has implicit def. This def is early-clobber as it will be set at
    // the moment of the call and earlier than any use is read.
    // Add this implicit dead def here as a workaround.
    MI.addOperand(*MI.getMF(),
                  MachineOperand::CreateReg(
                      AArch64::LR, /*isDef*/ true,
                      /*isImp*/ true, /*isKill*/ false, /*isDead*/ true,
                      /*isUndef*/ false, /*isEarlyClobber*/ true));
    LLVM_FALLTHROUGH;
  case TargetOpcode::STACKMAP:
  case TargetOpcode::PATCHPOINT:
    return emitPatchPoint(MI, BB);

  case AArch64::CATCHRET:
    return EmitLoweredCatchRet(MI, BB);
  case AArch64::LD1_MXIPXX_H_PSEUDO_B:
    return EmitTileLoad(AArch64::LD1_MXIPXX_H_B, AArch64::ZAB0, MI, BB);
  case AArch64::LD1_MXIPXX_H_PSEUDO_H:
    return EmitTileLoad(AArch64::LD1_MXIPXX_H_H, AArch64::ZAH0, MI, BB);
  case AArch64::LD1_MXIPXX_H_PSEUDO_S:
    return EmitTileLoad(AArch64::LD1_MXIPXX_H_S, AArch64::ZAS0, MI, BB);
  case AArch64::LD1_MXIPXX_H_PSEUDO_D:
    return EmitTileLoad(AArch64::LD1_MXIPXX_H_D, AArch64::ZAD0, MI, BB);
  case AArch64::LD1_MXIPXX_H_PSEUDO_Q:
    return EmitTileLoad(AArch64::LD1_MXIPXX_H_Q, AArch64::ZAQ0, MI, BB);
  case AArch64::LD1_MXIPXX_V_PSEUDO_B:
    return EmitTileLoad(AArch64::LD1_MXIPXX_V_B, AArch64::ZAB0, MI, BB);
  case AArch64::LD1_MXIPXX_V_PSEUDO_H:
    return EmitTileLoad(AArch64::LD1_MXIPXX_V_H, AArch64::ZAH0, MI, BB);
  case AArch64::LD1_MXIPXX_V_PSEUDO_S:
    return EmitTileLoad(AArch64::LD1_MXIPXX_V_S, AArch64::ZAS0, MI, BB);
  case AArch64::LD1_MXIPXX_V_PSEUDO_D:
    return EmitTileLoad(AArch64::LD1_MXIPXX_V_D, AArch64::ZAD0, MI, BB);
  case AArch64::LD1_MXIPXX_V_PSEUDO_Q:
    return EmitTileLoad(AArch64::LD1_MXIPXX_V_Q, AArch64::ZAQ0, MI, BB);
  case AArch64::LDR_ZA_PSEUDO:
    return EmitFill(MI, BB);
  case AArch64::BFMOPA_MPPZZ_PSEUDO:
    return EmitMopa(AArch64::BFMOPA_MPPZZ, AArch64::ZAS0, MI, BB);
  case AArch64::BFMOPS_MPPZZ_PSEUDO:
    return EmitMopa(AArch64::BFMOPS_MPPZZ, AArch64::ZAS0, MI, BB);
  case AArch64::FMOPAL_MPPZZ_PSEUDO:
    return EmitMopa(AArch64::FMOPAL_MPPZZ, AArch64::ZAS0, MI, BB);
  case AArch64::FMOPSL_MPPZZ_PSEUDO:
    return EmitMopa(AArch64::FMOPSL_MPPZZ, AArch64::ZAS0, MI, BB);
  case AArch64::FMOPA_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::FMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::FMOPS_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::FMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::FMOPA_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::FMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::FMOPS_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::FMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::SMOPA_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::SMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::SMOPS_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::SMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::UMOPA_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::UMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::UMOPS_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::UMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::SUMOPA_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::SUMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::SUMOPS_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::SUMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::USMOPA_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::USMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::USMOPS_MPPZZ_S_PSEUDO:
    return EmitMopa(AArch64::USMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::SMOPA_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::SMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::SMOPS_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::SMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::UMOPA_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::UMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::UMOPS_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::UMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::SUMOPA_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::SUMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::SUMOPS_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::SUMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::USMOPA_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::USMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::USMOPS_MPPZZ_D_PSEUDO:
    return EmitMopa(AArch64::USMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::INSERT_MXIPZ_H_PSEUDO_B:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_B, AArch64::ZAB0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_H_PSEUDO_H:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_H, AArch64::ZAH0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_H_PSEUDO_S:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_S, AArch64::ZAS0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_H_PSEUDO_D:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_D, AArch64::ZAD0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_H_PSEUDO_Q:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_Q, AArch64::ZAQ0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_V_PSEUDO_B:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_B, AArch64::ZAB0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_V_PSEUDO_H:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_H, AArch64::ZAH0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_V_PSEUDO_S:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_S, AArch64::ZAS0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_V_PSEUDO_D:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_D, AArch64::ZAD0, MI,
                                  BB);
  case AArch64::INSERT_MXIPZ_V_PSEUDO_Q:
    return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_Q, AArch64::ZAQ0, MI,
                                  BB);
  case AArch64::ZERO_M_PSEUDO:
    return EmitZero(MI, BB);
  case AArch64::ADDHA_MPPZ_PSEUDO_S:
    return EmitAddVectorToTile(AArch64::ADDHA_MPPZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::ADDVA_MPPZ_PSEUDO_S:
    return EmitAddVectorToTile(AArch64::ADDVA_MPPZ_S, AArch64::ZAS0, MI, BB);
  case AArch64::ADDHA_MPPZ_PSEUDO_D:
    return EmitAddVectorToTile(AArch64::ADDHA_MPPZ_D, AArch64::ZAD0, MI, BB);
  case AArch64::ADDVA_MPPZ_PSEUDO_D:
    return EmitAddVectorToTile(AArch64::ADDVA_MPPZ_D, AArch64::ZAD0, MI, BB);
  }
}

//===----------------------------------------------------------------------===//
// AArch64 Lowering private implementation.
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//

// Forward declarations of SVE fixed length lowering helpers
static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT);
static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V);
static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V);
static SDValue convertFixedMaskToScalableVector(SDValue Mask,
                                                SelectionDAG &DAG);
static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL,
                                             EVT VT);

/// isZerosVector - Check whether SDNode N is a zero-filled vector.
static bool isZerosVector(const SDNode *N) {
  // Look through a bit convert.
  while (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0).getNode();

  if (ISD::isConstantSplatVectorAllZeros(N))
    return true;

  if (N->getOpcode() != AArch64ISD::DUP)
    return false;

  auto Opnd0 = N->getOperand(0);
  auto *CINT = dyn_cast<ConstantSDNode>(Opnd0);
  auto *CFP = dyn_cast<ConstantFPSDNode>(Opnd0);
  return (CINT && CINT->isZero()) || (CFP && CFP->isZero());
}

/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
/// CC
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
  switch (CC) {
  default:
    llvm_unreachable("Unknown condition code!");
  case ISD::SETNE:
    return AArch64CC::NE;
  case ISD::SETEQ:
    return AArch64CC::EQ;
  case ISD::SETGT:
    return AArch64CC::GT;
  case ISD::SETGE:
    return AArch64CC::GE;
  case ISD::SETLT:
    return AArch64CC::LT;
  case ISD::SETLE:
    return AArch64CC::LE;
  case ISD::SETUGT:
    return AArch64CC::HI;
  case ISD::SETUGE:
    return AArch64CC::HS;
  case ISD::SETULT:
    return AArch64CC::LO;
  case ISD::SETULE:
    return AArch64CC::LS;
  }
}

/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
static void changeFPCCToAArch64CC(ISD::CondCode CC,
                                  AArch64CC::CondCode &CondCode,
                                  AArch64CC::CondCode &CondCode2) {
  CondCode2 = AArch64CC::AL;
  switch (CC) {
  default:
    llvm_unreachable("Unknown FP condition!");
  case ISD::SETEQ:
  case ISD::SETOEQ:
    CondCode = AArch64CC::EQ;
    break;
  case ISD::SETGT:
  case ISD::SETOGT:
    CondCode = AArch64CC::GT;
    break;
  case ISD::SETGE:
  case ISD::SETOGE:
    CondCode = AArch64CC::GE;
    break;
  case ISD::SETOLT:
    CondCode = AArch64CC::MI;
    break;
  case ISD::SETOLE:
    CondCode = AArch64CC::LS;
    break;
  case ISD::SETONE:
    CondCode = AArch64CC::MI;
    CondCode2 = AArch64CC::GT;
    break;
  case ISD::SETO:
    CondCode = AArch64CC::VC;
    break;
  case ISD::SETUO:
    CondCode = AArch64CC::VS;
    break;
  case ISD::SETUEQ:
    CondCode = AArch64CC::EQ;
    CondCode2 = AArch64CC::VS;
    break;
  case ISD::SETUGT:
    CondCode = AArch64CC::HI;
    break;
  case ISD::SETUGE:
    CondCode = AArch64CC::PL;
    break;
  case ISD::SETLT:
  case ISD::SETULT:
    CondCode = AArch64CC::LT;
    break;
  case ISD::SETLE:
  case ISD::SETULE:
    CondCode = AArch64CC::LE;
    break;
  case ISD::SETNE:
  case ISD::SETUNE:
    CondCode = AArch64CC::NE;
    break;
  }
}

/// Convert a DAG fp condition code to an AArch64 CC.
/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
/// should be AND'ed instead of OR'ed.
static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
                                     AArch64CC::CondCode &CondCode,
                                     AArch64CC::CondCode &CondCode2) {
  CondCode2 = AArch64CC::AL;
  switch (CC) {
  default:
    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
    assert(CondCode2 == AArch64CC::AL);
    break;
  case ISD::SETONE:
    // (a one b)
    // == ((a olt b) || (a ogt b))
    // == ((a ord b) && (a une b))
    CondCode = AArch64CC::VC;
    CondCode2 = AArch64CC::NE;
    break;
  case ISD::SETUEQ:
    // (a ueq b)
    // == ((a uno b) || (a oeq b))
    // == ((a ule b) && (a uge b))
    CondCode = AArch64CC::PL;
    CondCode2 = AArch64CC::LE;
    break;
  }
}

/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
/// CC usable with the vector instructions. Fewer operations are available
/// without a real NZCV register, so we have to use less efficient combinations
/// to get the same effect.
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
                                        AArch64CC::CondCode &CondCode,
                                        AArch64CC::CondCode &CondCode2,
                                        bool &Invert) {
  Invert = false;
  switch (CC) {
  default:
    // Mostly the scalar mappings work fine.
    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
    break;
  case ISD::SETUO:
    Invert = true;
    LLVM_FALLTHROUGH;
  case ISD::SETO:
    CondCode = AArch64CC::MI;
    CondCode2 = AArch64CC::GE;
    break;
  case ISD::SETUEQ:
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETUGT:
  case ISD::SETUGE:
    // All of the compare-mask comparisons are ordered, but we can switch
    // between the two by a double inversion. E.g. ULE == !OGT.
    Invert = true;
    changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32),
                          CondCode, CondCode2);
    break;
  }
}

static bool isLegalArithImmed(uint64_t C) {
  // Matches AArch64DAGToDAGISel::SelectArithImmed().
  bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
  LLVM_DEBUG(dbgs() << "Is imm " << C
                    << " legal: " << (IsLegal ? "yes\n" : "no\n"));
  return IsLegal;
}

// Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
// the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
// can be set differently by this operation. It comes down to whether
// "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
// everything is fine. If not then the optimization is wrong. Thus general
// comparisons are only valid if op2 != 0.
//
// So, finally, the only LLVM-native comparisons that don't mention C and V
// are SETEQ and SETNE. They're the only ones we can safely use CMN for in
// the absence of information about op2.
static bool isCMN(SDValue Op, ISD::CondCode CC) {
  return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
         (CC == ISD::SETEQ || CC == ISD::SETNE);
}

static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl,
                                      SelectionDAG &DAG, SDValue Chain,
                                      bool IsSignaling) {
  EVT VT = LHS.getValueType();
  assert(VT != MVT::f128);

  const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();

  if (VT == MVT::f16 && !FullFP16) {
    LHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other},
                      {Chain, LHS});
    RHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other},
                      {LHS.getValue(1), RHS});
    Chain = RHS.getValue(1);
    VT = MVT::f32;
  }
  unsigned Opcode =
      IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP;
  return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS});
}

static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
                              const SDLoc &dl, SelectionDAG &DAG) {
  EVT VT = LHS.getValueType();
  const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();

  if (VT.isFloatingPoint()) {
    assert(VT != MVT::f128);
    if (VT == MVT::f16 && !FullFP16) {
      LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
      RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
      VT = MVT::f32;
    }
    return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
  }

  // The CMP instruction is just an alias for SUBS, and representing it as
  // SUBS means that it's possible to get CSE with subtract operations.
  // A later phase can perform the optimization of setting the destination
  // register to WZR/XZR if it ends up being unused.
  unsigned Opcode = AArch64ISD::SUBS;

  if (isCMN(RHS, CC)) {
    // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
    Opcode = AArch64ISD::ADDS;
    RHS = RHS.getOperand(1);
  } else if (isCMN(LHS, CC)) {
    // As we are looking for EQ/NE compares, the operands can be commuted ; can
    // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
    Opcode = AArch64ISD::ADDS;
    LHS = LHS.getOperand(1);
  } else if (isNullConstant(RHS) && !isUnsignedIntSetCC(CC)) {
    if (LHS.getOpcode() == ISD::AND) {
      // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
      // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
      // of the signed comparisons.
      const SDValue ANDSNode = DAG.getNode(AArch64ISD::ANDS, dl,
                                           DAG.getVTList(VT, MVT_CC),
                                           LHS.getOperand(0),
                                           LHS.getOperand(1));
      // Replace all users of (and X, Y) with newly generated (ands X, Y)
      DAG.ReplaceAllUsesWith(LHS, ANDSNode);
      return ANDSNode.getValue(1);
    } else if (LHS.getOpcode() == AArch64ISD::ANDS) {
      // Use result of ANDS
      return LHS.getValue(1);
    }
  }

  return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
      .getValue(1);
}

/// \defgroup AArch64CCMP CMP;CCMP matching
///
/// These functions deal with the formation of CMP;CCMP;... sequences.
/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
/// a comparison. They set the NZCV flags to a predefined value if their
/// predicate is false. This allows to express arbitrary conjunctions, for
/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
/// expressed as:
///   cmp A
///   ccmp B, inv(CB), CA
///   check for CB flags
///
/// This naturally lets us implement chains of AND operations with SETCC
/// operands. And we can even implement some other situations by transforming
/// them:
///   - We can implement (NEG SETCC) i.e. negating a single comparison by
///     negating the flags used in a CCMP/FCCMP operations.
///   - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
///     by negating the flags we test for afterwards. i.e.
///     NEG (CMP CCMP CCCMP ...) can be implemented.
///   - Note that we can only ever negate all previously processed results.
///     What we can not implement by flipping the flags to test is a negation
///     of two sub-trees (because the negation affects all sub-trees emitted so
///     far, so the 2nd sub-tree we emit would also affect the first).
/// With those tools we can implement some OR operations:
///   - (OR (SETCC A) (SETCC B)) can be implemented via:
///     NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
///   - After transforming OR to NEG/AND combinations we may be able to use NEG
///     elimination rules from earlier to implement the whole thing as a
///     CCMP/FCCMP chain.
///
/// As complete example:
///     or (or (setCA (cmp A)) (setCB (cmp B)))
///        (and (setCC (cmp C)) (setCD (cmp D)))"
/// can be reassociated to:
///     or (and (setCC (cmp C)) setCD (cmp D))
//         (or (setCA (cmp A)) (setCB (cmp B)))
/// can be transformed to:
///     not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
///              (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
/// which can be implemented as:
///   cmp C
///   ccmp D, inv(CD), CC
///   ccmp A, CA, inv(CD)
///   ccmp B, CB, inv(CA)
///   check for CB flags
///
/// A counterexample is "or (and A B) (and C D)" which translates to
/// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
/// can only implement 1 of the inner (not) operations, but not both!
/// @{

/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
                                         ISD::CondCode CC, SDValue CCOp,
                                         AArch64CC::CondCode Predicate,
                                         AArch64CC::CondCode OutCC,
                                         const SDLoc &DL, SelectionDAG &DAG) {
  unsigned Opcode = 0;
  const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();

  if (LHS.getValueType().isFloatingPoint()) {
    assert(LHS.getValueType() != MVT::f128);
    if (LHS.getValueType() == MVT::f16 && !FullFP16) {
      LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
      RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
    }
    Opcode = AArch64ISD::FCCMP;
  } else if (RHS.getOpcode() == ISD::SUB) {
    SDValue SubOp0 = RHS.getOperand(0);
    if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
      // See emitComparison() on why we can only do this for SETEQ and SETNE.
      Opcode = AArch64ISD::CCMN;
      RHS = RHS.getOperand(1);
    }
  }
  if (Opcode == 0)
    Opcode = AArch64ISD::CCMP;

  SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
  AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
  unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
  SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
  return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
}

/// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
/// expressed as a conjunction. See \ref AArch64CCMP.
/// \param CanNegate    Set to true if we can negate the whole sub-tree just by
///                     changing the conditions on the SETCC tests.
///                     (this means we can call emitConjunctionRec() with
///                      Negate==true on this sub-tree)
/// \param MustBeFirst  Set to true if this subtree needs to be negated and we
///                     cannot do the negation naturally. We are required to
///                     emit the subtree first in this case.
/// \param WillNegate   Is true if are called when the result of this
///                     subexpression must be negated. This happens when the
///                     outer expression is an OR. We can use this fact to know
///                     that we have a double negation (or (or ...) ...) that
///                     can be implemented for free.
static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
                               bool &MustBeFirst, bool WillNegate,
                               unsigned Depth = 0) {
  if (!Val.hasOneUse())
    return false;
  unsigned Opcode = Val->getOpcode();
  if (Opcode == ISD::SETCC) {
    if (Val->getOperand(0).getValueType() == MVT::f128)
      return false;
    CanNegate = true;
    MustBeFirst = false;
    return true;
  }
  // Protect against exponential runtime and stack overflow.
  if (Depth > 6)
    return false;
  if (Opcode == ISD::AND || Opcode == ISD::OR) {
    bool IsOR = Opcode == ISD::OR;
    SDValue O0 = Val->getOperand(0);
    SDValue O1 = Val->getOperand(1);
    bool CanNegateL;
    bool MustBeFirstL;
    if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
      return false;
    bool CanNegateR;
    bool MustBeFirstR;
    if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
      return false;

    if (MustBeFirstL && MustBeFirstR)
      return false;

    if (IsOR) {
      // For an OR expression we need to be able to naturally negate at least
      // one side or we cannot do the transformation at all.
      if (!CanNegateL && !CanNegateR)
        return false;
      // If we the result of the OR will be negated and we can naturally negate
      // the leafs, then this sub-tree as a whole negates naturally.
      CanNegate = WillNegate && CanNegateL && CanNegateR;
      // If we cannot naturally negate the whole sub-tree, then this must be
      // emitted first.
      MustBeFirst = !CanNegate;
    } else {
      assert(Opcode == ISD::AND && "Must be OR or AND");
      // We cannot naturally negate an AND operation.
      CanNegate = false;
      MustBeFirst = MustBeFirstL || MustBeFirstR;
    }
    return true;
  }
  return false;
}

/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
/// Tries to transform the given i1 producing node @p Val to a series compare
/// and conditional compare operations. @returns an NZCV flags producing node
/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
/// transformation was not possible.
/// \p Negate is true if we want this sub-tree being negated just by changing
/// SETCC conditions.
static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
    AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
    AArch64CC::CondCode Predicate) {
  // We're at a tree leaf, produce a conditional comparison operation.
  unsigned Opcode = Val->getOpcode();
  if (Opcode == ISD::SETCC) {
    SDValue LHS = Val->getOperand(0);
    SDValue RHS = Val->getOperand(1);
    ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
    bool isInteger = LHS.getValueType().isInteger();
    if (Negate)
      CC = getSetCCInverse(CC, LHS.getValueType());
    SDLoc DL(Val);
    // Determine OutCC and handle FP special case.
    if (isInteger) {
      OutCC = changeIntCCToAArch64CC(CC);
    } else {
      assert(LHS.getValueType().isFloatingPoint());
      AArch64CC::CondCode ExtraCC;
      changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
      // Some floating point conditions can't be tested with a single condition
      // code. Construct an additional comparison in this case.
      if (ExtraCC != AArch64CC::AL) {
        SDValue ExtraCmp;
        if (!CCOp.getNode())
          ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
        else
          ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
                                               ExtraCC, DL, DAG);
        CCOp = ExtraCmp;
        Predicate = ExtraCC;
      }
    }

    // Produce a normal comparison if we are first in the chain
    if (!CCOp)
      return emitComparison(LHS, RHS, CC, DL, DAG);
    // Otherwise produce a ccmp.
    return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
                                     DAG);
  }
  assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");

  bool IsOR = Opcode == ISD::OR;

  SDValue LHS = Val->getOperand(0);
  bool CanNegateL;
  bool MustBeFirstL;
  bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
  assert(ValidL && "Valid conjunction/disjunction tree");
  (void)ValidL;

  SDValue RHS = Val->getOperand(1);
  bool CanNegateR;
  bool MustBeFirstR;
  bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
  assert(ValidR && "Valid conjunction/disjunction tree");
  (void)ValidR;

  // Swap sub-tree that must come first to the right side.
  if (MustBeFirstL) {
    assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
    std::swap(LHS, RHS);
    std::swap(CanNegateL, CanNegateR);
    std::swap(MustBeFirstL, MustBeFirstR);
  }

  bool NegateR;
  bool NegateAfterR;
  bool NegateL;
  bool NegateAfterAll;
  if (Opcode == ISD::OR) {
    // Swap the sub-tree that we can negate naturally to the left.
    if (!CanNegateL) {
      assert(CanNegateR && "at least one side must be negatable");
      assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
      assert(!Negate);
      std::swap(LHS, RHS);
      NegateR = false;
      NegateAfterR = true;
    } else {
      // Negate the left sub-tree if possible, otherwise negate the result.
      NegateR = CanNegateR;
      NegateAfterR = !CanNegateR;
    }
    NegateL = true;
    NegateAfterAll = !Negate;
  } else {
    assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
    assert(!Negate && "Valid conjunction/disjunction tree");

    NegateL = false;
    NegateR = false;
    NegateAfterR = false;
    NegateAfterAll = false;
  }

  // Emit sub-trees.
  AArch64CC::CondCode RHSCC;
  SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
  if (NegateAfterR)
    RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
  SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
  if (NegateAfterAll)
    OutCC = AArch64CC::getInvertedCondCode(OutCC);
  return CmpL;
}

/// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
/// In some cases this is even possible with OR operations in the expression.
/// See \ref AArch64CCMP.
/// \see emitConjunctionRec().
static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
                               AArch64CC::CondCode &OutCC) {
  bool DummyCanNegate;
  bool DummyMustBeFirst;
  if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
    return SDValue();

  return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
}

/// @}

/// Returns how profitable it is to fold a comparison's operand's shift and/or
/// extension operations.
static unsigned getCmpOperandFoldingProfit(SDValue Op) {
  auto isSupportedExtend = [&](SDValue V) {
    if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
      return true;

    if (V.getOpcode() == ISD::AND)
      if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
        uint64_t Mask = MaskCst->getZExtValue();
        return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
      }

    return false;
  };

  if (!Op.hasOneUse())
    return 0;

  if (isSupportedExtend(Op))
    return 1;

  unsigned Opc = Op.getOpcode();
  if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
    if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      uint64_t Shift = ShiftCst->getZExtValue();
      if (isSupportedExtend(Op.getOperand(0)))
        return (Shift <= 4) ? 2 : 1;
      EVT VT = Op.getValueType();
      if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
        return 1;
    }

  return 0;
}

static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
                             SDValue &AArch64cc, SelectionDAG &DAG,
                             const SDLoc &dl) {
  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
    EVT VT = RHS.getValueType();
    uint64_t C = RHSC->getZExtValue();
    if (!isLegalArithImmed(C)) {
      // Constant does not fit, try adjusting it by one?
      switch (CC) {
      default:
        break;
      case ISD::SETLT:
      case ISD::SETGE:
        if ((VT == MVT::i32 && C != 0x80000000 &&
             isLegalArithImmed((uint32_t)(C - 1))) ||
            (VT == MVT::i64 && C != 0x80000000ULL &&
             isLegalArithImmed(C - 1ULL))) {
          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      case ISD::SETULT:
      case ISD::SETUGE:
        if ((VT == MVT::i32 && C != 0 &&
             isLegalArithImmed((uint32_t)(C - 1))) ||
            (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      case ISD::SETLE:
      case ISD::SETGT:
        if ((VT == MVT::i32 && C != INT32_MAX &&
             isLegalArithImmed((uint32_t)(C + 1))) ||
            (VT == MVT::i64 && C != INT64_MAX &&
             isLegalArithImmed(C + 1ULL))) {
          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      case ISD::SETULE:
      case ISD::SETUGT:
        if ((VT == MVT::i32 && C != UINT32_MAX &&
             isLegalArithImmed((uint32_t)(C + 1))) ||
            (VT == MVT::i64 && C != UINT64_MAX &&
             isLegalArithImmed(C + 1ULL))) {
          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      }
    }
  }

  // Comparisons are canonicalized so that the RHS operand is simpler than the
  // LHS one, the extreme case being when RHS is an immediate. However, AArch64
  // can fold some shift+extend operations on the RHS operand, so swap the
  // operands if that can be done.
  //
  // For example:
  //    lsl     w13, w11, #1
  //    cmp     w13, w12
  // can be turned into:
  //    cmp     w12, w11, lsl #1
  if (!isa<ConstantSDNode>(RHS) ||
      !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
    SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;

    if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
      std::swap(LHS, RHS);
      CC = ISD::getSetCCSwappedOperands(CC);
    }
  }

  SDValue Cmp;
  AArch64CC::CondCode AArch64CC;
  if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
    const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);

    // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
    // For the i8 operand, the largest immediate is 255, so this can be easily
    // encoded in the compare instruction. For the i16 operand, however, the
    // largest immediate cannot be encoded in the compare.
    // Therefore, use a sign extending load and cmn to avoid materializing the
    // -1 constant. For example,
    // movz w1, #65535
    // ldrh w0, [x0, #0]
    // cmp w0, w1
    // >
    // ldrsh w0, [x0, #0]
    // cmn w0, #1
    // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
    // if and only if (sext LHS) == (sext RHS). The checks are in place to
    // ensure both the LHS and RHS are truly zero extended and to make sure the
    // transformation is profitable.
    if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
        cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
        cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
        LHS.getNode()->hasNUsesOfValue(1, 0)) {
      int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
      if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
        SDValue SExt =
            DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
                        DAG.getValueType(MVT::i16));
        Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
                                                   RHS.getValueType()),
                             CC, dl, DAG);
        AArch64CC = changeIntCCToAArch64CC(CC);
      }
    }

    if (!Cmp && (RHSC->isZero() || RHSC->isOne())) {
      if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
        if ((CC == ISD::SETNE) ^ RHSC->isZero())
          AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
      }
    }
  }

  if (!Cmp) {
    Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
    AArch64CC = changeIntCCToAArch64CC(CC);
  }
  AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
  return Cmp;
}

static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
  assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
         "Unsupported value type");
  SDValue Value, Overflow;
  SDLoc DL(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  unsigned Opc = 0;
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Unknown overflow instruction!");
  case ISD::SADDO:
    Opc = AArch64ISD::ADDS;
    CC = AArch64CC::VS;
    break;
  case ISD::UADDO:
    Opc = AArch64ISD::ADDS;
    CC = AArch64CC::HS;
    break;
  case ISD::SSUBO:
    Opc = AArch64ISD::SUBS;
    CC = AArch64CC::VS;
    break;
  case ISD::USUBO:
    Opc = AArch64ISD::SUBS;
    CC = AArch64CC::LO;
    break;
  // Multiply needs a little bit extra work.
  case ISD::SMULO:
  case ISD::UMULO: {
    CC = AArch64CC::NE;
    bool IsSigned = Op.getOpcode() == ISD::SMULO;
    if (Op.getValueType() == MVT::i32) {
      // Extend to 64-bits, then perform a 64-bit multiply.
      unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
      LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
      RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
      SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
      Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);

      // Check that the result fits into a 32-bit integer.
      SDVTList VTs = DAG.getVTList(MVT::i64, MVT_CC);
      if (IsSigned) {
        // cmp xreg, wreg, sxtw
        SDValue SExtMul = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Value);
        Overflow =
            DAG.getNode(AArch64ISD::SUBS, DL, VTs, Mul, SExtMul).getValue(1);
      } else {
        // tst xreg, #0xffffffff00000000
        SDValue UpperBits = DAG.getConstant(0xFFFFFFFF00000000, DL, MVT::i64);
        Overflow =
            DAG.getNode(AArch64ISD::ANDS, DL, VTs, Mul, UpperBits).getValue(1);
      }
      break;
    }
    assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
    // For the 64 bit multiply
    Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
    if (IsSigned) {
      SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
      SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
                                      DAG.getConstant(63, DL, MVT::i64));
      // It is important that LowerBits is last, otherwise the arithmetic
      // shift will not be folded into the compare (SUBS).
      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
      Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
                     .getValue(1);
    } else {
      SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
      Overflow =
          DAG.getNode(AArch64ISD::SUBS, DL, VTs,
                      DAG.getConstant(0, DL, MVT::i64),
                      UpperBits).getValue(1);
    }
    break;
  }
  } // switch (...)

  if (Opc) {
    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);

    // Emit the AArch64 operation with overflow check.
    Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
    Overflow = Value.getValue(1);
  }
  return std::make_pair(Value, Overflow);
}

SDValue AArch64TargetLowering::LowerXOR(SDValue Op, SelectionDAG &DAG) const {
  if (useSVEForFixedLengthVectorVT(Op.getValueType()))
    return LowerToScalableOp(Op, DAG);

  SDValue Sel = Op.getOperand(0);
  SDValue Other = Op.getOperand(1);
  SDLoc dl(Sel);

  // If the operand is an overflow checking operation, invert the condition
  // code and kill the Not operation. I.e., transform:
  // (xor (overflow_op_bool, 1))
  //   -->
  // (csel 1, 0, invert(cc), overflow_op_bool)
  // ... which later gets transformed to just a cset instruction with an
  // inverted condition code, rather than a cset + eor sequence.
  if (isOneConstant(Other) && ISD::isOverflowIntrOpRes(Sel)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
      return SDValue();

    SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
    SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
    AArch64CC::CondCode CC;
    SDValue Value, Overflow;
    std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
    SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
    return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
                       CCVal, Overflow);
  }
  // If neither operand is a SELECT_CC, give up.
  if (Sel.getOpcode() != ISD::SELECT_CC)
    std::swap(Sel, Other);
  if (Sel.getOpcode() != ISD::SELECT_CC)
    return Op;

  // The folding we want to perform is:
  // (xor x, (select_cc a, b, cc, 0, -1) )
  //   -->
  // (csel x, (xor x, -1), cc ...)
  //
  // The latter will get matched to a CSINV instruction.

  ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
  SDValue LHS = Sel.getOperand(0);
  SDValue RHS = Sel.getOperand(1);
  SDValue TVal = Sel.getOperand(2);
  SDValue FVal = Sel.getOperand(3);

  // FIXME: This could be generalized to non-integer comparisons.
  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
    return Op;

  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);

  // The values aren't constants, this isn't the pattern we're looking for.
  if (!CFVal || !CTVal)
    return Op;

  // We can commute the SELECT_CC by inverting the condition.  This
  // might be needed to make this fit into a CSINV pattern.
  if (CTVal->isAllOnes() && CFVal->isZero()) {
    std::swap(TVal, FVal);
    std::swap(CTVal, CFVal);
    CC = ISD::getSetCCInverse(CC, LHS.getValueType());
  }

  // If the constants line up, perform the transform!
  if (CTVal->isZero() && CFVal->isAllOnes()) {
    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);

    FVal = Other;
    TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
                       DAG.getConstant(-1ULL, dl, Other.getValueType()));

    return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
                       CCVal, Cmp);
  }

  return Op;
}

// If Invert is false, sets 'C' bit of NZCV to 0 if value is 0, else sets 'C'
// bit to 1. If Invert is true, sets 'C' bit of NZCV to 1 if value is 0, else
// sets 'C' bit to 0.
static SDValue valueToCarryFlag(SDValue Value, SelectionDAG &DAG, bool Invert) {
  SDLoc DL(Value);
  EVT VT = Value.getValueType();
  SDValue Op0 = Invert ? DAG.getConstant(0, DL, VT) : Value;
  SDValue Op1 = Invert ? Value : DAG.getConstant(1, DL, VT);
  SDValue Cmp =
      DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::Glue), Op0, Op1);
  return Cmp.getValue(1);
}

// If Invert is false, value is 1 if 'C' bit of NZCV is 1, else 0.
// If Invert is true, value is 0 if 'C' bit of NZCV is 1, else 1.
static SDValue carryFlagToValue(SDValue Flag, EVT VT, SelectionDAG &DAG,
                                bool Invert) {
  assert(Flag.getResNo() == 1);
  SDLoc DL(Flag);
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue One = DAG.getConstant(1, DL, VT);
  unsigned Cond = Invert ? AArch64CC::LO : AArch64CC::HS;
  SDValue CC = DAG.getConstant(Cond, DL, MVT::i32);
  return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Flag);
}

// Value is 1 if 'V' bit of NZCV is 1, else 0
static SDValue overflowFlagToValue(SDValue Flag, EVT VT, SelectionDAG &DAG) {
  assert(Flag.getResNo() == 1);
  SDLoc DL(Flag);
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue One = DAG.getConstant(1, DL, VT);
  SDValue CC = DAG.getConstant(AArch64CC::VS, DL, MVT::i32);
  return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Flag);
}

// This lowering is inefficient, but it will get cleaned up by
// `foldOverflowCheck`
static SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG, unsigned Opcode,
                                bool IsSigned) {
  EVT VT0 = Op.getValue(0).getValueType();
  EVT VT1 = Op.getValue(1).getValueType();

  if (VT0 != MVT::i32 && VT0 != MVT::i64)
    return SDValue();

  bool InvertCarry = Opcode == AArch64ISD::SBCS;
  SDValue OpLHS = Op.getOperand(0);
  SDValue OpRHS = Op.getOperand(1);
  SDValue OpCarryIn = valueToCarryFlag(Op.getOperand(2), DAG, InvertCarry);

  SDLoc DL(Op);
  SDVTList VTs = DAG.getVTList(VT0, VT1);

  SDValue Sum = DAG.getNode(Opcode, DL, DAG.getVTList(VT0, MVT::Glue), OpLHS,
                            OpRHS, OpCarryIn);

  SDValue OutFlag =
      IsSigned ? overflowFlagToValue(Sum.getValue(1), VT1, DAG)
               : carryFlagToValue(Sum.getValue(1), VT1, DAG, InvertCarry);

  return DAG.getNode(ISD::MERGE_VALUES, DL, VTs, Sum, OutFlag);
}

static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
  // Let legalize expand this if it isn't a legal type yet.
  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
    return SDValue();

  SDLoc dl(Op);
  AArch64CC::CondCode CC;
  // The actual operation that sets the overflow or carry flag.
  SDValue Value, Overflow;
  std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);

  // We use 0 and 1 as false and true values.
  SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
  SDValue FVal = DAG.getConstant(0, dl, MVT::i32);

  // We use an inverted condition, because the conditional select is inverted
  // too. This will allow it to be selected to a single instruction:
  // CSINC Wd, WZR, WZR, invert(cond).
  SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
  Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
                         CCVal, Overflow);

  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
  return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}

// Prefetch operands are:
// 1: Address to prefetch
// 2: bool isWrite
// 3: int locality (0 = no locality ... 3 = extreme locality)
// 4: bool isDataCache
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
  unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
  unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();

  bool IsStream = !Locality;
  // When the locality number is set
  if (Locality) {
    // The front-end should have filtered out the out-of-range values
    assert(Locality <= 3 && "Prefetch locality out-of-range");
    // The locality degree is the opposite of the cache speed.
    // Put the number the other way around.
    // The encoding starts at 0 for level 1
    Locality = 3 - Locality;
  }

  // built the mask value encoding the expected behavior.
  unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
                   (!IsData << 3) |     // IsDataCache bit
                   (Locality << 1) |    // Cache level bits
                   (unsigned)IsStream;  // Stream bit
  return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
                     DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
}

SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
                                              SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  if (VT.isScalableVector())
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_EXTEND_MERGE_PASSTHRU);

  if (useSVEForFixedLengthVectorVT(VT))
    return LowerFixedLengthFPExtendToSVE(Op, DAG);

  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
  return SDValue();
}

SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
                                             SelectionDAG &DAG) const {
  if (Op.getValueType().isScalableVector())
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_ROUND_MERGE_PASSTHRU);

  bool IsStrict = Op->isStrictFPOpcode();
  SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
  EVT SrcVT = SrcVal.getValueType();

  if (useSVEForFixedLengthVectorVT(SrcVT))
    return LowerFixedLengthFPRoundToSVE(Op, DAG);

  if (SrcVT != MVT::f128) {
    // Expand cases where the input is a vector bigger than NEON.
    if (useSVEForFixedLengthVectorVT(SrcVT))
      return SDValue();

    // It's legal except when f128 is involved
    return Op;
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
                                                    SelectionDAG &DAG) const {
  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
  // Any additional optimization in this function should be recorded
  // in the cost tables.
  bool IsStrict = Op->isStrictFPOpcode();
  EVT InVT = Op.getOperand(IsStrict ? 1 : 0).getValueType();
  EVT VT = Op.getValueType();

  if (VT.isScalableVector()) {
    unsigned Opcode = Op.getOpcode() == ISD::FP_TO_UINT
                          ? AArch64ISD::FCVTZU_MERGE_PASSTHRU
                          : AArch64ISD::FCVTZS_MERGE_PASSTHRU;
    return LowerToPredicatedOp(Op, DAG, Opcode);
  }

  if (useSVEForFixedLengthVectorVT(VT) || useSVEForFixedLengthVectorVT(InVT))
    return LowerFixedLengthFPToIntToSVE(Op, DAG);

  unsigned NumElts = InVT.getVectorNumElements();

  // f16 conversions are promoted to f32 when full fp16 is not supported.
  if (InVT.getVectorElementType() == MVT::f16 &&
      !Subtarget->hasFullFP16()) {
    MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
    SDLoc dl(Op);
    if (IsStrict) {
      SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NewVT, MVT::Other},
                                {Op.getOperand(0), Op.getOperand(1)});
      return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other},
                         {Ext.getValue(1), Ext.getValue(0)});
    }
    return DAG.getNode(
        Op.getOpcode(), dl, Op.getValueType(),
        DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
  }

  uint64_t VTSize = VT.getFixedSizeInBits();
  uint64_t InVTSize = InVT.getFixedSizeInBits();
  if (VTSize < InVTSize) {
    SDLoc dl(Op);
    if (IsStrict) {
      InVT = InVT.changeVectorElementTypeToInteger();
      SDValue Cv = DAG.getNode(Op.getOpcode(), dl, {InVT, MVT::Other},
                               {Op.getOperand(0), Op.getOperand(1)});
      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
      return DAG.getMergeValues({Trunc, Cv.getValue(1)}, dl);
    }
    SDValue Cv =
        DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
                    Op.getOperand(0));
    return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
  }

  if (VTSize > InVTSize) {
    SDLoc dl(Op);
    MVT ExtVT =
        MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
                         VT.getVectorNumElements());
    if (IsStrict) {
      SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {ExtVT, MVT::Other},
                                {Op.getOperand(0), Op.getOperand(1)});
      return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other},
                         {Ext.getValue(1), Ext.getValue(0)});
    }
    SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
    return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
  }

  // Use a scalar operation for conversions between single-element vectors of
  // the same size.
  if (NumElts == 1) {
    SDLoc dl(Op);
    SDValue Extract = DAG.getNode(
        ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(),
        Op.getOperand(IsStrict ? 1 : 0), DAG.getConstant(0, dl, MVT::i64));
    EVT ScalarVT = VT.getScalarType();
    if (IsStrict)
      return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other},
                         {Op.getOperand(0), Extract});
    return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract);
  }

  // Type changing conversions are illegal.
  return Op;
}

SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
                                              SelectionDAG &DAG) const {
  bool IsStrict = Op->isStrictFPOpcode();
  SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);

  if (SrcVal.getValueType().isVector())
    return LowerVectorFP_TO_INT(Op, DAG);

  // f16 conversions are promoted to f32 when full fp16 is not supported.
  if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
    SDLoc dl(Op);
    if (IsStrict) {
      SDValue Ext =
          DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other},
                      {Op.getOperand(0), SrcVal});
      return DAG.getNode(Op.getOpcode(), dl, {Op.getValueType(), MVT::Other},
                         {Ext.getValue(1), Ext.getValue(0)});
    }
    return DAG.getNode(
        Op.getOpcode(), dl, Op.getValueType(),
        DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal));
  }

  if (SrcVal.getValueType() != MVT::f128) {
    // It's legal except when f128 is involved
    return Op;
  }

  return SDValue();
}

SDValue
AArch64TargetLowering::LowerVectorFP_TO_INT_SAT(SDValue Op,
                                                SelectionDAG &DAG) const {
  // AArch64 FP-to-int conversions saturate to the destination element size, so
  // we can lower common saturating conversions to simple instructions.
  SDValue SrcVal = Op.getOperand(0);
  EVT SrcVT = SrcVal.getValueType();
  EVT DstVT = Op.getValueType();
  EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();

  uint64_t SrcElementWidth = SrcVT.getScalarSizeInBits();
  uint64_t DstElementWidth = DstVT.getScalarSizeInBits();
  uint64_t SatWidth = SatVT.getScalarSizeInBits();
  assert(SatWidth <= DstElementWidth &&
         "Saturation width cannot exceed result width");

  // TODO: Consider lowering to SVE operations, as in LowerVectorFP_TO_INT.
  // Currently, the `llvm.fpto[su]i.sat.*` intrinsics don't accept scalable
  // types, so this is hard to reach.
  if (DstVT.isScalableVector())
    return SDValue();

  EVT SrcElementVT = SrcVT.getVectorElementType();

  // In the absence of FP16 support, promote f16 to f32 and saturate the result.
  if (SrcElementVT == MVT::f16 &&
      (!Subtarget->hasFullFP16() || DstElementWidth > 16)) {
    MVT F32VT = MVT::getVectorVT(MVT::f32, SrcVT.getVectorNumElements());
    SrcVal = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), F32VT, SrcVal);
    SrcVT = F32VT;
    SrcElementVT = MVT::f32;
    SrcElementWidth = 32;
  } else if (SrcElementVT != MVT::f64 && SrcElementVT != MVT::f32 &&
             SrcElementVT != MVT::f16)
    return SDValue();

  SDLoc DL(Op);
  // Cases that we can emit directly.
  if (SrcElementWidth == DstElementWidth && SrcElementWidth == SatWidth)
    return DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal,
                       DAG.getValueType(DstVT.getScalarType()));

  // Otherwise we emit a cvt that saturates to a higher BW, and saturate the
  // result. This is only valid if the legal cvt is larger than the saturate
  // width. For double, as we don't have MIN/MAX, it can be simpler to scalarize
  // (at least until sqxtn is selected).
  if (SrcElementWidth < SatWidth || SrcElementVT == MVT::f64)
    return SDValue();

  EVT IntVT = SrcVT.changeVectorElementTypeToInteger();
  SDValue NativeCvt = DAG.getNode(Op.getOpcode(), DL, IntVT, SrcVal,
                                  DAG.getValueType(IntVT.getScalarType()));
  SDValue Sat;
  if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) {
    SDValue MinC = DAG.getConstant(
        APInt::getSignedMaxValue(SatWidth).sext(SrcElementWidth), DL, IntVT);
    SDValue Min = DAG.getNode(ISD::SMIN, DL, IntVT, NativeCvt, MinC);
    SDValue MaxC = DAG.getConstant(
        APInt::getSignedMinValue(SatWidth).sext(SrcElementWidth), DL, IntVT);
    Sat = DAG.getNode(ISD::SMAX, DL, IntVT, Min, MaxC);
  } else {
    SDValue MinC = DAG.getConstant(
        APInt::getAllOnesValue(SatWidth).zext(SrcElementWidth), DL, IntVT);
    Sat = DAG.getNode(ISD::UMIN, DL, IntVT, NativeCvt, MinC);
  }

  return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat);
}

SDValue AArch64TargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
                                                  SelectionDAG &DAG) const {
  // AArch64 FP-to-int conversions saturate to the destination register size, so
  // we can lower common saturating conversions to simple instructions.
  SDValue SrcVal = Op.getOperand(0);
  EVT SrcVT = SrcVal.getValueType();

  if (SrcVT.isVector())
    return LowerVectorFP_TO_INT_SAT(Op, DAG);

  EVT DstVT = Op.getValueType();
  EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
  uint64_t SatWidth = SatVT.getScalarSizeInBits();
  uint64_t DstWidth = DstVT.getScalarSizeInBits();
  assert(SatWidth <= DstWidth && "Saturation width cannot exceed result width");

  // In the absence of FP16 support, promote f16 to f32 and saturate the result.
  if (SrcVT == MVT::f16 && !Subtarget->hasFullFP16()) {
    SrcVal = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, SrcVal);
    SrcVT = MVT::f32;
  } else if (SrcVT != MVT::f64 && SrcVT != MVT::f32 && SrcVT != MVT::f16)
    return SDValue();

  SDLoc DL(Op);
  // Cases that we can emit directly.
  if ((SrcVT == MVT::f64 || SrcVT == MVT::f32 ||
       (SrcVT == MVT::f16 && Subtarget->hasFullFP16())) &&
      DstVT == SatVT && (DstVT == MVT::i64 || DstVT == MVT::i32))
    return DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal,
                       DAG.getValueType(DstVT));

  // Otherwise we emit a cvt that saturates to a higher BW, and saturate the
  // result. This is only valid if the legal cvt is larger than the saturate
  // width.
  if (DstWidth < SatWidth)
    return SDValue();

  SDValue NativeCvt =
      DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, DAG.getValueType(DstVT));
  SDValue Sat;
  if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) {
    SDValue MinC = DAG.getConstant(
        APInt::getSignedMaxValue(SatWidth).sext(DstWidth), DL, DstVT);
    SDValue Min = DAG.getNode(ISD::SMIN, DL, DstVT, NativeCvt, MinC);
    SDValue MaxC = DAG.getConstant(
        APInt::getSignedMinValue(SatWidth).sext(DstWidth), DL, DstVT);
    Sat = DAG.getNode(ISD::SMAX, DL, DstVT, Min, MaxC);
  } else {
    SDValue MinC = DAG.getConstant(
        APInt::getAllOnesValue(SatWidth).zext(DstWidth), DL, DstVT);
    Sat = DAG.getNode(ISD::UMIN, DL, DstVT, NativeCvt, MinC);
  }

  return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat);
}

SDValue AArch64TargetLowering::LowerVectorINT_TO_FP(SDValue Op,
                                                    SelectionDAG &DAG) const {
  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
  // Any additional optimization in this function should be recorded
  // in the cost tables.
  bool IsStrict = Op->isStrictFPOpcode();
  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  SDValue In = Op.getOperand(IsStrict ? 1 : 0);
  EVT InVT = In.getValueType();
  unsigned Opc = Op.getOpcode();
  bool IsSigned = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;

  if (VT.isScalableVector()) {
    if (InVT.getVectorElementType() == MVT::i1) {
      // We can't directly extend an SVE predicate; extend it first.
      unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
      EVT CastVT = getPromotedVTForPredicate(InVT);
      In = DAG.getNode(CastOpc, dl, CastVT, In);
      return DAG.getNode(Opc, dl, VT, In);
    }

    unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU
                               : AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU;
    return LowerToPredicatedOp(Op, DAG, Opcode);
  }

  if (useSVEForFixedLengthVectorVT(VT) || useSVEForFixedLengthVectorVT(InVT))
    return LowerFixedLengthIntToFPToSVE(Op, DAG);

  uint64_t VTSize = VT.getFixedSizeInBits();
  uint64_t InVTSize = InVT.getFixedSizeInBits();
  if (VTSize < InVTSize) {
    MVT CastVT =
        MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
                         InVT.getVectorNumElements());
    if (IsStrict) {
      In = DAG.getNode(Opc, dl, {CastVT, MVT::Other},
                       {Op.getOperand(0), In});
      return DAG.getNode(
          ISD::STRICT_FP_ROUND, dl, {VT, MVT::Other},
          {In.getValue(1), In.getValue(0), DAG.getIntPtrConstant(0, dl)});
    }
    In = DAG.getNode(Opc, dl, CastVT, In);
    return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
  }

  if (VTSize > InVTSize) {
    unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    EVT CastVT = VT.changeVectorElementTypeToInteger();
    In = DAG.getNode(CastOpc, dl, CastVT, In);
    if (IsStrict)
      return DAG.getNode(Opc, dl, {VT, MVT::Other}, {Op.getOperand(0), In});
    return DAG.getNode(Opc, dl, VT, In);
  }

  // Use a scalar operation for conversions between single-element vectors of
  // the same size.
  if (VT.getVectorNumElements() == 1) {
    SDValue Extract = DAG.getNode(
        ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(),
        In, DAG.getConstant(0, dl, MVT::i64));
    EVT ScalarVT = VT.getScalarType();
    if (IsStrict)
      return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other},
                         {Op.getOperand(0), Extract});
    return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract);
  }

  return Op;
}

SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
                                            SelectionDAG &DAG) const {
  if (Op.getValueType().isVector())
    return LowerVectorINT_TO_FP(Op, DAG);

  bool IsStrict = Op->isStrictFPOpcode();
  SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);

  // f16 conversions are promoted to f32 when full fp16 is not supported.
  if (Op.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
    SDLoc dl(Op);
    if (IsStrict) {
      SDValue Val = DAG.getNode(Op.getOpcode(), dl, {MVT::f32, MVT::Other},
                                {Op.getOperand(0), SrcVal});
      return DAG.getNode(
          ISD::STRICT_FP_ROUND, dl, {MVT::f16, MVT::Other},
          {Val.getValue(1), Val.getValue(0), DAG.getIntPtrConstant(0, dl)});
    }
    return DAG.getNode(
        ISD::FP_ROUND, dl, MVT::f16,
        DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal),
        DAG.getIntPtrConstant(0, dl));
  }

  // i128 conversions are libcalls.
  if (SrcVal.getValueType() == MVT::i128)
    return SDValue();

  // Other conversions are legal, unless it's to the completely software-based
  // fp128.
  if (Op.getValueType() != MVT::f128)
    return Op;
  return SDValue();
}

SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
                                            SelectionDAG &DAG) const {
  // For iOS, we want to call an alternative entry point: __sincos_stret,
  // which returns the values in two S / D registers.
  SDLoc dl(Op);
  SDValue Arg = Op.getOperand(0);
  EVT ArgVT = Arg.getValueType();
  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());

  ArgListTy Args;
  ArgListEntry Entry;

  Entry.Node = Arg;
  Entry.Ty = ArgTy;
  Entry.IsSExt = false;
  Entry.IsZExt = false;
  Args.push_back(Entry);

  RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
                                        : RTLIB::SINCOS_STRET_F32;
  const char *LibcallName = getLibcallName(LC);
  SDValue Callee =
      DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));

  StructType *RetTy = StructType::get(ArgTy, ArgTy);
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl)
      .setChain(DAG.getEntryNode())
      .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));

  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
  return CallResult.first;
}

static MVT getSVEContainerType(EVT ContentTy);

SDValue AArch64TargetLowering::LowerBITCAST(SDValue Op,
                                            SelectionDAG &DAG) const {
  EVT OpVT = Op.getValueType();
  EVT ArgVT = Op.getOperand(0).getValueType();

  if (useSVEForFixedLengthVectorVT(OpVT))
    return LowerFixedLengthBitcastToSVE(Op, DAG);

  if (OpVT.isScalableVector()) {
    // Bitcasting between unpacked vector types of different element counts is
    // not a NOP because the live elements are laid out differently.
    //                01234567
    // e.g. nxv2i32 = XX??XX??
    //      nxv4f16 = X?X?X?X?
    if (OpVT.getVectorElementCount() != ArgVT.getVectorElementCount())
      return SDValue();

    if (isTypeLegal(OpVT) && !isTypeLegal(ArgVT)) {
      assert(OpVT.isFloatingPoint() && !ArgVT.isFloatingPoint() &&
             "Expected int->fp bitcast!");
      SDValue ExtResult =
          DAG.getNode(ISD::ANY_EXTEND, SDLoc(Op), getSVEContainerType(ArgVT),
                      Op.getOperand(0));
      return getSVESafeBitCast(OpVT, ExtResult, DAG);
    }
    return getSVESafeBitCast(OpVT, Op.getOperand(0), DAG);
  }

  if (OpVT != MVT::f16 && OpVT != MVT::bf16)
    return SDValue();

  // Bitcasts between f16 and bf16 are legal.
  if (ArgVT == MVT::f16 || ArgVT == MVT::bf16)
    return Op;

  assert(ArgVT == MVT::i16);
  SDLoc DL(Op);

  Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
  Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
  return SDValue(
      DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, OpVT, Op,
                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
      0);
}

static EVT getExtensionTo64Bits(const EVT &OrigVT) {
  if (OrigVT.getSizeInBits() >= 64)
    return OrigVT;

  assert(OrigVT.isSimple() && "Expecting a simple value type");

  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
  switch (OrigSimpleTy) {
  default: llvm_unreachable("Unexpected Vector Type");
  case MVT::v2i8:
  case MVT::v2i16:
     return MVT::v2i32;
  case MVT::v4i8:
    return  MVT::v4i16;
  }
}

static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
                                                 const EVT &OrigTy,
                                                 const EVT &ExtTy,
                                                 unsigned ExtOpcode) {
  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
  // 64-bits we need to insert a new extension so that it will be 64-bits.
  assert(ExtTy.is128BitVector() && "Unexpected extension size");
  if (OrigTy.getSizeInBits() >= 64)
    return N;

  // Must extend size to at least 64 bits to be used as an operand for VMULL.
  EVT NewVT = getExtensionTo64Bits(OrigTy);

  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}

static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
                                   bool isSigned) {
  EVT VT = N->getValueType(0);

  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;

  for (const SDValue &Elt : N->op_values()) {
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
      unsigned EltSize = VT.getScalarSizeInBits();
      unsigned HalfSize = EltSize / 2;
      if (isSigned) {
        if (!isIntN(HalfSize, C->getSExtValue()))
          return false;
      } else {
        if (!isUIntN(HalfSize, C->getZExtValue()))
          return false;
      }
      continue;
    }
    return false;
  }

  return true;
}

static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
  if (N->getOpcode() == ISD::SIGN_EXTEND ||
      N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
    return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
                                             N->getOperand(0)->getValueType(0),
                                             N->getValueType(0),
                                             N->getOpcode());

  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
  EVT VT = N->getValueType(0);
  SDLoc dl(N);
  unsigned EltSize = VT.getScalarSizeInBits() / 2;
  unsigned NumElts = VT.getVectorNumElements();
  MVT TruncVT = MVT::getIntegerVT(EltSize);
  SmallVector<SDValue, 8> Ops;
  for (unsigned i = 0; i != NumElts; ++i) {
    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
    const APInt &CInt = C->getAPIntValue();
    // Element types smaller than 32 bits are not legal, so use i32 elements.
    // The values are implicitly truncated so sext vs. zext doesn't matter.
    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
  }
  return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
}

static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
  return N->getOpcode() == ISD::SIGN_EXTEND ||
         N->getOpcode() == ISD::ANY_EXTEND ||
         isExtendedBUILD_VECTOR(N, DAG, true);
}

static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
  return N->getOpcode() == ISD::ZERO_EXTEND ||
         N->getOpcode() == ISD::ANY_EXTEND ||
         isExtendedBUILD_VECTOR(N, DAG, false);
}

static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
  unsigned Opcode = N->getOpcode();
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
    SDNode *N0 = N->getOperand(0).getNode();
    SDNode *N1 = N->getOperand(1).getNode();
    return N0->hasOneUse() && N1->hasOneUse() &&
      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
  }
  return false;
}

static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
  unsigned Opcode = N->getOpcode();
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
    SDNode *N0 = N->getOperand(0).getNode();
    SDNode *N1 = N->getOperand(1).getNode();
    return N0->hasOneUse() && N1->hasOneUse() &&
      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
  }
  return false;
}

SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
                                                SelectionDAG &DAG) const {
  // The rounding mode is in bits 23:22 of the FPSCR.
  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
  // so that the shift + and get folded into a bitfield extract.
  SDLoc dl(Op);

  SDValue Chain = Op.getOperand(0);
  SDValue FPCR_64 = DAG.getNode(
      ISD::INTRINSIC_W_CHAIN, dl, {MVT::i64, MVT::Other},
      {Chain, DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, MVT::i64)});
  Chain = FPCR_64.getValue(1);
  SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
                                  DAG.getConstant(1U << 22, dl, MVT::i32));
  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
                              DAG.getConstant(22, dl, MVT::i32));
  SDValue AND = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
                            DAG.getConstant(3, dl, MVT::i32));
  return DAG.getMergeValues({AND, Chain}, dl);
}

SDValue AArch64TargetLowering::LowerSET_ROUNDING(SDValue Op,
                                                 SelectionDAG &DAG) const {
  SDLoc DL(Op);
  SDValue Chain = Op->getOperand(0);
  SDValue RMValue = Op->getOperand(1);

  // The rounding mode is in bits 23:22 of the FPCR.
  // The llvm.set.rounding argument value to the rounding mode in FPCR mapping
  // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
  // ((arg - 1) & 3) << 22).
  //
  // The argument of llvm.set.rounding must be within the segment [0, 3], so
  // NearestTiesToAway (4) is not handled here. It is responsibility of the code
  // generated llvm.set.rounding to ensure this condition.

  // Calculate new value of FPCR[23:22].
  RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
                        DAG.getConstant(1, DL, MVT::i32));
  RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
                        DAG.getConstant(0x3, DL, MVT::i32));
  RMValue =
      DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
                  DAG.getConstant(AArch64::RoundingBitsPos, DL, MVT::i32));
  RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, RMValue);

  // Get current value of FPCR.
  SDValue Ops[] = {
      Chain, DAG.getTargetConstant(Intrinsic::aarch64_get_fpcr, DL, MVT::i64)};
  SDValue FPCR =
      DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i64, MVT::Other}, Ops);
  Chain = FPCR.getValue(1);
  FPCR = FPCR.getValue(0);

  // Put new rounding mode into FPSCR[23:22].
  const int RMMask = ~(AArch64::Rounding::rmMask << AArch64::RoundingBitsPos);
  FPCR = DAG.getNode(ISD::AND, DL, MVT::i64, FPCR,
                     DAG.getConstant(RMMask, DL, MVT::i64));
  FPCR = DAG.getNode(ISD::OR, DL, MVT::i64, FPCR, RMValue);
  SDValue Ops2[] = {
      Chain, DAG.getTargetConstant(Intrinsic::aarch64_set_fpcr, DL, MVT::i64),
      FPCR};
  return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
}

SDValue AArch64TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  // If SVE is available then i64 vector multiplications can also be made legal.
  bool OverrideNEON = VT == MVT::v2i64 || VT == MVT::v1i64;

  if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, OverrideNEON))
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED);

  // Multiplications are only custom-lowered for 128-bit vectors so that
  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
  assert(VT.is128BitVector() && VT.isInteger() &&
         "unexpected type for custom-lowering ISD::MUL");
  SDNode *N0 = Op.getOperand(0).getNode();
  SDNode *N1 = Op.getOperand(1).getNode();
  unsigned NewOpc = 0;
  bool isMLA = false;
  bool isN0SExt = isSignExtended(N0, DAG);
  bool isN1SExt = isSignExtended(N1, DAG);
  if (isN0SExt && isN1SExt)
    NewOpc = AArch64ISD::SMULL;
  else {
    bool isN0ZExt = isZeroExtended(N0, DAG);
    bool isN1ZExt = isZeroExtended(N1, DAG);
    if (isN0ZExt && isN1ZExt)
      NewOpc = AArch64ISD::UMULL;
    else if (isN1SExt || isN1ZExt) {
      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
      if (isN1SExt && isAddSubSExt(N0, DAG)) {
        NewOpc = AArch64ISD::SMULL;
        isMLA = true;
      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
        NewOpc =  AArch64ISD::UMULL;
        isMLA = true;
      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
        std::swap(N0, N1);
        NewOpc =  AArch64ISD::UMULL;
        isMLA = true;
      }
    }

    if (!NewOpc) {
      if (VT == MVT::v2i64)
        // Fall through to expand this.  It is not legal.
        return SDValue();
      else
        // Other vector multiplications are legal.
        return Op;
    }
  }

  // Legalize to a S/UMULL instruction
  SDLoc DL(Op);
  SDValue Op0;
  SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
  if (!isMLA) {
    Op0 = skipExtensionForVectorMULL(N0, DAG);
    assert(Op0.getValueType().is64BitVector() &&
           Op1.getValueType().is64BitVector() &&
           "unexpected types for extended operands to VMULL");
    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
  }
  // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
  // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
  // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
  SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
  SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
  EVT Op1VT = Op1.getValueType();
  return DAG.getNode(N0->getOpcode(), DL, VT,
                     DAG.getNode(NewOpc, DL, VT,
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
                     DAG.getNode(NewOpc, DL, VT,
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
}

static inline SDValue getPTrue(SelectionDAG &DAG, SDLoc DL, EVT VT,
                               int Pattern) {
  if (VT == MVT::nxv1i1 && Pattern == AArch64SVEPredPattern::all)
    return DAG.getConstant(1, DL, MVT::nxv1i1);
  return DAG.getNode(AArch64ISD::PTRUE, DL, VT,
                     DAG.getTargetConstant(Pattern, DL, MVT::i32));
}

// Returns a safe bitcast between two scalable vector predicates, where
// any newly created lanes from a widening bitcast are defined as zero.
static SDValue getSVEPredicateBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  EVT InVT = Op.getValueType();

  assert(InVT.getVectorElementType() == MVT::i1 &&
         VT.getVectorElementType() == MVT::i1 &&
         "Expected a predicate-to-predicate bitcast");
  assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
         InVT.isScalableVector() &&
         DAG.getTargetLoweringInfo().isTypeLegal(InVT) &&
         "Only expect to cast between legal scalable predicate types!");

  // Return the operand if the cast isn't changing type,
  // e.g. <n x 16 x i1> -> <n x 16 x i1>
  if (InVT == VT)
    return Op;

  SDValue Reinterpret = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op);

  // We only have to zero the lanes if new lanes are being defined, e.g. when
  // casting from <vscale x 2 x i1> to <vscale x 16 x i1>. If this is not the
  // case (e.g. when casting from <vscale x 16 x i1> -> <vscale x 2 x i1>) then
  // we can return here.
  if (InVT.bitsGT(VT))
    return Reinterpret;

  // Check if the other lanes are already known to be zeroed by
  // construction.
  if (isZeroingInactiveLanes(Op))
    return Reinterpret;

  // Zero the newly introduced lanes.
  SDValue Mask = DAG.getConstant(1, DL, InVT);
  Mask = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Mask);
  return DAG.getNode(ISD::AND, DL, VT, Reinterpret, Mask);
}

SDValue AArch64TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
                                                      SelectionDAG &DAG) const {
  unsigned IntNo = Op.getConstantOperandVal(1);
  SDLoc DL(Op);
  switch (IntNo) {
  default:
    return SDValue(); // Don't custom lower most intrinsics.
  case Intrinsic::aarch64_mops_memset_tag: {
    auto Node = cast<MemIntrinsicSDNode>(Op.getNode());
    SDValue Chain = Node->getChain();
    SDValue Dst = Op.getOperand(2);
    SDValue Val = Op.getOperand(3);
    Val = DAG.getAnyExtOrTrunc(Val, DL, MVT::i64);
    SDValue Size = Op.getOperand(4);
    auto Alignment = Node->getMemOperand()->getAlign();
    bool IsVol = Node->isVolatile();
    auto DstPtrInfo = Node->getPointerInfo();

    const auto &SDI =
        static_cast<const AArch64SelectionDAGInfo &>(DAG.getSelectionDAGInfo());
    SDValue MS =
        SDI.EmitMOPS(AArch64ISD::MOPS_MEMSET_TAGGING, DAG, DL, Chain, Dst, Val,
                     Size, Alignment, IsVol, DstPtrInfo, MachinePointerInfo{});

    // MOPS_MEMSET_TAGGING has 3 results (DstWb, SizeWb, Chain) whereas the
    // intrinsic has 2. So hide SizeWb using MERGE_VALUES. Otherwise
    // LowerOperationWrapper will complain that the number of results has
    // changed.
    return DAG.getMergeValues({MS.getValue(0), MS.getValue(2)}, DL);
  }
  case Intrinsic::aarch64_sme_get_pstatesm: {
    SDValue Chain = Op.getOperand(0);
    SDValue MRS = DAG.getNode(
        AArch64ISD::MRS, DL, DAG.getVTList(MVT::i64, MVT::Glue, MVT::Other),
        Chain, DAG.getConstant(AArch64SysReg::SVCR, DL, MVT::i64));
    SDValue Mask = DAG.getConstant(/* PSTATE.SM */ 1, DL, MVT::i64);
    SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, MRS, Mask);
    return DAG.getMergeValues({And, Chain}, DL);
  }
  }
}

SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
                                                     SelectionDAG &DAG) const {
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDLoc dl(Op);
  switch (IntNo) {
  default: return SDValue();    // Don't custom lower most intrinsics.
  case Intrinsic::thread_pointer: {
    EVT PtrVT = getPointerTy(DAG.getDataLayout());
    return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
  }
  case Intrinsic::aarch64_neon_abs: {
    EVT Ty = Op.getValueType();
    if (Ty == MVT::i64) {
      SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
                                   Op.getOperand(1));
      Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
      return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
    } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
      return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
    } else {
      report_fatal_error("Unexpected type for AArch64 NEON intrinic");
    }
  }
  case Intrinsic::aarch64_neon_smax:
    return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_neon_umax:
    return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_neon_smin:
    return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_neon_umin:
    return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));

  case Intrinsic::aarch64_sve_sunpkhi:
    return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_sunpklo:
    return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_uunpkhi:
    return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_uunpklo:
    return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_clasta_n:
    return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::aarch64_sve_clastb_n:
    return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::aarch64_sve_lasta:
    return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_lastb:
    return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_rev:
    return DAG.getNode(ISD::VECTOR_REVERSE, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_tbl:
    return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_trn1:
    return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_trn2:
    return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_uzp1:
    return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_uzp2:
    return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_zip1:
    return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_zip2:
    return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_splice:
    return DAG.getNode(AArch64ISD::SPLICE, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::aarch64_sve_ptrue:
    return getPTrue(DAG, dl, Op.getValueType(),
                    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
  case Intrinsic::aarch64_sve_clz:
    return DAG.getNode(AArch64ISD::CTLZ_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sme_cntsb:
    return DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(),
                       DAG.getConstant(1, dl, MVT::i32));
  case Intrinsic::aarch64_sme_cntsh: {
    SDValue One = DAG.getConstant(1, dl, MVT::i32);
    SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), One);
    return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, One);
  }
  case Intrinsic::aarch64_sme_cntsw: {
    SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(),
                                DAG.getConstant(1, dl, MVT::i32));
    return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes,
                       DAG.getConstant(2, dl, MVT::i32));
  }
  case Intrinsic::aarch64_sme_cntsd: {
    SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(),
                                DAG.getConstant(1, dl, MVT::i32));
    return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes,
                       DAG.getConstant(3, dl, MVT::i32));
  }
  case Intrinsic::aarch64_sve_cnt: {
    SDValue Data = Op.getOperand(3);
    // CTPOP only supports integer operands.
    if (Data.getValueType().isFloatingPoint())
      Data = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Data);
    return DAG.getNode(AArch64ISD::CTPOP_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Data, Op.getOperand(1));
  }
  case Intrinsic::aarch64_sve_dupq_lane:
    return LowerDUPQLane(Op, DAG);
  case Intrinsic::aarch64_sve_convert_from_svbool:
    return getSVEPredicateBitCast(Op.getValueType(), Op.getOperand(1), DAG);
  case Intrinsic::aarch64_sve_convert_to_svbool:
    return getSVEPredicateBitCast(MVT::nxv16i1, Op.getOperand(1), DAG);
  case Intrinsic::aarch64_sve_fneg:
    return DAG.getNode(AArch64ISD::FNEG_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frintp:
    return DAG.getNode(AArch64ISD::FCEIL_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frintm:
    return DAG.getNode(AArch64ISD::FFLOOR_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frinti:
    return DAG.getNode(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frintx:
    return DAG.getNode(AArch64ISD::FRINT_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frinta:
    return DAG.getNode(AArch64ISD::FROUND_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frintn:
    return DAG.getNode(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frintz:
    return DAG.getNode(AArch64ISD::FTRUNC_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_ucvtf:
    return DAG.getNode(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU, dl,
                       Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_scvtf:
    return DAG.getNode(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU, dl,
                       Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_fcvtzu:
    return DAG.getNode(AArch64ISD::FCVTZU_MERGE_PASSTHRU, dl,
                       Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_fcvtzs:
    return DAG.getNode(AArch64ISD::FCVTZS_MERGE_PASSTHRU, dl,
                       Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_fsqrt:
    return DAG.getNode(AArch64ISD::FSQRT_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frecpx:
    return DAG.getNode(AArch64ISD::FRECPX_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_frecpe_x:
    return DAG.getNode(AArch64ISD::FRECPE, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_frecps_x:
    return DAG.getNode(AArch64ISD::FRECPS, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_frsqrte_x:
    return DAG.getNode(AArch64ISD::FRSQRTE, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_frsqrts_x:
    return DAG.getNode(AArch64ISD::FRSQRTS, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_fabs:
    return DAG.getNode(AArch64ISD::FABS_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_abs:
    return DAG.getNode(AArch64ISD::ABS_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_neg:
    return DAG.getNode(AArch64ISD::NEG_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_insr: {
    SDValue Scalar = Op.getOperand(2);
    EVT ScalarTy = Scalar.getValueType();
    if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
      Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);

    return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(),
                       Op.getOperand(1), Scalar);
  }
  case Intrinsic::aarch64_sve_rbit:
    return DAG.getNode(AArch64ISD::BITREVERSE_MERGE_PASSTHRU, dl,
                       Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_revb:
    return DAG.getNode(AArch64ISD::BSWAP_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_revh:
    return DAG.getNode(AArch64ISD::REVH_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_revw:
    return DAG.getNode(AArch64ISD::REVW_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_revd:
    return DAG.getNode(AArch64ISD::REVD_MERGE_PASSTHRU, dl, Op.getValueType(),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
  case Intrinsic::aarch64_sve_sxtb:
    return DAG.getNode(
        AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
        Op.getOperand(2), Op.getOperand(3),
        DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)),
        Op.getOperand(1));
  case Intrinsic::aarch64_sve_sxth:
    return DAG.getNode(
        AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
        Op.getOperand(2), Op.getOperand(3),
        DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)),
        Op.getOperand(1));
  case Intrinsic::aarch64_sve_sxtw:
    return DAG.getNode(
        AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
        Op.getOperand(2), Op.getOperand(3),
        DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)),
        Op.getOperand(1));
  case Intrinsic::aarch64_sve_uxtb:
    return DAG.getNode(
        AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
        Op.getOperand(2), Op.getOperand(3),
        DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)),
        Op.getOperand(1));
  case Intrinsic::aarch64_sve_uxth:
    return DAG.getNode(
        AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
        Op.getOperand(2), Op.getOperand(3),
        DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)),
        Op.getOperand(1));
  case Intrinsic::aarch64_sve_uxtw:
    return DAG.getNode(
        AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
        Op.getOperand(2), Op.getOperand(3),
        DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)),
        Op.getOperand(1));
  case Intrinsic::localaddress: {
    const auto &MF = DAG.getMachineFunction();
    const auto *RegInfo = Subtarget->getRegisterInfo();
    unsigned Reg = RegInfo->getLocalAddressRegister(MF);
    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
                              Op.getSimpleValueType());
  }

  case Intrinsic::eh_recoverfp: {
    // FIXME: This needs to be implemented to correctly handle highly aligned
    // stack objects. For now we simply return the incoming FP. Refer D53541
    // for more details.
    SDValue FnOp = Op.getOperand(1);
    SDValue IncomingFPOp = Op.getOperand(2);
    GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
    auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
    if (!Fn)
      report_fatal_error(
          "llvm.eh.recoverfp must take a function as the first argument");
    return IncomingFPOp;
  }

  case Intrinsic::aarch64_neon_vsri:
  case Intrinsic::aarch64_neon_vsli: {
    EVT Ty = Op.getValueType();

    if (!Ty.isVector())
      report_fatal_error("Unexpected type for aarch64_neon_vsli");

    assert(Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits());

    bool IsShiftRight = IntNo == Intrinsic::aarch64_neon_vsri;
    unsigned Opcode = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI;
    return DAG.getNode(Opcode, dl, Ty, Op.getOperand(1), Op.getOperand(2),
                       Op.getOperand(3));
  }

  case Intrinsic::aarch64_neon_srhadd:
  case Intrinsic::aarch64_neon_urhadd:
  case Intrinsic::aarch64_neon_shadd:
  case Intrinsic::aarch64_neon_uhadd: {
    bool IsSignedAdd = (IntNo == Intrinsic::aarch64_neon_srhadd ||
                        IntNo == Intrinsic::aarch64_neon_shadd);
    bool IsRoundingAdd = (IntNo == Intrinsic::aarch64_neon_srhadd ||
                          IntNo == Intrinsic::aarch64_neon_urhadd);
    unsigned Opcode = IsSignedAdd
                          ? (IsRoundingAdd ? ISD::AVGCEILS : ISD::AVGFLOORS)
                          : (IsRoundingAdd ? ISD::AVGCEILU : ISD::AVGFLOORU);
    return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
                       Op.getOperand(2));
  }
  case Intrinsic::aarch64_neon_sabd:
  case Intrinsic::aarch64_neon_uabd: {
    unsigned Opcode = IntNo == Intrinsic::aarch64_neon_uabd ? ISD::ABDU
                                                            : ISD::ABDS;
    return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
                       Op.getOperand(2));
  }
  case Intrinsic::aarch64_neon_saddlp:
  case Intrinsic::aarch64_neon_uaddlp: {
    unsigned Opcode = IntNo == Intrinsic::aarch64_neon_uaddlp
                          ? AArch64ISD::UADDLP
                          : AArch64ISD::SADDLP;
    return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1));
  }
  case Intrinsic::aarch64_neon_sdot:
  case Intrinsic::aarch64_neon_udot:
  case Intrinsic::aarch64_sve_sdot:
  case Intrinsic::aarch64_sve_udot: {
    unsigned Opcode = (IntNo == Intrinsic::aarch64_neon_udot ||
                       IntNo == Intrinsic::aarch64_sve_udot)
                          ? AArch64ISD::UDOT
                          : AArch64ISD::SDOT;
    return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
                       Op.getOperand(2), Op.getOperand(3));
  }
  case Intrinsic::get_active_lane_mask: {
    SDValue ID =
        DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, MVT::i64);
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), ID,
                       Op.getOperand(1), Op.getOperand(2));
  }
  }
}

bool AArch64TargetLowering::shouldExtendGSIndex(EVT VT, EVT &EltTy) const {
  if (VT.getVectorElementType() == MVT::i8 ||
      VT.getVectorElementType() == MVT::i16) {
    EltTy = MVT::i32;
    return true;
  }
  return false;
}

bool AArch64TargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
                                                          EVT DataVT) const {
  // SVE only supports implicit extension of 32-bit indices.
  if (!Subtarget->hasSVE() || IndexVT.getVectorElementType() != MVT::i32)
    return false;

  // Indices cannot be smaller than the main data type.
  if (IndexVT.getScalarSizeInBits() < DataVT.getScalarSizeInBits())
    return false;

  // Scalable vectors with "vscale * 2" or fewer elements sit within a 64-bit
  // element container type, which would violate the previous clause.
  return DataVT.isFixedLengthVector() || DataVT.getVectorMinNumElements() > 2;
}

bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
  return ExtVal.getValueType().isScalableVector() ||
         useSVEForFixedLengthVectorVT(
             ExtVal.getValueType(),
             /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors());
}

unsigned getGatherVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) {
  std::map<std::tuple<bool, bool, bool>, unsigned> AddrModes = {
      {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false),
       AArch64ISD::GLD1_MERGE_ZERO},
      {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true),
       AArch64ISD::GLD1_UXTW_MERGE_ZERO},
      {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false),
       AArch64ISD::GLD1_MERGE_ZERO},
      {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true),
       AArch64ISD::GLD1_SXTW_MERGE_ZERO},
      {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false),
       AArch64ISD::GLD1_SCALED_MERGE_ZERO},
      {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true),
       AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO},
      {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false),
       AArch64ISD::GLD1_SCALED_MERGE_ZERO},
      {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true),
       AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO},
  };
  auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend);
  return AddrModes.find(Key)->second;
}

unsigned getSignExtendedGatherOpcode(unsigned Opcode) {
  switch (Opcode) {
  default:
    llvm_unreachable("unimplemented opcode");
    return Opcode;
  case AArch64ISD::GLD1_MERGE_ZERO:
    return AArch64ISD::GLD1S_MERGE_ZERO;
  case AArch64ISD::GLD1_IMM_MERGE_ZERO:
    return AArch64ISD::GLD1S_IMM_MERGE_ZERO;
  case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
    return AArch64ISD::GLD1S_UXTW_MERGE_ZERO;
  case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
    return AArch64ISD::GLD1S_SXTW_MERGE_ZERO;
  case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
    return AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
  case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
    return AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO;
  case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
    return AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO;
  }
}

SDValue AArch64TargetLowering::LowerMGATHER(SDValue Op,
                                            SelectionDAG &DAG) const {
  MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(Op);

  SDLoc DL(Op);
  SDValue Chain = MGT->getChain();
  SDValue PassThru = MGT->getPassThru();
  SDValue Mask = MGT->getMask();
  SDValue BasePtr = MGT->getBasePtr();
  SDValue Index = MGT->getIndex();
  SDValue Scale = MGT->getScale();
  EVT VT = Op.getValueType();
  EVT MemVT = MGT->getMemoryVT();
  ISD::LoadExtType ExtType = MGT->getExtensionType();
  ISD::MemIndexType IndexType = MGT->getIndexType();

  // SVE supports zero (and so undef) passthrough values only, everything else
  // must be handled manually by an explicit select on the load's output.
  if (!PassThru->isUndef() && !isZerosVector(PassThru.getNode())) {
    SDValue Ops[] = {Chain, DAG.getUNDEF(VT), Mask, BasePtr, Index, Scale};
    SDValue Load =
        DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops,
                            MGT->getMemOperand(), IndexType, ExtType);
    SDValue Select = DAG.getSelect(DL, VT, Mask, Load, PassThru);
    return DAG.getMergeValues({Select, Load.getValue(1)}, DL);
  }

  bool IsScaled = MGT->isIndexScaled();
  bool IsSigned = MGT->isIndexSigned();

  // SVE supports an index scaled by sizeof(MemVT.elt) only, everything else
  // must be calculated before hand.
  uint64_t ScaleVal = cast<ConstantSDNode>(Scale)->getZExtValue();
  if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) {
    assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types");
    EVT IndexVT = Index.getValueType();
    Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index,
                        DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT));
    Scale = DAG.getTargetConstant(1, DL, Scale.getValueType());

    SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
    return DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops,
                               MGT->getMemOperand(), IndexType, ExtType);
  }

  // Lower fixed length gather to a scalable equivalent.
  if (VT.isFixedLengthVector()) {
    assert(Subtarget->useSVEForFixedLengthVectors() &&
           "Cannot lower when not using SVE for fixed vectors!");

    // NOTE: Handle floating-point as if integer then bitcast the result.
    EVT DataVT = VT.changeVectorElementTypeToInteger();
    MemVT = MemVT.changeVectorElementTypeToInteger();

    // Find the smallest integer fixed length vector we can use for the gather.
    EVT PromotedVT = VT.changeVectorElementType(MVT::i32);
    if (DataVT.getVectorElementType() == MVT::i64 ||
        Index.getValueType().getVectorElementType() == MVT::i64 ||
        Mask.getValueType().getVectorElementType() == MVT::i64)
      PromotedVT = VT.changeVectorElementType(MVT::i64);

    // Promote vector operands except for passthrough, which we know is either
    // undef or zero, and thus best constructed directly.
    unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index);
    Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask);

    // A promoted result type forces the need for an extending load.
    if (PromotedVT != DataVT && ExtType == ISD::NON_EXTLOAD)
      ExtType = ISD::EXTLOAD;

    EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT);

    // Convert fixed length vector operands to scalable.
    MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType());
    Index = convertToScalableVector(DAG, ContainerVT, Index);
    Mask = convertFixedMaskToScalableVector(Mask, DAG);
    PassThru = PassThru->isUndef() ? DAG.getUNDEF(ContainerVT)
                                   : DAG.getConstant(0, DL, ContainerVT);

    // Emit equivalent scalable vector gather.
    SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
    SDValue Load =
        DAG.getMaskedGather(DAG.getVTList(ContainerVT, MVT::Other), MemVT, DL,
                            Ops, MGT->getMemOperand(), IndexType, ExtType);

    // Extract fixed length data then convert to the required result type.
    SDValue Result = convertFromScalableVector(DAG, PromotedVT, Load);
    Result = DAG.getNode(ISD::TRUNCATE, DL, DataVT, Result);
    if (VT.isFloatingPoint())
      Result = DAG.getNode(ISD::BITCAST, DL, VT, Result);

    return DAG.getMergeValues({Result, Load.getValue(1)}, DL);
  }

  // Everything else is legal.
  return Op;
}

SDValue AArch64TargetLowering::LowerMSCATTER(SDValue Op,
                                             SelectionDAG &DAG) const {
  MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(Op);

  SDLoc DL(Op);
  SDValue Chain = MSC->getChain();
  SDValue StoreVal = MSC->getValue();
  SDValue Mask = MSC->getMask();
  SDValue BasePtr = MSC->getBasePtr();
  SDValue Index = MSC->getIndex();
  SDValue Scale = MSC->getScale();
  EVT VT = StoreVal.getValueType();
  EVT MemVT = MSC->getMemoryVT();
  ISD::MemIndexType IndexType = MSC->getIndexType();
  bool Truncating = MSC->isTruncatingStore();

  bool IsScaled = MSC->isIndexScaled();
  bool IsSigned = MSC->isIndexSigned();

  // SVE supports an index scaled by sizeof(MemVT.elt) only, everything else
  // must be calculated before hand.
  uint64_t ScaleVal = cast<ConstantSDNode>(Scale)->getZExtValue();
  if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) {
    assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types");
    EVT IndexVT = Index.getValueType();
    Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index,
                        DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT));
    Scale = DAG.getTargetConstant(1, DL, Scale.getValueType());

    SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
    return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops,
                                MSC->getMemOperand(), IndexType, Truncating);
  }

  // Lower fixed length scatter to a scalable equivalent.
  if (VT.isFixedLengthVector()) {
    assert(Subtarget->useSVEForFixedLengthVectors() &&
           "Cannot lower when not using SVE for fixed vectors!");

    // Once bitcast we treat floating-point scatters as if integer.
    if (VT.isFloatingPoint()) {
      VT = VT.changeVectorElementTypeToInteger();
      MemVT = MemVT.changeVectorElementTypeToInteger();
      StoreVal = DAG.getNode(ISD::BITCAST, DL, VT, StoreVal);
    }

    // Find the smallest integer fixed length vector we can use for the scatter.
    EVT PromotedVT = VT.changeVectorElementType(MVT::i32);
    if (VT.getVectorElementType() == MVT::i64 ||
        Index.getValueType().getVectorElementType() == MVT::i64 ||
        Mask.getValueType().getVectorElementType() == MVT::i64)
      PromotedVT = VT.changeVectorElementType(MVT::i64);

    // Promote vector operands.
    unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index);
    Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask);
    StoreVal = DAG.getNode(ISD::ANY_EXTEND, DL, PromotedVT, StoreVal);

    // A promoted value type forces the need for a truncating store.
    if (PromotedVT != VT)
      Truncating = true;

    EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT);

    // Convert fixed length vector operands to scalable.
    MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType());
    Index = convertToScalableVector(DAG, ContainerVT, Index);
    Mask = convertFixedMaskToScalableVector(Mask, DAG);
    StoreVal = convertToScalableVector(DAG, ContainerVT, StoreVal);

    // Emit equivalent scalable vector scatter.
    SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
    return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops,
                                MSC->getMemOperand(), IndexType, Truncating);
  }

  // Everything else is legal.
  return Op;
}

SDValue AArch64TargetLowering::LowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  MaskedLoadSDNode *LoadNode = cast<MaskedLoadSDNode>(Op);
  assert(LoadNode && "Expected custom lowering of a masked load node");
  EVT VT = Op->getValueType(0);

  if (useSVEForFixedLengthVectorVT(
          VT,
          /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()))
    return LowerFixedLengthVectorMLoadToSVE(Op, DAG);

  SDValue PassThru = LoadNode->getPassThru();
  SDValue Mask = LoadNode->getMask();

  if (PassThru->isUndef() || isZerosVector(PassThru.getNode()))
    return Op;

  SDValue Load = DAG.getMaskedLoad(
      VT, DL, LoadNode->getChain(), LoadNode->getBasePtr(),
      LoadNode->getOffset(), Mask, DAG.getUNDEF(VT), LoadNode->getMemoryVT(),
      LoadNode->getMemOperand(), LoadNode->getAddressingMode(),
      LoadNode->getExtensionType());

  SDValue Result = DAG.getSelect(DL, VT, Mask, Load, PassThru);

  return DAG.getMergeValues({Result, Load.getValue(1)}, DL);
}

// Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
                                        EVT VT, EVT MemVT,
                                        SelectionDAG &DAG) {
  assert(VT.isVector() && "VT should be a vector type");
  assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);

  SDValue Value = ST->getValue();

  // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
  // the word lane which represent the v4i8 subvector.  It optimizes the store
  // to:
  //
  //   xtn  v0.8b, v0.8h
  //   str  s0, [x0]

  SDValue Undef = DAG.getUNDEF(MVT::i16);
  SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
                                        {Undef, Undef, Undef, Undef});

  SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
                                 Value, UndefVec);
  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);

  Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
  SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
                                     Trunc, DAG.getConstant(0, DL, MVT::i64));

  return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
                      ST->getBasePtr(), ST->getMemOperand());
}

// Custom lowering for any store, vector or scalar and/or default or with
// a truncate operations.  Currently only custom lower truncate operation
// from vector v4i16 to v4i8 or volatile stores of i128.
SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
                                          SelectionDAG &DAG) const {
  SDLoc Dl(Op);
  StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
  assert (StoreNode && "Can only custom lower store nodes");

  SDValue Value = StoreNode->getValue();

  EVT VT = Value.getValueType();
  EVT MemVT = StoreNode->getMemoryVT();

  if (VT.isVector()) {
    if (useSVEForFixedLengthVectorVT(
            VT,
            /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()))
      return LowerFixedLengthVectorStoreToSVE(Op, DAG);

    unsigned AS = StoreNode->getAddressSpace();
    Align Alignment = StoreNode->getAlign();
    if (Alignment < MemVT.getStoreSize() &&
        !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
                                        StoreNode->getMemOperand()->getFlags(),
                                        nullptr)) {
      return scalarizeVectorStore(StoreNode, DAG);
    }

    if (StoreNode->isTruncatingStore() && VT == MVT::v4i16 &&
        MemVT == MVT::v4i8) {
      return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
    }
    // 256 bit non-temporal stores can be lowered to STNP. Do this as part of
    // the custom lowering, as there are no un-paired non-temporal stores and
    // legalization will break up 256 bit inputs.
    ElementCount EC = MemVT.getVectorElementCount();
    if (StoreNode->isNonTemporal() && MemVT.getSizeInBits() == 256u &&
        EC.isKnownEven() &&
        ((MemVT.getScalarSizeInBits() == 8u ||
          MemVT.getScalarSizeInBits() == 16u ||
          MemVT.getScalarSizeInBits() == 32u ||
          MemVT.getScalarSizeInBits() == 64u))) {
      SDValue Lo =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl,
                      MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
                      StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64));
      SDValue Hi =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl,
                      MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
                      StoreNode->getValue(),
                      DAG.getConstant(EC.getKnownMinValue() / 2, Dl, MVT::i64));
      SDValue Result = DAG.getMemIntrinsicNode(
          AArch64ISD::STNP, Dl, DAG.getVTList(MVT::Other),
          {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
          StoreNode->getMemoryVT(), StoreNode->getMemOperand());
      return Result;
    }
  } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) {
    return LowerStore128(Op, DAG);
  } else if (MemVT == MVT::i64x8) {
    SDValue Value = StoreNode->getValue();
    assert(Value->getValueType(0) == MVT::i64x8);
    SDValue Chain = StoreNode->getChain();
    SDValue Base = StoreNode->getBasePtr();
    EVT PtrVT = Base.getValueType();
    for (unsigned i = 0; i < 8; i++) {
      SDValue Part = DAG.getNode(AArch64ISD::LS64_EXTRACT, Dl, MVT::i64,
                                 Value, DAG.getConstant(i, Dl, MVT::i32));
      SDValue Ptr = DAG.getNode(ISD::ADD, Dl, PtrVT, Base,
                                DAG.getConstant(i * 8, Dl, PtrVT));
      Chain = DAG.getStore(Chain, Dl, Part, Ptr, StoreNode->getPointerInfo(),
                           StoreNode->getOriginalAlign());
    }
    return Chain;
  }

  return SDValue();
}

/// Lower atomic or volatile 128-bit stores to a single STP instruction.
SDValue AArch64TargetLowering::LowerStore128(SDValue Op,
                                             SelectionDAG &DAG) const {
  MemSDNode *StoreNode = cast<MemSDNode>(Op);
  assert(StoreNode->getMemoryVT() == MVT::i128);
  assert(StoreNode->isVolatile() || StoreNode->isAtomic());
  assert(!StoreNode->isAtomic() ||
         StoreNode->getMergedOrdering() == AtomicOrdering::Unordered ||
         StoreNode->getMergedOrdering() == AtomicOrdering::Monotonic);

  SDValue Value = StoreNode->getOpcode() == ISD::STORE
                      ? StoreNode->getOperand(1)
                      : StoreNode->getOperand(2);
  SDLoc DL(Op);
  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, Value,
                           DAG.getConstant(0, DL, MVT::i64));
  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, Value,
                           DAG.getConstant(1, DL, MVT::i64));
  SDValue Result = DAG.getMemIntrinsicNode(
      AArch64ISD::STP, DL, DAG.getVTList(MVT::Other),
      {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
      StoreNode->getMemoryVT(), StoreNode->getMemOperand());
  return Result;
}

SDValue AArch64TargetLowering::LowerLOAD(SDValue Op,
                                         SelectionDAG &DAG) const {
  SDLoc DL(Op);
  LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
  assert(LoadNode && "Expected custom lowering of a load node");

  if (LoadNode->getMemoryVT() == MVT::i64x8) {
    SmallVector<SDValue, 8> Ops;
    SDValue Base = LoadNode->getBasePtr();
    SDValue Chain = LoadNode->getChain();
    EVT PtrVT = Base.getValueType();
    for (unsigned i = 0; i < 8; i++) {
      SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base,
                                DAG.getConstant(i * 8, DL, PtrVT));
      SDValue Part = DAG.getLoad(MVT::i64, DL, Chain, Ptr,
                                 LoadNode->getPointerInfo(),
                                 LoadNode->getOriginalAlign());
      Ops.push_back(Part);
      Chain = SDValue(Part.getNode(), 1);
    }
    SDValue Loaded = DAG.getNode(AArch64ISD::LS64_BUILD, DL, MVT::i64x8, Ops);
    return DAG.getMergeValues({Loaded, Chain}, DL);
  }

  // Custom lowering for extending v4i8 vector loads.
  EVT VT = Op->getValueType(0);
  assert((VT == MVT::v4i16 || VT == MVT::v4i32) && "Expected v4i16 or v4i32");

  if (LoadNode->getMemoryVT() != MVT::v4i8)
    return SDValue();

  unsigned ExtType;
  if (LoadNode->getExtensionType() == ISD::SEXTLOAD)
    ExtType = ISD::SIGN_EXTEND;
  else if (LoadNode->getExtensionType() == ISD::ZEXTLOAD ||
           LoadNode->getExtensionType() == ISD::EXTLOAD)
    ExtType = ISD::ZERO_EXTEND;
  else
    return SDValue();

  SDValue Load = DAG.getLoad(MVT::f32, DL, LoadNode->getChain(),
                             LoadNode->getBasePtr(), MachinePointerInfo());
  SDValue Chain = Load.getValue(1);
  SDValue Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f32, Load);
  SDValue BC = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Vec);
  SDValue Ext = DAG.getNode(ExtType, DL, MVT::v8i16, BC);
  Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Ext,
                    DAG.getConstant(0, DL, MVT::i64));
  if (VT == MVT::v4i32)
    Ext = DAG.getNode(ExtType, DL, MVT::v4i32, Ext);
  return DAG.getMergeValues({Ext, Chain}, DL);
}

// Generate SUBS and CSEL for integer abs.
SDValue AArch64TargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
  MVT VT = Op.getSimpleValueType();

  if (VT.isVector())
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABS_MERGE_PASSTHRU);

  SDLoc DL(Op);
  SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
                            Op.getOperand(0));
  // Generate SUBS & CSEL.
  SDValue Cmp =
      DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
                  Op.getOperand(0), DAG.getConstant(0, DL, VT));
  return DAG.getNode(AArch64ISD::CSEL, DL, VT, Op.getOperand(0), Neg,
                     DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
                     Cmp.getValue(1));
}

static SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
  SDValue Chain = Op.getOperand(0);
  SDValue Cond = Op.getOperand(1);
  SDValue Dest = Op.getOperand(2);

  AArch64CC::CondCode CC;
  if (SDValue Cmp = emitConjunction(DAG, Cond, CC)) {
    SDLoc dl(Op);
    SDValue CCVal = DAG.getConstant(CC, dl, MVT::i32);
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
                       Cmp);
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
                                              SelectionDAG &DAG) const {
  LLVM_DEBUG(dbgs() << "Custom lowering: ");
  LLVM_DEBUG(Op.dump());

  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("unimplemented operand");
    return SDValue();
  case ISD::BITCAST:
    return LowerBITCAST(Op, DAG);
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::GlobalTLSAddress:
    return LowerGlobalTLSAddress(Op, DAG);
  case ISD::SETCC:
  case ISD::STRICT_FSETCC:
  case ISD::STRICT_FSETCCS:
    return LowerSETCC(Op, DAG);
  case ISD::BRCOND:
    return LowerBRCOND(Op, DAG);
  case ISD::BR_CC:
    return LowerBR_CC(Op, DAG);
  case ISD::SELECT:
    return LowerSELECT(Op, DAG);
  case ISD::SELECT_CC:
    return LowerSELECT_CC(Op, DAG);
  case ISD::JumpTable:
    return LowerJumpTable(Op, DAG);
  case ISD::BR_JT:
    return LowerBR_JT(Op, DAG);
  case ISD::ConstantPool:
    return LowerConstantPool(Op, DAG);
  case ISD::BlockAddress:
    return LowerBlockAddress(Op, DAG);
  case ISD::VASTART:
    return LowerVASTART(Op, DAG);
  case ISD::VACOPY:
    return LowerVACOPY(Op, DAG);
  case ISD::VAARG:
    return LowerVAARG(Op, DAG);
  case ISD::ADDCARRY:
    return lowerADDSUBCARRY(Op, DAG, AArch64ISD::ADCS, false /*unsigned*/);
  case ISD::SUBCARRY:
    return lowerADDSUBCARRY(Op, DAG, AArch64ISD::SBCS, false /*unsigned*/);
  case ISD::SADDO_CARRY:
    return lowerADDSUBCARRY(Op, DAG, AArch64ISD::ADCS, true /*signed*/);
  case ISD::SSUBO_CARRY:
    return lowerADDSUBCARRY(Op, DAG, AArch64ISD::SBCS, true /*signed*/);
  case ISD::SADDO:
  case ISD::UADDO:
  case ISD::SSUBO:
  case ISD::USUBO:
  case ISD::SMULO:
  case ISD::UMULO:
    return LowerXALUO(Op, DAG);
  case ISD::FADD:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FADD_PRED);
  case ISD::FSUB:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSUB_PRED);
  case ISD::FMUL:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMUL_PRED);
  case ISD::FMA:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMA_PRED);
  case ISD::FDIV:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FDIV_PRED);
  case ISD::FNEG:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEG_MERGE_PASSTHRU);
  case ISD::FCEIL:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FCEIL_MERGE_PASSTHRU);
  case ISD::FFLOOR:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FFLOOR_MERGE_PASSTHRU);
  case ISD::FNEARBYINT:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEARBYINT_MERGE_PASSTHRU);
  case ISD::FRINT:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FRINT_MERGE_PASSTHRU);
  case ISD::FROUND:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUND_MERGE_PASSTHRU);
  case ISD::FROUNDEVEN:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU);
  case ISD::FTRUNC:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FTRUNC_MERGE_PASSTHRU);
  case ISD::FSQRT:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSQRT_MERGE_PASSTHRU);
  case ISD::FABS:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FABS_MERGE_PASSTHRU);
  case ISD::FP_ROUND:
  case ISD::STRICT_FP_ROUND:
    return LowerFP_ROUND(Op, DAG);
  case ISD::FP_EXTEND:
    return LowerFP_EXTEND(Op, DAG);
  case ISD::FRAMEADDR:
    return LowerFRAMEADDR(Op, DAG);
  case ISD::SPONENTRY:
    return LowerSPONENTRY(Op, DAG);
  case ISD::RETURNADDR:
    return LowerRETURNADDR(Op, DAG);
  case ISD::ADDROFRETURNADDR:
    return LowerADDROFRETURNADDR(Op, DAG);
  case ISD::CONCAT_VECTORS:
    return LowerCONCAT_VECTORS(Op, DAG);
  case ISD::INSERT_VECTOR_ELT:
    return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT:
    return LowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::BUILD_VECTOR:
    return LowerBUILD_VECTOR(Op, DAG);
  case ISD::VECTOR_SHUFFLE:
    return LowerVECTOR_SHUFFLE(Op, DAG);
  case ISD::SPLAT_VECTOR:
    return LowerSPLAT_VECTOR(Op, DAG);
  case ISD::EXTRACT_SUBVECTOR:
    return LowerEXTRACT_SUBVECTOR(Op, DAG);
  case ISD::INSERT_SUBVECTOR:
    return LowerINSERT_SUBVECTOR(Op, DAG);
  case ISD::SDIV:
  case ISD::UDIV:
    return LowerDIV(Op, DAG);
  case ISD::SMIN:
  case ISD::UMIN:
  case ISD::SMAX:
  case ISD::UMAX:
    return LowerMinMax(Op, DAG);
  case ISD::SRA:
  case ISD::SRL:
  case ISD::SHL:
    return LowerVectorSRA_SRL_SHL(Op, DAG);
  case ISD::SHL_PARTS:
  case ISD::SRL_PARTS:
  case ISD::SRA_PARTS:
    return LowerShiftParts(Op, DAG);
  case ISD::CTPOP:
  case ISD::PARITY:
    return LowerCTPOP_PARITY(Op, DAG);
  case ISD::FCOPYSIGN:
    return LowerFCOPYSIGN(Op, DAG);
  case ISD::OR:
    return LowerVectorOR(Op, DAG);
  case ISD::XOR:
    return LowerXOR(Op, DAG);
  case ISD::PREFETCH:
    return LowerPREFETCH(Op, DAG);
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
  case ISD::STRICT_SINT_TO_FP:
  case ISD::STRICT_UINT_TO_FP:
    return LowerINT_TO_FP(Op, DAG);
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::STRICT_FP_TO_SINT:
  case ISD::STRICT_FP_TO_UINT:
    return LowerFP_TO_INT(Op, DAG);
  case ISD::FP_TO_SINT_SAT:
  case ISD::FP_TO_UINT_SAT:
    return LowerFP_TO_INT_SAT(Op, DAG);
  case ISD::FSINCOS:
    return LowerFSINCOS(Op, DAG);
  case ISD::FLT_ROUNDS_:
    return LowerFLT_ROUNDS_(Op, DAG);
  case ISD::SET_ROUNDING:
    return LowerSET_ROUNDING(Op, DAG);
  case ISD::MUL:
    return LowerMUL(Op, DAG);
  case ISD::MULHS:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHS_PRED);
  case ISD::MULHU:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHU_PRED);
  case ISD::INTRINSIC_W_CHAIN:
    return LowerINTRINSIC_W_CHAIN(Op, DAG);
  case ISD::INTRINSIC_WO_CHAIN:
    return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::ATOMIC_STORE:
    if (cast<MemSDNode>(Op)->getMemoryVT() == MVT::i128) {
      assert(Subtarget->hasLSE2());
      return LowerStore128(Op, DAG);
    }
    return SDValue();
  case ISD::STORE:
    return LowerSTORE(Op, DAG);
  case ISD::MSTORE:
    return LowerFixedLengthVectorMStoreToSVE(Op, DAG);
  case ISD::MGATHER:
    return LowerMGATHER(Op, DAG);
  case ISD::MSCATTER:
    return LowerMSCATTER(Op, DAG);
  case ISD::VECREDUCE_SEQ_FADD:
    return LowerVECREDUCE_SEQ_FADD(Op, DAG);
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_AND:
  case ISD::VECREDUCE_OR:
  case ISD::VECREDUCE_XOR:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
  case ISD::VECREDUCE_FADD:
  case ISD::VECREDUCE_FMAX:
  case ISD::VECREDUCE_FMIN:
    return LowerVECREDUCE(Op, DAG);
  case ISD::ATOMIC_LOAD_SUB:
    return LowerATOMIC_LOAD_SUB(Op, DAG);
  case ISD::ATOMIC_LOAD_AND:
    return LowerATOMIC_LOAD_AND(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC:
    return LowerDYNAMIC_STACKALLOC(Op, DAG);
  case ISD::VSCALE:
    return LowerVSCALE(Op, DAG);
  case ISD::ANY_EXTEND:
  case ISD::SIGN_EXTEND:
  case ISD::ZERO_EXTEND:
    return LowerFixedLengthVectorIntExtendToSVE(Op, DAG);
  case ISD::SIGN_EXTEND_INREG: {
    // Only custom lower when ExtraVT has a legal byte based element type.
    EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    EVT ExtraEltVT = ExtraVT.getVectorElementType();
    if ((ExtraEltVT != MVT::i8) && (ExtraEltVT != MVT::i16) &&
        (ExtraEltVT != MVT::i32) && (ExtraEltVT != MVT::i64))
      return SDValue();

    return LowerToPredicatedOp(Op, DAG,
                               AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU);
  }
  case ISD::TRUNCATE:
    return LowerTRUNCATE(Op, DAG);
  case ISD::MLOAD:
    return LowerMLOAD(Op, DAG);
  case ISD::LOAD:
    if (useSVEForFixedLengthVectorVT(Op.getValueType()))
      return LowerFixedLengthVectorLoadToSVE(Op, DAG);
    return LowerLOAD(Op, DAG);
  case ISD::ADD:
  case ISD::AND:
  case ISD::SUB:
    return LowerToScalableOp(Op, DAG);
  case ISD::FMAXIMUM:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAX_PRED);
  case ISD::FMAXNUM:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAXNM_PRED);
  case ISD::FMINIMUM:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMIN_PRED);
  case ISD::FMINNUM:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMINNM_PRED);
  case ISD::VSELECT:
    return LowerFixedLengthVectorSelectToSVE(Op, DAG);
  case ISD::ABS:
    return LowerABS(Op, DAG);
  case ISD::ABDS:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDS_PRED);
  case ISD::ABDU:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDU_PRED);
  case ISD::BITREVERSE:
    return LowerBitreverse(Op, DAG);
  case ISD::BSWAP:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::BSWAP_MERGE_PASSTHRU);
  case ISD::CTLZ:
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTLZ_MERGE_PASSTHRU);
  case ISD::CTTZ:
    return LowerCTTZ(Op, DAG);
  case ISD::VECTOR_SPLICE:
    return LowerVECTOR_SPLICE(Op, DAG);
  case ISD::STRICT_LROUND:
  case ISD::STRICT_LLROUND:
  case ISD::STRICT_LRINT:
  case ISD::STRICT_LLRINT: {
    assert(Op.getOperand(1).getValueType() == MVT::f16 &&
           "Expected custom lowering of rounding operations only for f16");
    SDLoc DL(Op);
    SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
                              {Op.getOperand(0), Op.getOperand(1)});
    return DAG.getNode(Op.getOpcode(), DL, {Op.getValueType(), MVT::Other},
                       {Ext.getValue(1), Ext.getValue(0)});
  }
  }
}

bool AArch64TargetLowering::mergeStoresAfterLegalization(EVT VT) const {
  return !Subtarget->useSVEForFixedLengthVectors();
}

bool AArch64TargetLowering::useSVEForFixedLengthVectorVT(
    EVT VT, bool OverrideNEON) const {
  if (!VT.isFixedLengthVector() || !VT.isSimple())
    return false;

  // Don't use SVE for vectors we cannot scalarize if required.
  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
  // Fixed length predicates should be promoted to i8.
  // NOTE: This is consistent with how NEON (and thus 64/128bit vectors) work.
  case MVT::i1:
  default:
    return false;
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
  case MVT::i64:
  case MVT::f16:
  case MVT::f32:
  case MVT::f64:
    break;
  }

  // All SVE implementations support NEON sized vectors.
  if (OverrideNEON && (VT.is128BitVector() || VT.is64BitVector()))
    return Subtarget->hasSVE();

  // Ensure NEON MVTs only belong to a single register class.
  if (VT.getFixedSizeInBits() <= 128)
    return false;

  // Ensure wider than NEON code generation is enabled.
  if (!Subtarget->useSVEForFixedLengthVectors())
    return false;

  // Don't use SVE for types that don't fit.
  if (VT.getFixedSizeInBits() > Subtarget->getMinSVEVectorSizeInBits())
    return false;

  // TODO: Perhaps an artificial restriction, but worth having whilst getting
  // the base fixed length SVE support in place.
  if (!VT.isPow2VectorType())
    return false;

  return true;
}

//===----------------------------------------------------------------------===//
//                      Calling Convention Implementation
//===----------------------------------------------------------------------===//

static unsigned getIntrinsicID(const SDNode *N) {
  unsigned Opcode = N->getOpcode();
  switch (Opcode) {
  default:
    return Intrinsic::not_intrinsic;
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
    if (IID < Intrinsic::num_intrinsics)
      return IID;
    return Intrinsic::not_intrinsic;
  }
  }
}

bool AArch64TargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
                                                SDValue N1) const {
  if (!N0.hasOneUse())
    return false;

  unsigned IID = getIntrinsicID(N1.getNode());
  // Avoid reassociating expressions that can be lowered to smlal/umlal.
  if (IID == Intrinsic::aarch64_neon_umull ||
      N1.getOpcode() == AArch64ISD::UMULL ||
      IID == Intrinsic::aarch64_neon_smull ||
      N1.getOpcode() == AArch64ISD::SMULL)
    return N0.getOpcode() != ISD::ADD;

  return true;
}

/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
                                                     bool IsVarArg) const {
  switch (CC) {
  default:
    report_fatal_error("Unsupported calling convention.");
  case CallingConv::WebKit_JS:
    return CC_AArch64_WebKit_JS;
  case CallingConv::GHC:
    return CC_AArch64_GHC;
  case CallingConv::C:
  case CallingConv::Fast:
  case CallingConv::PreserveMost:
  case CallingConv::CXX_FAST_TLS:
  case CallingConv::Swift:
  case CallingConv::SwiftTail:
  case CallingConv::Tail:
    if (Subtarget->isTargetWindows() && IsVarArg)
      return CC_AArch64_Win64_VarArg;
    if (!Subtarget->isTargetDarwin())
      return CC_AArch64_AAPCS;
    if (!IsVarArg)
      return CC_AArch64_DarwinPCS;
    return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
                                      : CC_AArch64_DarwinPCS_VarArg;
   case CallingConv::Win64:
    return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
   case CallingConv::CFGuard_Check:
     return CC_AArch64_Win64_CFGuard_Check;
   case CallingConv::AArch64_VectorCall:
   case CallingConv::AArch64_SVE_VectorCall:
     return CC_AArch64_AAPCS;
  }
}

CCAssignFn *
AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
  return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
                                      : RetCC_AArch64_AAPCS;
}

SDValue AArch64TargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const Function &F = MF.getFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool IsWin64 = Subtarget->isCallingConvWin64(F.getCallingConv());
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  SmallVector<ISD::OutputArg, 4> Outs;
  GetReturnInfo(CallConv, F.getReturnType(), F.getAttributes(), Outs,
                DAG.getTargetLoweringInfo(), MF.getDataLayout());
  if (any_of(Outs, [](ISD::OutputArg &Out){ return Out.VT.isScalableVector(); }))
    FuncInfo->setIsSVECC(true);

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  DenseMap<unsigned, SDValue> CopiedRegs;
  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());

  // At this point, Ins[].VT may already be promoted to i32. To correctly
  // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
  // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
  // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
  // we use a special version of AnalyzeFormalArguments to pass in ValVT and
  // LocVT.
  unsigned NumArgs = Ins.size();
  Function::const_arg_iterator CurOrigArg = F.arg_begin();
  unsigned CurArgIdx = 0;
  for (unsigned i = 0; i != NumArgs; ++i) {
    MVT ValVT = Ins[i].VT;
    if (Ins[i].isOrigArg()) {
      std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
      CurArgIdx = Ins[i].getOrigArgIndex();

      // Get type of the original argument.
      EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
                                  /*AllowUnknown*/ true);
      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
        ValVT = MVT::i8;
      else if (ActualMVT == MVT::i16)
        ValVT = MVT::i16;
    }
    bool UseVarArgCC = false;
    if (IsWin64)
      UseVarArgCC = isVarArg;
    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, UseVarArgCC);
    bool Res =
        AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
    assert(!Res && "Call operand has unhandled type");
    (void)Res;
  }

  unsigned ExtraArgLocs = 0;
  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i - ExtraArgLocs];

    if (Ins[i].Flags.isByVal()) {
      // Byval is used for HFAs in the PCS, but the system should work in a
      // non-compliant manner for larger structs.
      EVT PtrVT = getPointerTy(DAG.getDataLayout());
      int Size = Ins[i].Flags.getByValSize();
      unsigned NumRegs = (Size + 7) / 8;

      // FIXME: This works on big-endian for composite byvals, which are the common
      // case. It should also work for fundamental types too.
      unsigned FrameIdx =
        MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
      InVals.push_back(FrameIdxN);

      continue;
    }

    if (Ins[i].Flags.isSwiftAsync())
      MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);

    SDValue ArgValue;
    if (VA.isRegLoc()) {
      // Arguments stored in registers.
      EVT RegVT = VA.getLocVT();
      const TargetRegisterClass *RC;

      if (RegVT == MVT::i32)
        RC = &AArch64::GPR32RegClass;
      else if (RegVT == MVT::i64)
        RC = &AArch64::GPR64RegClass;
      else if (RegVT == MVT::f16 || RegVT == MVT::bf16)
        RC = &AArch64::FPR16RegClass;
      else if (RegVT == MVT::f32)
        RC = &AArch64::FPR32RegClass;
      else if (RegVT == MVT::f64 || RegVT.is64BitVector())
        RC = &AArch64::FPR64RegClass;
      else if (RegVT == MVT::f128 || RegVT.is128BitVector())
        RC = &AArch64::FPR128RegClass;
      else if (RegVT.isScalableVector() &&
               RegVT.getVectorElementType() == MVT::i1) {
        FuncInfo->setIsSVECC(true);
        RC = &AArch64::PPRRegClass;
      } else if (RegVT.isScalableVector()) {
        FuncInfo->setIsSVECC(true);
        RC = &AArch64::ZPRRegClass;
      } else
        llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");

      // Transform the arguments in physical registers into virtual ones.
      Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
      ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);

      // If this is an 8, 16 or 32-bit value, it is really passed promoted
      // to 64 bits.  Insert an assert[sz]ext to capture this, then
      // truncate to the right size.
      switch (VA.getLocInfo()) {
      default:
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::Indirect:
        assert(VA.getValVT().isScalableVector() &&
               "Only scalable vectors can be passed indirectly");
        break;
      case CCValAssign::BCvt:
        ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
        break;
      case CCValAssign::AExt:
      case CCValAssign::SExt:
      case CCValAssign::ZExt:
        break;
      case CCValAssign::AExtUpper:
        ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue,
                               DAG.getConstant(32, DL, RegVT));
        ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT());
        break;
      }
    } else { // VA.isRegLoc()
      assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
      unsigned ArgOffset = VA.getLocMemOffset();
      unsigned ArgSize = (VA.getLocInfo() == CCValAssign::Indirect
                              ? VA.getLocVT().getSizeInBits()
                              : VA.getValVT().getSizeInBits()) / 8;

      uint32_t BEAlign = 0;
      if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
          !Ins[i].Flags.isInConsecutiveRegs())
        BEAlign = 8 - ArgSize;

      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);

      // Create load nodes to retrieve arguments from the stack.
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));

      // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
      ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
      MVT MemVT = VA.getValVT();

      switch (VA.getLocInfo()) {
      default:
        break;
      case CCValAssign::Trunc:
      case CCValAssign::BCvt:
        MemVT = VA.getLocVT();
        break;
      case CCValAssign::Indirect:
        assert(VA.getValVT().isScalableVector() &&
               "Only scalable vectors can be passed indirectly");
        MemVT = VA.getLocVT();
        break;
      case CCValAssign::SExt:
        ExtType = ISD::SEXTLOAD;
        break;
      case CCValAssign::ZExt:
        ExtType = ISD::ZEXTLOAD;
        break;
      case CCValAssign::AExt:
        ExtType = ISD::EXTLOAD;
        break;
      }

      ArgValue =
          DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
                         MachinePointerInfo::getFixedStack(MF, FI), MemVT);
    }

    if (VA.getLocInfo() == CCValAssign::Indirect) {
      assert(VA.getValVT().isScalableVector() &&
           "Only scalable vectors can be passed indirectly");

      uint64_t PartSize = VA.getValVT().getStoreSize().getKnownMinSize();
      unsigned NumParts = 1;
      if (Ins[i].Flags.isInConsecutiveRegs()) {
        assert(!Ins[i].Flags.isInConsecutiveRegsLast());
        while (!Ins[i + NumParts - 1].Flags.isInConsecutiveRegsLast())
          ++NumParts;
      }

      MVT PartLoad = VA.getValVT();
      SDValue Ptr = ArgValue;

      // Ensure we generate all loads for each tuple part, whilst updating the
      // pointer after each load correctly using vscale.
      while (NumParts > 0) {
        ArgValue = DAG.getLoad(PartLoad, DL, Chain, Ptr, MachinePointerInfo());
        InVals.push_back(ArgValue);
        NumParts--;
        if (NumParts > 0) {
          SDValue BytesIncrement = DAG.getVScale(
              DL, Ptr.getValueType(),
              APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize));
          SDNodeFlags Flags;
          Flags.setNoUnsignedWrap(true);
          Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
                            BytesIncrement, Flags);
          ExtraArgLocs++;
          i++;
        }
      }
    } else {
      if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer())
        ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(),
                               ArgValue, DAG.getValueType(MVT::i32));

      // i1 arguments are zero-extended to i8 by the caller. Emit a
      // hint to reflect this.
      if (Ins[i].isOrigArg()) {
        Argument *OrigArg = F.getArg(Ins[i].getOrigArgIndex());
        if (OrigArg->getType()->isIntegerTy(1)) {
          if (!Ins[i].Flags.isZExt()) {
            ArgValue = DAG.getNode(AArch64ISD::ASSERT_ZEXT_BOOL, DL,
                                   ArgValue.getValueType(), ArgValue);
          }
        }
      }

      InVals.push_back(ArgValue);
    }
  }
  assert((ArgLocs.size() + ExtraArgLocs) == Ins.size());

  // varargs
  if (isVarArg) {
    if (!Subtarget->isTargetDarwin() || IsWin64) {
      // The AAPCS variadic function ABI is identical to the non-variadic
      // one. As a result there may be more arguments in registers and we should
      // save them for future reference.
      // Win64 variadic functions also pass arguments in registers, but all float
      // arguments are passed in integer registers.
      saveVarArgRegisters(CCInfo, DAG, DL, Chain);
    }

    // This will point to the next argument passed via stack.
    unsigned StackOffset = CCInfo.getNextStackOffset();
    // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
    StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8);
    FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));

    if (MFI.hasMustTailInVarArgFunc()) {
      SmallVector<MVT, 2> RegParmTypes;
      RegParmTypes.push_back(MVT::i64);
      RegParmTypes.push_back(MVT::f128);
      // Compute the set of forwarded registers. The rest are scratch.
      SmallVectorImpl<ForwardedRegister> &Forwards =
                                       FuncInfo->getForwardedMustTailRegParms();
      CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
                                               CC_AArch64_AAPCS);

      // Conservatively forward X8, since it might be used for aggregate return.
      if (!CCInfo.isAllocated(AArch64::X8)) {
        Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
        Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
      }
    }
  }

  // On Windows, InReg pointers must be returned, so record the pointer in a
  // virtual register at the start of the function so it can be returned in the
  // epilogue.
  if (IsWin64) {
    for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
      if (Ins[I].Flags.isInReg()) {
        assert(!FuncInfo->getSRetReturnReg());

        MVT PtrTy = getPointerTy(DAG.getDataLayout());
        Register Reg =
            MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
        FuncInfo->setSRetReturnReg(Reg);

        SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
        Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
        break;
      }
    }
  }

  unsigned StackArgSize = CCInfo.getNextStackOffset();
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
    // This is a non-standard ABI so by fiat I say we're allowed to make full
    // use of the stack area to be popped, which must be aligned to 16 bytes in
    // any case:
    StackArgSize = alignTo(StackArgSize, 16);

    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
    // a multiple of 16.
    FuncInfo->setArgumentStackToRestore(StackArgSize);

    // This realignment carries over to the available bytes below. Our own
    // callers will guarantee the space is free by giving an aligned value to
    // CALLSEQ_START.
  }
  // Even if we're not expected to free up the space, it's useful to know how
  // much is there while considering tail calls (because we can reuse it).
  FuncInfo->setBytesInStackArgArea(StackArgSize);

  if (Subtarget->hasCustomCallingConv())
    Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);

  return Chain;
}

void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
                                                SelectionDAG &DAG,
                                                const SDLoc &DL,
                                                SDValue &Chain) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());

  SmallVector<SDValue, 8> MemOps;

  static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
                                          AArch64::X3, AArch64::X4, AArch64::X5,
                                          AArch64::X6, AArch64::X7 };
  static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);

  unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
  int GPRIdx = 0;
  if (GPRSaveSize != 0) {
    if (IsWin64) {
      GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
      if (GPRSaveSize & 15)
        // The extra size here, if triggered, will always be 8.
        MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
    } else
      GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false);

    SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);

    for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
      Register VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
      SDValue Store =
          DAG.getStore(Val.getValue(1), DL, Val, FIN,
                       IsWin64 ? MachinePointerInfo::getFixedStack(
                                     MF, GPRIdx, (i - FirstVariadicGPR) * 8)
                               : MachinePointerInfo::getStack(MF, i * 8));
      MemOps.push_back(Store);
      FIN =
          DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
    }
  }
  FuncInfo->setVarArgsGPRIndex(GPRIdx);
  FuncInfo->setVarArgsGPRSize(GPRSaveSize);

  if (Subtarget->hasFPARMv8() && !IsWin64) {
    static const MCPhysReg FPRArgRegs[] = {
        AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
        AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
    static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
    unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);

    unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
    int FPRIdx = 0;
    if (FPRSaveSize != 0) {
      FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false);

      SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);

      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
        Register VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);

        SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
                                     MachinePointerInfo::getStack(MF, i * 16));
        MemOps.push_back(Store);
        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
                          DAG.getConstant(16, DL, PtrVT));
      }
    }
    FuncInfo->setVarArgsFPRIndex(FPRIdx);
    FuncInfo->setVarArgsFPRSize(FPRSaveSize);
  }

  if (!MemOps.empty()) {
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
  }
}

/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue AArch64TargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<CCValAssign> &RVLocs, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
    SDValue ThisVal) const {
  DenseMap<unsigned, SDValue> CopiedRegs;
  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign VA = RVLocs[i];

    // Pass 'this' value directly from the argument to return value, to avoid
    // reg unit interference
    if (i == 0 && isThisReturn) {
      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
             "unexpected return calling convention register assignment");
      InVals.push_back(ThisVal);
      continue;
    }

    // Avoid copying a physreg twice since RegAllocFast is incompetent and only
    // allows one use of a physreg per block.
    SDValue Val = CopiedRegs.lookup(VA.getLocReg());
    if (!Val) {
      Val =
          DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
      Chain = Val.getValue(1);
      InFlag = Val.getValue(2);
      CopiedRegs[VA.getLocReg()] = Val;
    }

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::AExtUpper:
      Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val,
                        DAG.getConstant(32, DL, VA.getLocVT()));
      LLVM_FALLTHROUGH;
    case CCValAssign::AExt:
      LLVM_FALLTHROUGH;
    case CCValAssign::ZExt:
      Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT());
      break;
    }

    InVals.push_back(Val);
  }

  return Chain;
}

/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
  return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
         CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::C:
  case CallingConv::AArch64_SVE_VectorCall:
  case CallingConv::PreserveMost:
  case CallingConv::Swift:
  case CallingConv::SwiftTail:
  case CallingConv::Tail:
  case CallingConv::Fast:
    return true;
  default:
    return false;
  }
}

static void analyzeCallOperands(const AArch64TargetLowering &TLI,
                                const AArch64Subtarget *Subtarget,
                                const TargetLowering::CallLoweringInfo &CLI,
                                CCState &CCInfo) {
  const SelectionDAG &DAG = CLI.DAG;
  CallingConv::ID CalleeCC = CLI.CallConv;
  bool IsVarArg = CLI.IsVarArg;
  const SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);

  unsigned NumArgs = Outs.size();
  for (unsigned i = 0; i != NumArgs; ++i) {
    MVT ArgVT = Outs[i].VT;
    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;

    bool UseVarArgCC = false;
    if (IsVarArg) {
      // On Windows, the fixed arguments in a vararg call are passed in GPRs
      // too, so use the vararg CC to force them to integer registers.
      if (IsCalleeWin64) {
        UseVarArgCC = true;
      } else {
        UseVarArgCC = !Outs[i].IsFixed;
      }
    } else {
      // Get type of the original argument.
      EVT ActualVT =
          TLI.getValueType(DAG.getDataLayout(), CLI.Args[Outs[i].OrigArgIndex].Ty,
                       /*AllowUnknown*/ true);
      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ArgVT;
      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
        ArgVT = MVT::i8;
      else if (ActualMVT == MVT::i16)
        ArgVT = MVT::i16;
    }

    CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CalleeCC, UseVarArgCC);
    bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
    assert(!Res && "Call operand has unhandled type");
    (void)Res;
  }
}

bool AArch64TargetLowering::isEligibleForTailCallOptimization(
    const CallLoweringInfo &CLI) const {
  CallingConv::ID CalleeCC = CLI.CallConv;
  if (!mayTailCallThisCC(CalleeCC))
    return false;

  SDValue Callee = CLI.Callee;
  bool IsVarArg = CLI.IsVarArg;
  const SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
  const SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
  const SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
  const SelectionDAG &DAG = CLI.DAG;
  MachineFunction &MF = DAG.getMachineFunction();
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CallerCC = CallerF.getCallingConv();

  // Functions using the C or Fast calling convention that have an SVE signature
  // preserve more registers and should assume the SVE_VectorCall CC.
  // The check for matching callee-saved regs will determine whether it is
  // eligible for TCO.
  if ((CallerCC == CallingConv::C || CallerCC == CallingConv::Fast) &&
      MF.getInfo<AArch64FunctionInfo>()->isSVECC())
    CallerCC = CallingConv::AArch64_SVE_VectorCall;

  bool CCMatch = CallerCC == CalleeCC;

  // When using the Windows calling convention on a non-windows OS, we want
  // to back up and restore X18 in such functions; we can't do a tail call
  // from those functions.
  if (CallerCC == CallingConv::Win64 && !Subtarget->isTargetWindows() &&
      CalleeCC != CallingConv::Win64)
    return false;

  // Byval parameters hand the function a pointer directly into the stack area
  // we want to reuse during a tail call. Working around this *is* possible (see
  // X86) but less efficient and uglier in LowerCall.
  for (Function::const_arg_iterator i = CallerF.arg_begin(),
                                    e = CallerF.arg_end();
       i != e; ++i) {
    if (i->hasByValAttr())
      return false;

    // On Windows, "inreg" attributes signify non-aggregate indirect returns.
    // In this case, it is necessary to save/restore X0 in the callee. Tail
    // call opt interferes with this. So we disable tail call opt when the
    // caller has an argument with "inreg" attribute.

    // FIXME: Check whether the callee also has an "inreg" argument.
    if (i->hasInRegAttr())
      return false;
  }

  if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
    return CCMatch;

  // Externally-defined functions with weak linkage should not be
  // tail-called on AArch64 when the OS does not support dynamic
  // pre-emption of symbols, as the AAELF spec requires normal calls
  // to undefined weak functions to be replaced with a NOP or jump to the
  // next instruction. The behaviour of branch instructions in this
  // situation (as used for tail calls) is implementation-defined, so we
  // cannot rely on the linker replacing the tail call with a return.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    const GlobalValue *GV = G->getGlobal();
    const Triple &TT = getTargetMachine().getTargetTriple();
    if (GV->hasExternalWeakLinkage() &&
        (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
      return false;
  }

  // Now we search for cases where we can use a tail call without changing the
  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
  // concept.

  // I want anyone implementing a new calling convention to think long and hard
  // about this assert.
  assert((!IsVarArg || CalleeCC == CallingConv::C) &&
         "Unexpected variadic calling convention");

  LLVMContext &C = *DAG.getContext();
  // Check that the call results are passed in the same way.
  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
                                  CCAssignFnForCall(CalleeCC, IsVarArg),
                                  CCAssignFnForCall(CallerCC, IsVarArg)))
    return false;
  // The callee has to preserve all registers the caller needs to preserve.
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  if (!CCMatch) {
    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
    if (Subtarget->hasCustomCallingConv()) {
      TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
      TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
    }
    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
      return false;
  }

  // Nothing more to check if the callee is taking no arguments
  if (Outs.empty())
    return true;

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);

  analyzeCallOperands(*this, Subtarget, CLI, CCInfo);

  if (IsVarArg && !(CLI.CB && CLI.CB->isMustTailCall())) {
    // When we are musttail, additional checks have been done and we can safely ignore this check
    // At least two cases here: if caller is fastcc then we can't have any
    // memory arguments (we'd be expected to clean up the stack afterwards). If
    // caller is C then we could potentially use its argument area.

    // FIXME: for now we take the most conservative of these in both cases:
    // disallow all variadic memory operands.
    for (const CCValAssign &ArgLoc : ArgLocs)
      if (!ArgLoc.isRegLoc())
        return false;
  }

  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  // If any of the arguments is passed indirectly, it must be SVE, so the
  // 'getBytesInStackArgArea' is not sufficient to determine whether we need to
  // allocate space on the stack. That is why we determine this explicitly here
  // the call cannot be a tailcall.
  if (llvm::any_of(ArgLocs, [](CCValAssign &A) {
        assert((A.getLocInfo() != CCValAssign::Indirect ||
                A.getValVT().isScalableVector()) &&
               "Expected value to be scalable");
        return A.getLocInfo() == CCValAssign::Indirect;
      }))
    return false;

  // If the stack arguments for this call do not fit into our own save area then
  // the call cannot be made tail.
  if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
    return false;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
    return false;

  return true;
}

SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
                                                   SelectionDAG &DAG,
                                                   MachineFrameInfo &MFI,
                                                   int ClobberedFI) const {
  SmallVector<SDValue, 8> ArgChains;
  int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
  int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;

  // Include the original chain at the beginning of the list. When this is
  // used by target LowerCall hooks, this helps legalize find the
  // CALLSEQ_BEGIN node.
  ArgChains.push_back(Chain);

  // Add a chain value for each stack argument corresponding
  for (SDNode *U : DAG.getEntryNode().getNode()->uses())
    if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
        if (FI->getIndex() < 0) {
          int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
          int64_t InLastByte = InFirstByte;
          InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;

          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
            ArgChains.push_back(SDValue(L, 1));
        }

  // Build a tokenfactor for all the chains.
  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}

bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
                                                   bool TailCallOpt) const {
  return (CallCC == CallingConv::Fast && TailCallOpt) ||
         CallCC == CallingConv::Tail || CallCC == CallingConv::SwiftTail;
}

// Check if the value is zero-extended from i1 to i8
static bool checkZExtBool(SDValue Arg, const SelectionDAG &DAG) {
  unsigned SizeInBits = Arg.getValueType().getSizeInBits();
  if (SizeInBits < 8)
    return false;

  APInt RequredZero(SizeInBits, 0xFE);
  KnownBits Bits = DAG.computeKnownBits(Arg, 4);
  bool ZExtBool = (Bits.Zero & RequredZero) == RequredZero;
  return ZExtBool;
}

/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
/// and add input and output parameter nodes.
SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
                                 SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc &DL = CLI.DL;
  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  bool &IsTailCall = CLI.IsTailCall;
  CallingConv::ID &CallConv = CLI.CallConv;
  bool IsVarArg = CLI.IsVarArg;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFunction::CallSiteInfo CSInfo;
  bool IsThisReturn = false;

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
  bool IsSibCall = false;
  bool GuardWithBTI = false;

  if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
      !Subtarget->noBTIAtReturnTwice()) {
    GuardWithBTI = FuncInfo->branchTargetEnforcement();
  }

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());

  if (IsVarArg) {
    unsigned NumArgs = Outs.size();

    for (unsigned i = 0; i != NumArgs; ++i) {
      if (!Outs[i].IsFixed && Outs[i].VT.isScalableVector())
        report_fatal_error("Passing SVE types to variadic functions is "
                           "currently not supported");
    }
  }

  analyzeCallOperands(*this, Subtarget, CLI, CCInfo);

  CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState RetCCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                    *DAG.getContext());
  RetCCInfo.AnalyzeCallResult(Ins, RetCC);

  // Check callee args/returns for SVE registers and set calling convention
  // accordingly.
  if (CallConv == CallingConv::C || CallConv == CallingConv::Fast) {
    auto HasSVERegLoc = [](CCValAssign &Loc) {
      if (!Loc.isRegLoc())
        return false;
      return AArch64::ZPRRegClass.contains(Loc.getLocReg()) ||
             AArch64::PPRRegClass.contains(Loc.getLocReg());
    };
    if (any_of(RVLocs, HasSVERegLoc) || any_of(ArgLocs, HasSVERegLoc))
      CallConv = CallingConv::AArch64_SVE_VectorCall;
  }

  if (IsTailCall) {
    // Check if it's really possible to do a tail call.
    IsTailCall = isEligibleForTailCallOptimization(CLI);

    // A sibling call is one where we're under the usual C ABI and not planning
    // to change that but can still do a tail call:
    if (!TailCallOpt && IsTailCall && CallConv != CallingConv::Tail &&
        CallConv != CallingConv::SwiftTail)
      IsSibCall = true;

    if (IsTailCall)
      ++NumTailCalls;
  }

  if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
    report_fatal_error("failed to perform tail call elimination on a call "
                       "site marked musttail");

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();

  if (IsSibCall) {
    // Since we're not changing the ABI to make this a tail call, the memory
    // operands are already available in the caller's incoming argument space.
    NumBytes = 0;
  }

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0. Completely unused for non-tail calls.
  int FPDiff = 0;

  if (IsTailCall && !IsSibCall) {
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();

    // Since callee will pop argument stack as a tail call, we must keep the
    // popped size 16-byte aligned.
    NumBytes = alignTo(NumBytes, 16);

    // FPDiff will be negative if this tail call requires more space than we
    // would automatically have in our incoming argument space. Positive if we
    // can actually shrink the stack.
    FPDiff = NumReusableBytes - NumBytes;

    // Update the required reserved area if this is the tail call requiring the
    // most argument stack space.
    if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff)
      FuncInfo->setTailCallReservedStack(-FPDiff);

    // The stack pointer must be 16-byte aligned at all times it's used for a
    // memory operation, which in practice means at *all* times and in
    // particular across call boundaries. Therefore our own arguments started at
    // a 16-byte aligned SP and the delta applied for the tail call should
    // satisfy the same constraint.
    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
  }

  // Adjust the stack pointer for the new arguments...
  // These operations are automatically eliminated by the prolog/epilog pass
  if (!IsSibCall)
    Chain = DAG.getCALLSEQ_START(Chain, IsTailCall ? 0 : NumBytes, 0, DL);

  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
                                        getPointerTy(DAG.getDataLayout()));

  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
  SmallSet<unsigned, 8> RegsUsed;
  SmallVector<SDValue, 8> MemOpChains;
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  if (IsVarArg && CLI.CB && CLI.CB->isMustTailCall()) {
    const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
    for (const auto &F : Forwards) {
      SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
       RegsToPass.emplace_back(F.PReg, Val);
    }
  }

  // Walk the register/memloc assignments, inserting copies/loads.
  unsigned ExtraArgLocs = 0;
  for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i - ExtraArgLocs];
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      if (Outs[i].ArgVT == MVT::i1) {
        // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
        //
        // Check if we actually have to do this, because the value may
        // already be zero-extended.
        //
        // We cannot just emit a (zext i8 (trunc (assert-zext i8)))
        // and rely on DAGCombiner to fold this, because the following
        // (anyext i32) is combined with (zext i8) in DAG.getNode:
        //
        //   (ext (zext x)) -> (zext x)
        //
        // This will give us (zext i32), which we cannot remove, so
        // try to check this beforehand.
        if (!checkZExtBool(Arg, DAG)) {
          Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
          Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
        }
      }
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExtUpper:
      assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
                        DAG.getConstant(32, DL, VA.getLocVT()));
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getBitcast(VA.getLocVT(), Arg);
      break;
    case CCValAssign::Trunc:
      Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
      break;
    case CCValAssign::FPExt:
      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::Indirect:
      assert(VA.getValVT().isScalableVector() &&
             "Only scalable vectors can be passed indirectly");

      uint64_t StoreSize = VA.getValVT().getStoreSize().getKnownMinSize();
      uint64_t PartSize = StoreSize;
      unsigned NumParts = 1;
      if (Outs[i].Flags.isInConsecutiveRegs()) {
        assert(!Outs[i].Flags.isInConsecutiveRegsLast());
        while (!Outs[i + NumParts - 1].Flags.isInConsecutiveRegsLast())
          ++NumParts;
        StoreSize *= NumParts;
      }

      MachineFrameInfo &MFI = MF.getFrameInfo();
      Type *Ty = EVT(VA.getValVT()).getTypeForEVT(*DAG.getContext());
      Align Alignment = DAG.getDataLayout().getPrefTypeAlign(Ty);
      int FI = MFI.CreateStackObject(StoreSize, Alignment, false);
      MFI.setStackID(FI, TargetStackID::ScalableVector);

      MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
      SDValue Ptr = DAG.getFrameIndex(
          FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()));
      SDValue SpillSlot = Ptr;

      // Ensure we generate all stores for each tuple part, whilst updating the
      // pointer after each store correctly using vscale.
      while (NumParts) {
        Chain = DAG.getStore(Chain, DL, OutVals[i], Ptr, MPI);
        NumParts--;
        if (NumParts > 0) {
          SDValue BytesIncrement = DAG.getVScale(
              DL, Ptr.getValueType(),
              APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize));
          SDNodeFlags Flags;
          Flags.setNoUnsignedWrap(true);

          MPI = MachinePointerInfo(MPI.getAddrSpace());
          Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
                            BytesIncrement, Flags);
          ExtraArgLocs++;
          i++;
        }
      }

      Arg = SpillSlot;
      break;
    }

    if (VA.isRegLoc()) {
      if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
          Outs[0].VT == MVT::i64) {
        assert(VA.getLocVT() == MVT::i64 &&
               "unexpected calling convention register assignment");
        assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
               "unexpected use of 'returned'");
        IsThisReturn = true;
      }
      if (RegsUsed.count(VA.getLocReg())) {
        // If this register has already been used then we're trying to pack
        // parts of an [N x i32] into an X-register. The extension type will
        // take care of putting the two halves in the right place but we have to
        // combine them.
        SDValue &Bits =
            llvm::find_if(RegsToPass,
                          [=](const std::pair<unsigned, SDValue> &Elt) {
                            return Elt.first == VA.getLocReg();
                          })
                ->second;
        Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
        // Call site info is used for function's parameter entry value
        // tracking. For now we track only simple cases when parameter
        // is transferred through whole register.
        llvm::erase_if(CSInfo, [&VA](MachineFunction::ArgRegPair ArgReg) {
          return ArgReg.Reg == VA.getLocReg();
        });
      } else {
        RegsToPass.emplace_back(VA.getLocReg(), Arg);
        RegsUsed.insert(VA.getLocReg());
        const TargetOptions &Options = DAG.getTarget().Options;
        if (Options.EmitCallSiteInfo)
          CSInfo.emplace_back(VA.getLocReg(), i);
      }
    } else {
      assert(VA.isMemLoc());

      SDValue DstAddr;
      MachinePointerInfo DstInfo;

      // FIXME: This works on big-endian for composite byvals, which are the
      // common case. It should also work for fundamental types too.
      uint32_t BEAlign = 0;
      unsigned OpSize;
      if (VA.getLocInfo() == CCValAssign::Indirect ||
          VA.getLocInfo() == CCValAssign::Trunc)
        OpSize = VA.getLocVT().getFixedSizeInBits();
      else
        OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
                                 : VA.getValVT().getSizeInBits();
      OpSize = (OpSize + 7) / 8;
      if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
          !Flags.isInConsecutiveRegs()) {
        if (OpSize < 8)
          BEAlign = 8 - OpSize;
      }
      unsigned LocMemOffset = VA.getLocMemOffset();
      int32_t Offset = LocMemOffset + BEAlign;
      SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
      PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);

      if (IsTailCall) {
        Offset = Offset + FPDiff;
        int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);

        DstAddr = DAG.getFrameIndex(FI, PtrVT);
        DstInfo = MachinePointerInfo::getFixedStack(MF, FI);

        // Make sure any stack arguments overlapping with where we're storing
        // are loaded before this eventual operation. Otherwise they'll be
        // clobbered.
        Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
      } else {
        SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);

        DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
        DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
      }

      if (Outs[i].Flags.isByVal()) {
        SDValue SizeNode =
            DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
        SDValue Cpy = DAG.getMemcpy(
            Chain, DL, DstAddr, Arg, SizeNode,
            Outs[i].Flags.getNonZeroByValAlign(),
            /*isVol = */ false, /*AlwaysInline = */ false,
            /*isTailCall = */ false, DstInfo, MachinePointerInfo());

        MemOpChains.push_back(Cpy);
      } else {
        // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
        // promoted to a legal register type i32, we should truncate Arg back to
        // i1/i8/i16.
        if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
            VA.getValVT() == MVT::i16)
          Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);

        SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
        MemOpChains.push_back(Store);
      }
    }
  }

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (auto &RegToPass : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
                             RegToPass.second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    auto GV = G->getGlobal();
    unsigned OpFlags =
        Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine());
    if (OpFlags & AArch64II::MO_GOT) {
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
    } else {
      const GlobalValue *GV = G->getGlobal();
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
    }
  } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    if (getTargetMachine().getCodeModel() == CodeModel::Large &&
        Subtarget->isTargetMachO()) {
      const char *Sym = S->getSymbol();
      Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
    } else {
      const char *Sym = S->getSymbol();
      Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
    }
  }

  // We don't usually want to end the call-sequence here because we would tidy
  // the frame up *after* the call, however in the ABI-changing tail-call case
  // we've carefully laid out the parameters so that when sp is reset they'll be
  // in the correct location.
  if (IsTailCall && !IsSibCall) {
    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
                               DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
    InFlag = Chain.getValue(1);
  }

  std::vector<SDValue> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  if (IsTailCall) {
    // Each tail call may have to adjust the stack by a different amount, so
    // this information must travel along with the operation for eventual
    // consumption by emitEpilogue.
    Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
  }

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (auto &RegToPass : RegsToPass)
    Ops.push_back(DAG.getRegister(RegToPass.first,
                                  RegToPass.second.getValueType()));

  // Add a register mask operand representing the call-preserved registers.
  const uint32_t *Mask;
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  if (IsThisReturn) {
    // For 'this' returns, use the X0-preserving mask if applicable
    Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
    if (!Mask) {
      IsThisReturn = false;
      Mask = TRI->getCallPreservedMask(MF, CallConv);
    }
  } else
    Mask = TRI->getCallPreservedMask(MF, CallConv);

  if (Subtarget->hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  if (InFlag.getNode())
    Ops.push_back(InFlag);

  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  // If we're doing a tall call, use a TC_RETURN here rather than an
  // actual call instruction.
  if (IsTailCall) {
    MF.getFrameInfo().setHasTailCall();
    SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
    DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
    return Ret;
  }

  unsigned CallOpc = AArch64ISD::CALL;
  // Calls with operand bundle "clang.arc.attachedcall" are special. They should
  // be expanded to the call, directly followed by a special marker sequence and
  // a call to an ObjC library function.  Use CALL_RVMARKER to do that.
  if (CLI.CB && objcarc::hasAttachedCallOpBundle(CLI.CB)) {
    assert(!IsTailCall &&
           "tail calls cannot be marked with clang.arc.attachedcall");
    CallOpc = AArch64ISD::CALL_RVMARKER;

    // Add a target global address for the retainRV/claimRV runtime function
    // just before the call target.
    Function *ARCFn = *objcarc::getAttachedARCFunction(CLI.CB);
    auto GA = DAG.getTargetGlobalAddress(ARCFn, DL, PtrVT);
    Ops.insert(Ops.begin() + 1, GA);
  } else if (GuardWithBTI)
    CallOpc = AArch64ISD::CALL_BTI;

  // Returns a chain and a flag for retval copy to use.
  Chain = DAG.getNode(CallOpc, DL, NodeTys, Ops);
  DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
  InFlag = Chain.getValue(1);
  DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));

  uint64_t CalleePopBytes =
      DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;

  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
                             DAG.getIntPtrConstant(CalleePopBytes, DL, true),
                             InFlag, DL);
  if (!Ins.empty())
    InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, RVLocs, DL, DAG,
                         InVals, IsThisReturn,
                         IsThisReturn ? OutVals[0] : SDValue());
}

bool AArch64TargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
  CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, RetCC);
}

SDValue
AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                   bool isVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   const SmallVectorImpl<SDValue> &OutVals,
                                   const SDLoc &DL, SelectionDAG &DAG) const {
  auto &MF = DAG.getMachineFunction();
  auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
  CCInfo.AnalyzeReturn(Outs, RetCC);

  // Copy the result values into the output registers.
  SDValue Flag;
  SmallVector<std::pair<unsigned, SDValue>, 4> RetVals;
  SmallSet<unsigned, 4> RegsUsed;
  for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
       ++i, ++realRVLocIdx) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    SDValue Arg = OutVals[realRVLocIdx];

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      if (Outs[i].ArgVT == MVT::i1) {
        // AAPCS requires i1 to be zero-extended to i8 by the producer of the
        // value. This is strictly redundant on Darwin (which uses "zeroext
        // i1"), but will be optimised out before ISel.
        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      }
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
    case CCValAssign::ZExt:
      Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
      break;
    case CCValAssign::AExtUpper:
      assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
      Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
      Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
                        DAG.getConstant(32, DL, VA.getLocVT()));
      break;
    }

    if (RegsUsed.count(VA.getLocReg())) {
      SDValue &Bits =
          llvm::find_if(RetVals, [=](const std::pair<unsigned, SDValue> &Elt) {
            return Elt.first == VA.getLocReg();
          })->second;
      Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
    } else {
      RetVals.emplace_back(VA.getLocReg(), Arg);
      RegsUsed.insert(VA.getLocReg());
    }
  }

  SmallVector<SDValue, 4> RetOps(1, Chain);
  for (auto &RetVal : RetVals) {
    Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag);
    Flag = Chain.getValue(1);
    RetOps.push_back(
        DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
  }

  // Windows AArch64 ABIs require that for returning structs by value we copy
  // the sret argument into X0 for the return.
  // We saved the argument into a virtual register in the entry block,
  // so now we copy the value out and into X0.
  if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
    SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
                                     getPointerTy(MF.getDataLayout()));

    unsigned RetValReg = AArch64::X0;
    Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
    Flag = Chain.getValue(1);

    RetOps.push_back(
      DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
  }

  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&MF);
  if (I) {
    for (; *I; ++I) {
      if (AArch64::GPR64RegClass.contains(*I))
        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
      else if (AArch64::FPR64RegClass.contains(*I))
        RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
      else
        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
    }
  }

  RetOps[0] = Chain; // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
}

//===----------------------------------------------------------------------===//
//  Other Lowering Code
//===----------------------------------------------------------------------===//

SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
                                    N->getOffset(), Flag);
}

SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}

SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
                                   N->getOffset(), Flag);
}

SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}

// (loadGOT sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
                                      unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
  // FIXME: Once remat is capable of dealing with instructions with register
  // operands, expand this into two nodes instead of using a wrapper node.
  return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
}

// (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
                                            unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  const unsigned char MO_NC = AArch64II::MO_NC;
  return DAG.getNode(
      AArch64ISD::WrapperLarge, DL, Ty,
      getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
      getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
      getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
      getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
}

// (addlow (adrp %hi(sym)) %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
                                       unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
  SDValue Lo = getTargetNode(N, Ty, DAG,
                             AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
  return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
}

// (adr sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
                                           unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
  return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
}

SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
                                                  SelectionDAG &DAG) const {
  GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = GN->getGlobal();
  unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());

  if (OpFlags != AArch64II::MO_NO_FLAG)
    assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
           "unexpected offset in global node");

  // This also catches the large code model case for Darwin, and tiny code
  // model with got relocations.
  if ((OpFlags & AArch64II::MO_GOT) != 0) {
    return getGOT(GN, DAG, OpFlags);
  }

  SDValue Result;
  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
    Result = getAddrLarge(GN, DAG, OpFlags);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    Result = getAddrTiny(GN, DAG, OpFlags);
  } else {
    Result = getAddr(GN, DAG, OpFlags);
  }
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(GN);
  if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
  return Result;
}

/// Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address (for Darwin, currently) and
/// return an SDValue containing the final node.

/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
///     + "extern __thread" declaration.
///     + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i64] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first xword, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "x0".
///
/// Since this descriptor may be in a different unit, in general even the
/// descriptor must be accessed via an indirect load. The "ideal" code sequence
/// is:
///     adrp x0, _var@TLVPPAGE
///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
///                                      ; the function pointer
///     blr x1                           ; Uses descriptor address in x0
///     ; Address of _var is now in x0.
///
/// If the address of _var's descriptor *is* known to the linker, then it can
/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
/// a slight efficiency gain.
SDValue
AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
                                                   SelectionDAG &DAG) const {
  assert(Subtarget->isTargetDarwin() &&
         "This function expects a Darwin target");

  SDLoc DL(Op);
  MVT PtrVT = getPointerTy(DAG.getDataLayout());
  MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout());
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();

  SDValue TLVPAddr =
      DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
  SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);

  // The first entry in the descriptor is a function pointer that we must call
  // to obtain the address of the variable.
  SDValue Chain = DAG.getEntryNode();
  SDValue FuncTLVGet = DAG.getLoad(
      PtrMemVT, DL, Chain, DescAddr,
      MachinePointerInfo::getGOT(DAG.getMachineFunction()),
      Align(PtrMemVT.getSizeInBits() / 8),
      MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
  Chain = FuncTLVGet.getValue(1);

  // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
  FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT);

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setAdjustsStack(true);

  // TLS calls preserve all registers except those that absolutely must be
  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
  // silly).
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *Mask = TRI->getTLSCallPreservedMask();
  if (Subtarget->hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);

  // Finally, we can make the call. This is just a degenerate version of a
  // normal AArch64 call node: x0 takes the address of the descriptor, and
  // returns the address of the variable in this thread.
  Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
  Chain =
      DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
                  Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
                  DAG.getRegisterMask(Mask), Chain.getValue(1));
  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
}

/// Convert a thread-local variable reference into a sequence of instructions to
/// compute the variable's address for the local exec TLS model of ELF targets.
/// The sequence depends on the maximum TLS area size.
SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV,
                                                    SDValue ThreadBase,
                                                    const SDLoc &DL,
                                                    SelectionDAG &DAG) const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue TPOff, Addr;

  switch (DAG.getTarget().Options.TLSSize) {
  default:
    llvm_unreachable("Unexpected TLS size");

  case 12: {
    // mrs   x0, TPIDR_EL0
    // add   x0, x0, :tprel_lo12:a
    SDValue Var = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
    return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
                                      Var,
                                      DAG.getTargetConstant(0, DL, MVT::i32)),
                   0);
  }

  case 24: {
    // mrs   x0, TPIDR_EL0
    // add   x0, x0, :tprel_hi12:a
    // add   x0, x0, :tprel_lo12_nc:a
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
                                      HiVar,
                                      DAG.getTargetConstant(0, DL, MVT::i32)),
                   0);
    return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr,
                                      LoVar,
                                      DAG.getTargetConstant(0, DL, MVT::i32)),
                   0);
  }

  case 32: {
    // mrs   x1, TPIDR_EL0
    // movz  x0, #:tprel_g1:a
    // movk  x0, #:tprel_g0_nc:a
    // add   x0, x1, x0
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
                                       DAG.getTargetConstant(16, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
    return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
  }

  case 48: {
    // mrs   x1, TPIDR_EL0
    // movz  x0, #:tprel_g2:a
    // movk  x0, #:tprel_g1_nc:a
    // movk  x0, #:tprel_g0_nc:a
    // add   x0, x1, x0
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2);
    SDValue MiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
                                       DAG.getTargetConstant(32, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar,
                                       DAG.getTargetConstant(16, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
    return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
  }
  }
}

/// When accessing thread-local variables under either the general-dynamic or
/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
/// is a function pointer to carry out the resolution.
///
/// The sequence is:
///    adrp  x0, :tlsdesc:var
///    ldr   x1, [x0, #:tlsdesc_lo12:var]
///    add   x0, x0, #:tlsdesc_lo12:var
///    .tlsdesccall var
///    blr   x1
///    (TPIDR_EL0 offset now in x0)
///
///  The above sequence must be produced unscheduled, to enable the linker to
///  optimize/relax this sequence.
///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
///  above sequence, and expanded really late in the compilation flow, to ensure
///  the sequence is produced as per above.
SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
                                                      const SDLoc &DL,
                                                      SelectionDAG &DAG) const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  SDValue Chain = DAG.getEntryNode();
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  Chain =
      DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
  SDValue Glue = Chain.getValue(1);

  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
}

SDValue
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
                                                SelectionDAG &DAG) const {
  assert(Subtarget->isTargetELF() && "This function expects an ELF target");

  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);

  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());

  if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
    if (Model == TLSModel::LocalDynamic)
      Model = TLSModel::GeneralDynamic;
  }

  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
      Model != TLSModel::LocalExec)
    report_fatal_error("ELF TLS only supported in small memory model or "
                       "in local exec TLS model");
  // Different choices can be made for the maximum size of the TLS area for a
  // module. For the small address model, the default TLS size is 16MiB and the
  // maximum TLS size is 4GiB.
  // FIXME: add tiny and large code model support for TLS access models other
  // than local exec. We currently generate the same code as small for tiny,
  // which may be larger than needed.

  SDValue TPOff;
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);
  const GlobalValue *GV = GA->getGlobal();

  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);

  if (Model == TLSModel::LocalExec) {
    return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG);
  } else if (Model == TLSModel::InitialExec) {
    TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
    TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
  } else if (Model == TLSModel::LocalDynamic) {
    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
    // the beginning of the module's TLS region, followed by a DTPREL offset
    // calculation.

    // These accesses will need deduplicating if there's more than one.
    AArch64FunctionInfo *MFI =
        DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
    MFI->incNumLocalDynamicTLSAccesses();

    // The call needs a relocation too for linker relaxation. It doesn't make
    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
    // the address.
    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
                                                  AArch64II::MO_TLS);

    // Now we can calculate the offset from TPIDR_EL0 to this module's
    // thread-local area.
    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);

    // Now use :dtprel_whatever: operations to calculate this variable's offset
    // in its thread-storage area.
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, MVT::i64, 0,
        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);

    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
  } else if (Model == TLSModel::GeneralDynamic) {
    // The call needs a relocation too for linker relaxation. It doesn't make
    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
    // the address.
    SDValue SymAddr =
        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);

    // Finally we can make a call to calculate the offset from tpidr_el0.
    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
  } else
    llvm_unreachable("Unsupported ELF TLS access model");

  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}

SDValue
AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
                                                    SelectionDAG &DAG) const {
  assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");

  SDValue Chain = DAG.getEntryNode();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);

  SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);

  // Load the ThreadLocalStoragePointer from the TEB
  // A pointer to the TLS array is located at offset 0x58 from the TEB.
  SDValue TLSArray =
      DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
  TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
  Chain = TLSArray.getValue(1);

  // Load the TLS index from the C runtime;
  // This does the same as getAddr(), but without having a GlobalAddressSDNode.
  // This also does the same as LOADgot, but using a generic i32 load,
  // while LOADgot only loads i64.
  SDValue TLSIndexHi =
      DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
  SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
      "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
  SDValue TLSIndex =
      DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
  TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
  Chain = TLSIndex.getValue(1);

  // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
  // offset into the TLSArray.
  TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
  SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
                             DAG.getConstant(3, DL, PtrVT));
  SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
                            DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
                            MachinePointerInfo());
  Chain = TLS.getValue(1);

  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = GA->getGlobal();
  SDValue TGAHi = DAG.getTargetGlobalAddress(
      GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
  SDValue TGALo = DAG.getTargetGlobalAddress(
      GV, DL, PtrVT, 0,
      AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);

  // Add the offset from the start of the .tls section (section base).
  SDValue Addr =
      SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
                                 DAG.getTargetConstant(0, DL, MVT::i32)),
              0);
  Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
  return Addr;
}

SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
                                                     SelectionDAG &DAG) const {
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  if (DAG.getTarget().useEmulatedTLS())
    return LowerToTLSEmulatedModel(GA, DAG);

  if (Subtarget->isTargetDarwin())
    return LowerDarwinGlobalTLSAddress(Op, DAG);
  if (Subtarget->isTargetELF())
    return LowerELFGlobalTLSAddress(Op, DAG);
  if (Subtarget->isTargetWindows())
    return LowerWindowsGlobalTLSAddress(Op, DAG);

  llvm_unreachable("Unexpected platform trying to use TLS");
}

// Looks through \param Val to determine the bit that can be used to
// check the sign of the value. It returns the unextended value and
// the sign bit position.
std::pair<SDValue, uint64_t> lookThroughSignExtension(SDValue Val) {
  if (Val.getOpcode() == ISD::SIGN_EXTEND_INREG)
    return {Val.getOperand(0),
            cast<VTSDNode>(Val.getOperand(1))->getVT().getFixedSizeInBits() -
                1};

  if (Val.getOpcode() == ISD::SIGN_EXTEND)
    return {Val.getOperand(0),
            Val.getOperand(0)->getValueType(0).getFixedSizeInBits() - 1};

  return {Val, Val.getValueSizeInBits() - 1};
}

SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue Dest = Op.getOperand(4);
  SDLoc dl(Op);

  MachineFunction &MF = DAG.getMachineFunction();
  // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
  // will not be produced, as they are conditional branch instructions that do
  // not set flags.
  bool ProduceNonFlagSettingCondBr =
      !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);

  // Handle f128 first, since lowering it will result in comparing the return
  // value of a libcall against zero, which is just what the rest of LowerBR_CC
  // is expecting to deal with.
  if (LHS.getValueType() == MVT::f128) {
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);

    // If softenSetCCOperands returned a scalar, we need to compare the result
    // against zero to select between true and false values.
    if (!RHS.getNode()) {
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
  // instruction.
  if (ISD::isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
      return SDValue();

    // The actual operation with overflow check.
    AArch64CC::CondCode OFCC;
    SDValue Value, Overflow;
    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);

    if (CC == ISD::SETNE)
      OFCC = getInvertedCondCode(OFCC);
    SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);

    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
                       Overflow);
  }

  if (LHS.getValueType().isInteger()) {
    assert((LHS.getValueType() == RHS.getValueType()) &&
           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));

    // If the RHS of the comparison is zero, we can potentially fold this
    // to a specialized branch.
    const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
    if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
      if (CC == ISD::SETEQ) {
        // See if we can use a TBZ to fold in an AND as well.
        // TBZ has a smaller branch displacement than CBZ.  If the offset is
        // out of bounds, a late MI-layer pass rewrites branches.
        // 403.gcc is an example that hits this case.
        if (LHS.getOpcode() == ISD::AND &&
            isa<ConstantSDNode>(LHS.getOperand(1)) &&
            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
          SDValue Test = LHS.getOperand(0);
          uint64_t Mask = LHS.getConstantOperandVal(1);
          return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
                             Dest);
        }

        return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
      } else if (CC == ISD::SETNE) {
        // See if we can use a TBZ to fold in an AND as well.
        // TBZ has a smaller branch displacement than CBZ.  If the offset is
        // out of bounds, a late MI-layer pass rewrites branches.
        // 403.gcc is an example that hits this case.
        if (LHS.getOpcode() == ISD::AND &&
            isa<ConstantSDNode>(LHS.getOperand(1)) &&
            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
          SDValue Test = LHS.getOperand(0);
          uint64_t Mask = LHS.getConstantOperandVal(1);
          return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
                             Dest);
        }

        return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
      } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
        // Don't combine AND since emitComparison converts the AND to an ANDS
        // (a.k.a. TST) and the test in the test bit and branch instruction
        // becomes redundant.  This would also increase register pressure.
        uint64_t SignBitPos;
        std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS);
        return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
                           DAG.getConstant(SignBitPos, dl, MVT::i64), Dest);
      }
    }
    if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
        LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
      // Don't combine AND since emitComparison converts the AND to an ANDS
      // (a.k.a. TST) and the test in the test bit and branch instruction
      // becomes redundant.  This would also increase register pressure.
      uint64_t SignBitPos;
      std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS);
      return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
                         DAG.getConstant(SignBitPos, dl, MVT::i64), Dest);
    }

    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
                       Cmp);
  }

  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 ||
         LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);

  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
  // clean.  Some of them require two branches to implement.
  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
  AArch64CC::CondCode CC1, CC2;
  changeFPCCToAArch64CC(CC, CC1, CC2);
  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
  SDValue BR1 =
      DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
  if (CC2 != AArch64CC::AL) {
    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
                       Cmp);
  }

  return BR1;
}

SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
                                              SelectionDAG &DAG) const {
  if (!Subtarget->hasNEON())
    return SDValue();

  EVT VT = Op.getValueType();
  EVT IntVT = VT.changeTypeToInteger();
  SDLoc DL(Op);

  SDValue In1 = Op.getOperand(0);
  SDValue In2 = Op.getOperand(1);
  EVT SrcVT = In2.getValueType();

  if (SrcVT.bitsLT(VT))
    In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
  else if (SrcVT.bitsGT(VT))
    In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));

  if (VT.isScalableVector())
    IntVT =
        getPackedSVEVectorVT(VT.getVectorElementType().changeTypeToInteger());

  if (VT != In2.getValueType())
    return SDValue();

  auto BitCast = [this](EVT VT, SDValue Op, SelectionDAG &DAG) {
    if (VT.isScalableVector())
      return getSVESafeBitCast(VT, Op, DAG);

    return DAG.getBitcast(VT, Op);
  };

  SDValue VecVal1, VecVal2;
  EVT VecVT;
  auto SetVecVal = [&](int Idx = -1) {
    if (!VT.isVector()) {
      VecVal1 =
          DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In1);
      VecVal2 =
          DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In2);
    } else {
      VecVal1 = BitCast(VecVT, In1, DAG);
      VecVal2 = BitCast(VecVT, In2, DAG);
    }
  };
  if (VT.isVector()) {
    VecVT = IntVT;
    SetVecVal();
  } else if (VT == MVT::f64) {
    VecVT = MVT::v2i64;
    SetVecVal(AArch64::dsub);
  } else if (VT == MVT::f32) {
    VecVT = MVT::v4i32;
    SetVecVal(AArch64::ssub);
  } else if (VT == MVT::f16) {
    VecVT = MVT::v8i16;
    SetVecVal(AArch64::hsub);
  } else {
    llvm_unreachable("Invalid type for copysign!");
  }

  unsigned BitWidth = In1.getScalarValueSizeInBits();
  SDValue SignMaskV = DAG.getConstant(~APInt::getSignMask(BitWidth), DL, VecVT);

  // We want to materialize a mask with every bit but the high bit set, but the
  // AdvSIMD immediate moves cannot materialize that in a single instruction for
  // 64-bit elements. Instead, materialize all bits set and then negate that.
  if (VT == MVT::f64 || VT == MVT::v2f64) {
    SignMaskV = DAG.getConstant(APInt::getAllOnes(BitWidth), DL, VecVT);
    SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, SignMaskV);
    SignMaskV = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, SignMaskV);
    SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, SignMaskV);
  }

  SDValue BSP =
      DAG.getNode(AArch64ISD::BSP, DL, VecVT, SignMaskV, VecVal1, VecVal2);
  if (VT == MVT::f16)
    return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, BSP);
  if (VT == MVT::f32)
    return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, BSP);
  if (VT == MVT::f64)
    return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, BSP);

  return BitCast(VT, BSP, DAG);
}

SDValue AArch64TargetLowering::LowerCTPOP_PARITY(SDValue Op,
                                                 SelectionDAG &DAG) const {
  if (DAG.getMachineFunction().getFunction().hasFnAttribute(
          Attribute::NoImplicitFloat))
    return SDValue();

  if (!Subtarget->hasNEON())
    return SDValue();

  bool IsParity = Op.getOpcode() == ISD::PARITY;

  // While there is no integer popcount instruction, it can
  // be more efficiently lowered to the following sequence that uses
  // AdvSIMD registers/instructions as long as the copies to/from
  // the AdvSIMD registers are cheap.
  //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
  //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
  //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
  //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
  SDValue Val = Op.getOperand(0);
  SDLoc DL(Op);
  EVT VT = Op.getValueType();

  if (VT == MVT::i32 || VT == MVT::i64) {
    if (VT == MVT::i32)
      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
    Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);

    SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
    SDValue UaddLV = DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
        DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);

    if (IsParity)
      UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV,
                           DAG.getConstant(1, DL, MVT::i32));

    if (VT == MVT::i64)
      UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
    return UaddLV;
  } else if (VT == MVT::i128) {
    Val = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Val);

    SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v16i8, Val);
    SDValue UaddLV = DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
        DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);

    if (IsParity)
      UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV,
                           DAG.getConstant(1, DL, MVT::i32));

    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, UaddLV);
  }

  assert(!IsParity && "ISD::PARITY of vector types not supported");

  if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT))
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTPOP_MERGE_PASSTHRU);

  assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
          VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
         "Unexpected type for custom ctpop lowering");

  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
  Val = DAG.getBitcast(VT8Bit, Val);
  Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);

  // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
  unsigned EltSize = 8;
  unsigned NumElts = VT.is64BitVector() ? 8 : 16;
  while (EltSize != VT.getScalarSizeInBits()) {
    EltSize *= 2;
    NumElts /= 2;
    MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
    Val = DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
        DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
  }

  return Val;
}

SDValue AArch64TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isScalableVector() ||
         useSVEForFixedLengthVectorVT(
             VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()));

  SDLoc DL(Op);
  SDValue RBIT = DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(0));
  return DAG.getNode(ISD::CTLZ, DL, VT, RBIT);
}

SDValue AArch64TargetLowering::LowerMinMax(SDValue Op,
                                           SelectionDAG &DAG) const {

  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  unsigned Opcode = Op.getOpcode();
  ISD::CondCode CC;
  switch (Opcode) {
  default:
    llvm_unreachable("Wrong instruction");
  case ISD::SMAX:
    CC = ISD::SETGT;
    break;
  case ISD::SMIN:
    CC = ISD::SETLT;
    break;
  case ISD::UMAX:
    CC = ISD::SETUGT;
    break;
  case ISD::UMIN:
    CC = ISD::SETULT;
    break;
  }

  if (VT.isScalableVector() ||
      useSVEForFixedLengthVectorVT(
          VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) {
    switch (Opcode) {
    default:
      llvm_unreachable("Wrong instruction");
    case ISD::SMAX:
      return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMAX_PRED);
    case ISD::SMIN:
      return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMIN_PRED);
    case ISD::UMAX:
      return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMAX_PRED);
    case ISD::UMIN:
      return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMIN_PRED);
    }
  }

  SDValue Op0 = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
  return DAG.getSelect(DL, VT, Cond, Op0, Op1);
}

SDValue AArch64TargetLowering::LowerBitreverse(SDValue Op,
                                               SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  if (VT.isScalableVector() ||
      useSVEForFixedLengthVectorVT(
          VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()))
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::BITREVERSE_MERGE_PASSTHRU);

  SDLoc DL(Op);
  SDValue REVB;
  MVT VST;

  switch (VT.getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("Invalid type for bitreverse!");

  case MVT::v2i32: {
    VST = MVT::v8i8;
    REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0));

    break;
  }

  case MVT::v4i32: {
    VST = MVT::v16i8;
    REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0));

    break;
  }

  case MVT::v1i64: {
    VST = MVT::v8i8;
    REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0));

    break;
  }

  case MVT::v2i64: {
    VST = MVT::v16i8;
    REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0));

    break;
  }
  }

  return DAG.getNode(AArch64ISD::NVCAST, DL, VT,
                     DAG.getNode(ISD::BITREVERSE, DL, VST, REVB));
}

SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {

  if (Op.getValueType().isVector())
    return LowerVSETCC(Op, DAG);

  bool IsStrict = Op->isStrictFPOpcode();
  bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
  unsigned OpNo = IsStrict ? 1 : 0;
  SDValue Chain;
  if (IsStrict)
    Chain = Op.getOperand(0);
  SDValue LHS = Op.getOperand(OpNo + 0);
  SDValue RHS = Op.getOperand(OpNo + 1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get();
  SDLoc dl(Op);

  // We chose ZeroOrOneBooleanContents, so use zero and one.
  EVT VT = Op.getValueType();
  SDValue TVal = DAG.getConstant(1, dl, VT);
  SDValue FVal = DAG.getConstant(0, dl, VT);

  // Handle f128 first, since one possible outcome is a normal integer
  // comparison which gets picked up by the next if statement.
  if (LHS.getValueType() == MVT::f128) {
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain,
                        IsSignaling);

    // If softenSetCCOperands returned a scalar, use it.
    if (!RHS.getNode()) {
      assert(LHS.getValueType() == Op.getValueType() &&
             "Unexpected setcc expansion!");
      return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS;
    }
  }

  if (LHS.getValueType().isInteger()) {
    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(
        LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl);

    // Note that we inverted the condition above, so we reverse the order of
    // the true and false operands here.  This will allow the setcc to be
    // matched to a single CSINC instruction.
    SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
    return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res;
  }

  // Now we know we're dealing with FP values.
  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
         LHS.getValueType() == MVT::f64);

  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
  // and do the comparison.
  SDValue Cmp;
  if (IsStrict)
    Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling);
  else
    Cmp = emitComparison(LHS, RHS, CC, dl, DAG);

  AArch64CC::CondCode CC1, CC2;
  changeFPCCToAArch64CC(CC, CC1, CC2);
  SDValue Res;
  if (CC2 == AArch64CC::AL) {
    changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1,
                          CC2);
    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);

    // Note that we inverted the condition above, so we reverse the order of
    // the true and false operands here.  This will allow the setcc to be
    // matched to a single CSINC instruction.
    Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
  } else {
    // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
    // totally clean.  Some of them require two CSELs to implement.  As is in
    // this case, we emit the first CSEL and then emit a second using the output
    // of the first as the RHS.  We're effectively OR'ing the two CC's together.

    // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
    SDValue CS1 =
        DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);

    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
    Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
  }
  return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res;
}

SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
                                              SDValue RHS, SDValue TVal,
                                              SDValue FVal, const SDLoc &dl,
                                              SelectionDAG &DAG) const {
  // Handle f128 first, because it will result in a comparison of some RTLIB
  // call result against zero.
  if (LHS.getValueType() == MVT::f128) {
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);

    // If softenSetCCOperands returned a scalar, we need to compare the result
    // against zero to select between true and false values.
    if (!RHS.getNode()) {
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  // Also handle f16, for which we need to do a f32 comparison.
  if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
    LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
    RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
  }

  // Next, handle integers.
  if (LHS.getValueType().isInteger()) {
    assert((LHS.getValueType() == RHS.getValueType()) &&
           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));

    ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
    ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
    ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
    // Check for sign pattern (SELECT_CC setgt, iN lhs, -1, 1, -1) and transform
    // into (OR (ASR lhs, N-1), 1), which requires less instructions for the
    // supported types.
    if (CC == ISD::SETGT && RHSC && RHSC->isAllOnes() && CTVal && CFVal &&
        CTVal->isOne() && CFVal->isAllOnes() &&
        LHS.getValueType() == TVal.getValueType()) {
      EVT VT = LHS.getValueType();
      SDValue Shift =
          DAG.getNode(ISD::SRA, dl, VT, LHS,
                      DAG.getConstant(VT.getSizeInBits() - 1, dl, VT));
      return DAG.getNode(ISD::OR, dl, VT, Shift, DAG.getConstant(1, dl, VT));
    }

    unsigned Opcode = AArch64ISD::CSEL;

    // If both the TVal and the FVal are constants, see if we can swap them in
    // order to for a CSINV or CSINC out of them.
    if (CTVal && CFVal && CTVal->isAllOnes() && CFVal->isZero()) {
      std::swap(TVal, FVal);
      std::swap(CTVal, CFVal);
      CC = ISD::getSetCCInverse(CC, LHS.getValueType());
    } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isZero()) {
      std::swap(TVal, FVal);
      std::swap(CTVal, CFVal);
      CC = ISD::getSetCCInverse(CC, LHS.getValueType());
    } else if (TVal.getOpcode() == ISD::XOR) {
      // If TVal is a NOT we want to swap TVal and FVal so that we can match
      // with a CSINV rather than a CSEL.
      if (isAllOnesConstant(TVal.getOperand(1))) {
        std::swap(TVal, FVal);
        std::swap(CTVal, CFVal);
        CC = ISD::getSetCCInverse(CC, LHS.getValueType());
      }
    } else if (TVal.getOpcode() == ISD::SUB) {
      // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
      // that we can match with a CSNEG rather than a CSEL.
      if (isNullConstant(TVal.getOperand(0))) {
        std::swap(TVal, FVal);
        std::swap(CTVal, CFVal);
        CC = ISD::getSetCCInverse(CC, LHS.getValueType());
      }
    } else if (CTVal && CFVal) {
      const int64_t TrueVal = CTVal->getSExtValue();
      const int64_t FalseVal = CFVal->getSExtValue();
      bool Swap = false;

      // If both TVal and FVal are constants, see if FVal is the
      // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
      // instead of a CSEL in that case.
      if (TrueVal == ~FalseVal) {
        Opcode = AArch64ISD::CSINV;
      } else if (FalseVal > std::numeric_limits<int64_t>::min() &&
                 TrueVal == -FalseVal) {
        Opcode = AArch64ISD::CSNEG;
      } else if (TVal.getValueType() == MVT::i32) {
        // If our operands are only 32-bit wide, make sure we use 32-bit
        // arithmetic for the check whether we can use CSINC. This ensures that
        // the addition in the check will wrap around properly in case there is
        // an overflow (which would not be the case if we do the check with
        // 64-bit arithmetic).
        const uint32_t TrueVal32 = CTVal->getZExtValue();
        const uint32_t FalseVal32 = CFVal->getZExtValue();

        if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
          Opcode = AArch64ISD::CSINC;

          if (TrueVal32 > FalseVal32) {
            Swap = true;
          }
        }
        // 64-bit check whether we can use CSINC.
      } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
        Opcode = AArch64ISD::CSINC;

        if (TrueVal > FalseVal) {
          Swap = true;
        }
      }

      // Swap TVal and FVal if necessary.
      if (Swap) {
        std::swap(TVal, FVal);
        std::swap(CTVal, CFVal);
        CC = ISD::getSetCCInverse(CC, LHS.getValueType());
      }

      if (Opcode != AArch64ISD::CSEL) {
        // Drop FVal since we can get its value by simply inverting/negating
        // TVal.
        FVal = TVal;
      }
    }

    // Avoid materializing a constant when possible by reusing a known value in
    // a register.  However, don't perform this optimization if the known value
    // is one, zero or negative one in the case of a CSEL.  We can always
    // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
    // FVal, respectively.
    ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
    if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
        !RHSVal->isZero() && !RHSVal->isAllOnes()) {
      AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
      // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
      // "a != C ? x : a" to avoid materializing C.
      if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
        TVal = LHS;
      else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
        FVal = LHS;
    } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
      assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
      // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
      // avoid materializing C.
      AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
      if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
        Opcode = AArch64ISD::CSINV;
        TVal = LHS;
        FVal = DAG.getConstant(0, dl, FVal.getValueType());
      }
    }

    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
    EVT VT = TVal.getValueType();
    return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
  }

  // Now we know we're dealing with FP values.
  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
         LHS.getValueType() == MVT::f64);
  assert(LHS.getValueType() == RHS.getValueType());
  EVT VT = TVal.getValueType();
  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);

  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
  // clean.  Some of them require two CSELs to implement.
  AArch64CC::CondCode CC1, CC2;
  changeFPCCToAArch64CC(CC, CC1, CC2);

  if (DAG.getTarget().Options.UnsafeFPMath) {
    // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
    // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
    ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
    if (RHSVal && RHSVal->isZero()) {
      ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
      ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);

      if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
          CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
        TVal = LHS;
      else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
               CFVal && CFVal->isZero() &&
               FVal.getValueType() == LHS.getValueType())
        FVal = LHS;
    }
  }

  // Emit first, and possibly only, CSEL.
  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
  SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);

  // If we need a second CSEL, emit it, using the output of the first as the
  // RHS.  We're effectively OR'ing the two CC's together.
  if (CC2 != AArch64CC::AL) {
    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
  }

  // Otherwise, return the output of the first CSEL.
  return CS1;
}

SDValue AArch64TargetLowering::LowerVECTOR_SPLICE(SDValue Op,
                                                  SelectionDAG &DAG) const {
  EVT Ty = Op.getValueType();
  auto Idx = Op.getConstantOperandAPInt(2);
  int64_t IdxVal = Idx.getSExtValue();
  assert(Ty.isScalableVector() &&
         "Only expect scalable vectors for custom lowering of VECTOR_SPLICE");

  // We can use the splice instruction for certain index values where we are
  // able to efficiently generate the correct predicate. The index will be
  // inverted and used directly as the input to the ptrue instruction, i.e.
  // -1 -> vl1, -2 -> vl2, etc. The predicate will then be reversed to get the
  // splice predicate. However, we can only do this if we can guarantee that
  // there are enough elements in the vector, hence we check the index <= min
  // number of elements.
  Optional<unsigned> PredPattern;
  if (Ty.isScalableVector() && IdxVal < 0 &&
      (PredPattern = getSVEPredPatternFromNumElements(std::abs(IdxVal))) !=
          None) {
    SDLoc DL(Op);

    // Create a predicate where all but the last -IdxVal elements are false.
    EVT PredVT = Ty.changeVectorElementType(MVT::i1);
    SDValue Pred = getPTrue(DAG, DL, PredVT, *PredPattern);
    Pred = DAG.getNode(ISD::VECTOR_REVERSE, DL, PredVT, Pred);

    // Now splice the two inputs together using the predicate.
    return DAG.getNode(AArch64ISD::SPLICE, DL, Ty, Pred, Op.getOperand(0),
                       Op.getOperand(1));
  }

  // This will select to an EXT instruction, which has a maximum immediate
  // value of 255, hence 2048-bits is the maximum value we can lower.
  if (IdxVal >= 0 &&
      IdxVal < int64_t(2048 / Ty.getVectorElementType().getSizeInBits()))
    return Op;

  return SDValue();
}

SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
                                              SelectionDAG &DAG) const {
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue TVal = Op.getOperand(2);
  SDValue FVal = Op.getOperand(3);
  SDLoc DL(Op);
  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
}

SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
                                           SelectionDAG &DAG) const {
  SDValue CCVal = Op->getOperand(0);
  SDValue TVal = Op->getOperand(1);
  SDValue FVal = Op->getOperand(2);
  SDLoc DL(Op);

  EVT Ty = Op.getValueType();
  if (Ty.isScalableVector()) {
    SDValue TruncCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, CCVal);
    MVT PredVT = MVT::getVectorVT(MVT::i1, Ty.getVectorElementCount());
    SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, TruncCC);
    return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal);
  }

  if (useSVEForFixedLengthVectorVT(Ty)) {
    // FIXME: Ideally this would be the same as above using i1 types, however
    // for the moment we can't deal with fixed i1 vector types properly, so
    // instead extend the predicate to a result type sized integer vector.
    MVT SplatValVT = MVT::getIntegerVT(Ty.getScalarSizeInBits());
    MVT PredVT = MVT::getVectorVT(SplatValVT, Ty.getVectorElementCount());
    SDValue SplatVal = DAG.getSExtOrTrunc(CCVal, DL, SplatValVT);
    SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, SplatVal);
    return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal);
  }

  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
  // instruction.
  if (ISD::isOverflowIntrOpRes(CCVal)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
      return SDValue();

    AArch64CC::CondCode OFCC;
    SDValue Value, Overflow;
    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
    SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);

    return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
                       CCVal, Overflow);
  }

  // Lower it the same way as we would lower a SELECT_CC node.
  ISD::CondCode CC;
  SDValue LHS, RHS;
  if (CCVal.getOpcode() == ISD::SETCC) {
    LHS = CCVal.getOperand(0);
    RHS = CCVal.getOperand(1);
    CC = cast<CondCodeSDNode>(CCVal.getOperand(2))->get();
  } else {
    LHS = CCVal;
    RHS = DAG.getConstant(0, DL, CCVal.getValueType());
    CC = ISD::SETNE;
  }
  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
}

SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
                                              SelectionDAG &DAG) const {
  // Jump table entries as PC relative offsets. No additional tweaking
  // is necessary here. Just get the address of the jump table.
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);

  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
      !Subtarget->isTargetMachO()) {
    return getAddrLarge(JT, DAG);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    return getAddrTiny(JT, DAG);
  }
  return getAddr(JT, DAG);
}

SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
                                          SelectionDAG &DAG) const {
  // Jump table entries as PC relative offsets. No additional tweaking
  // is necessary here. Just get the address of the jump table.
  SDLoc DL(Op);
  SDValue JT = Op.getOperand(1);
  SDValue Entry = Op.getOperand(2);
  int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();

  auto *AFI = DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
  AFI->setJumpTableEntryInfo(JTI, 4, nullptr);

  SDNode *Dest =
      DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
                         Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
                     SDValue(Dest, 0));
}

SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
                                                 SelectionDAG &DAG) const {
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);

  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
    // Use the GOT for the large code model on iOS.
    if (Subtarget->isTargetMachO()) {
      return getGOT(CP, DAG);
    }
    return getAddrLarge(CP, DAG);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    return getAddrTiny(CP, DAG);
  } else {
    return getAddr(CP, DAG);
  }
}

SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
                                               SelectionDAG &DAG) const {
  BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
      !Subtarget->isTargetMachO()) {
    return getAddrLarge(BA, DAG);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    return getAddrTiny(BA, DAG);
  }
  return getAddr(BA, DAG);
}

SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
                                                 SelectionDAG &DAG) const {
  AArch64FunctionInfo *FuncInfo =
      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();

  SDLoc DL(Op);
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
                                 getPointerTy(DAG.getDataLayout()));
  FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout()));
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
                                                  SelectionDAG &DAG) const {
  AArch64FunctionInfo *FuncInfo =
      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();

  SDLoc DL(Op);
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
                                     ? FuncInfo->getVarArgsGPRIndex()
                                     : FuncInfo->getVarArgsStackIndex(),
                                 getPointerTy(DAG.getDataLayout()));
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
                                                  SelectionDAG &DAG) const {
  // The layout of the va_list struct is specified in the AArch64 Procedure Call
  // Standard, section B.3.
  MachineFunction &MF = DAG.getMachineFunction();
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
  auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);

  SDValue Chain = Op.getOperand(0);
  SDValue VAList = Op.getOperand(1);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  SmallVector<SDValue, 4> MemOps;

  // void *__stack at offset 0
  unsigned Offset = 0;
  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
  Stack = DAG.getZExtOrTrunc(Stack, DL, PtrMemVT);
  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
                                MachinePointerInfo(SV), Align(PtrSize)));

  // void *__gr_top at offset 8 (4 on ILP32)
  Offset += PtrSize;
  int GPRSize = FuncInfo->getVarArgsGPRSize();
  if (GPRSize > 0) {
    SDValue GRTop, GRTopAddr;

    GRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                            DAG.getConstant(Offset, DL, PtrVT));

    GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
    GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
                        DAG.getConstant(GPRSize, DL, PtrVT));
    GRTop = DAG.getZExtOrTrunc(GRTop, DL, PtrMemVT);

    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
                                  MachinePointerInfo(SV, Offset),
                                  Align(PtrSize)));
  }

  // void *__vr_top at offset 16 (8 on ILP32)
  Offset += PtrSize;
  int FPRSize = FuncInfo->getVarArgsFPRSize();
  if (FPRSize > 0) {
    SDValue VRTop, VRTopAddr;
    VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                            DAG.getConstant(Offset, DL, PtrVT));

    VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
    VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
                        DAG.getConstant(FPRSize, DL, PtrVT));
    VRTop = DAG.getZExtOrTrunc(VRTop, DL, PtrMemVT);

    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
                                  MachinePointerInfo(SV, Offset),
                                  Align(PtrSize)));
  }

  // int __gr_offs at offset 24 (12 on ILP32)
  Offset += PtrSize;
  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                                   DAG.getConstant(Offset, DL, PtrVT));
  MemOps.push_back(
      DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32),
                   GROffsAddr, MachinePointerInfo(SV, Offset), Align(4)));

  // int __vr_offs at offset 28 (16 on ILP32)
  Offset += 4;
  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                                   DAG.getConstant(Offset, DL, PtrVT));
  MemOps.push_back(
      DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32),
                   VROffsAddr, MachinePointerInfo(SV, Offset), Align(4)));

  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}

SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
                                            SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();

  if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
    return LowerWin64_VASTART(Op, DAG);
  else if (Subtarget->isTargetDarwin())
    return LowerDarwin_VASTART(Op, DAG);
  else
    return LowerAAPCS_VASTART(Op, DAG);
}

SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
                                           SelectionDAG &DAG) const {
  // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
  // pointer.
  SDLoc DL(Op);
  unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
  unsigned VaListSize =
      (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
          ? PtrSize
          : Subtarget->isTargetILP32() ? 20 : 32;
  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();

  return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2),
                       DAG.getConstant(VaListSize, DL, MVT::i32),
                       Align(PtrSize), false, false, false,
                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
}

SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
  assert(Subtarget->isTargetDarwin() &&
         "automatic va_arg instruction only works on Darwin");

  const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  SDValue Chain = Op.getOperand(0);
  SDValue Addr = Op.getOperand(1);
  MaybeAlign Align(Op.getConstantOperandVal(3));
  unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8;
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
  SDValue VAList =
      DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V));
  Chain = VAList.getValue(1);
  VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT);

  if (VT.isScalableVector())
    report_fatal_error("Passing SVE types to variadic functions is "
                       "currently not supported");

  if (Align && *Align > MinSlotSize) {
    VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                         DAG.getConstant(Align->value() - 1, DL, PtrVT));
    VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
                         DAG.getConstant(-(int64_t)Align->value(), DL, PtrVT));
  }

  Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
  unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);

  // Scalar integer and FP values smaller than 64 bits are implicitly extended
  // up to 64 bits.  At the very least, we have to increase the striding of the
  // vaargs list to match this, and for FP values we need to introduce
  // FP_ROUND nodes as well.
  if (VT.isInteger() && !VT.isVector())
    ArgSize = std::max(ArgSize, MinSlotSize);
  bool NeedFPTrunc = false;
  if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
    ArgSize = 8;
    NeedFPTrunc = true;
  }

  // Increment the pointer, VAList, to the next vaarg
  SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                               DAG.getConstant(ArgSize, DL, PtrVT));
  VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT);

  // Store the incremented VAList to the legalized pointer
  SDValue APStore =
      DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));

  // Load the actual argument out of the pointer VAList
  if (NeedFPTrunc) {
    // Load the value as an f64.
    SDValue WideFP =
        DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
    // Round the value down to an f32.
    SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
                                   DAG.getIntPtrConstant(1, DL));
    SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
    // Merge the rounded value with the chain output of the load.
    return DAG.getMergeValues(Ops, DL);
  }

  return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
}

SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
                                              SelectionDAG &DAG) const {
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDValue FrameAddr =
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64);
  while (Depth--)
    FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
                            MachinePointerInfo());

  if (Subtarget->isTargetILP32())
    FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr,
                            DAG.getValueType(VT));

  return FrameAddr;
}

SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
                                              SelectionDAG &DAG) const {
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();

  EVT VT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);
  int FI = MFI.CreateFixedObject(4, 0, false);
  return DAG.getFrameIndex(FI, VT);
}

#define GET_REGISTER_MATCHER
#include "AArch64GenAsmMatcher.inc"

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register AArch64TargetLowering::
getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const {
  Register Reg = MatchRegisterName(RegName);
  if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
    const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
    unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
    if (!Subtarget->isXRegisterReserved(DwarfRegNum))
      Reg = 0;
  }
  if (Reg)
    return Reg;
  report_fatal_error(Twine("Invalid register name \""
                              + StringRef(RegName)  + "\"."));
}

SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
                                                     SelectionDAG &DAG) const {
  DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  SDValue FrameAddr =
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
  SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));

  return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
}

SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
                                               SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setReturnAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDValue ReturnAddress;
  if (Depth) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
    ReturnAddress = DAG.getLoad(
        VT, DL, DAG.getEntryNode(),
        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo());
  } else {
    // Return LR, which contains the return address. Mark it an implicit
    // live-in.
    Register Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
    ReturnAddress = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
  }

  // The XPACLRI instruction assembles to a hint-space instruction before
  // Armv8.3-A therefore this instruction can be safely used for any pre
  // Armv8.3-A architectures. On Armv8.3-A and onwards XPACI is available so use
  // that instead.
  SDNode *St;
  if (Subtarget->hasPAuth()) {
    St = DAG.getMachineNode(AArch64::XPACI, DL, VT, ReturnAddress);
  } else {
    // XPACLRI operates on LR therefore we must move the operand accordingly.
    SDValue Chain =
        DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::LR, ReturnAddress);
    St = DAG.getMachineNode(AArch64::XPACLRI, DL, VT, Chain);
  }
  return SDValue(St, 0);
}

/// LowerShiftParts - Lower SHL_PARTS/SRA_PARTS/SRL_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftParts(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Lo, Hi;
  expandShiftParts(Op.getNode(), Lo, Hi, DAG);
  return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
}

bool AArch64TargetLowering::isOffsetFoldingLegal(
    const GlobalAddressSDNode *GA) const {
  // Offsets are folded in the DAG combine rather than here so that we can
  // intelligently choose an offset based on the uses.
  return false;
}

bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                         bool OptForSize) const {
  bool IsLegal = false;
  // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
  // 16-bit case when target has full fp16 support.
  // FIXME: We should be able to handle f128 as well with a clever lowering.
  const APInt ImmInt = Imm.bitcastToAPInt();
  if (VT == MVT::f64)
    IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
  else if (VT == MVT::f32)
    IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
  else if (VT == MVT::f16 && Subtarget->hasFullFP16())
    IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
  // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
  //       generate that fmov.

  // If we can not materialize in immediate field for fmov, check if the
  // value can be encoded as the immediate operand of a logical instruction.
  // The immediate value will be created with either MOVZ, MOVN, or ORR.
  if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
    // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
    // however the mov+fmov sequence is always better because of the reduced
    // cache pressure. The timings are still the same if you consider
    // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
    // movw+movk is fused). So we limit up to 2 instrdduction at most.
    SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
    AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
			      Insn);
    unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
    IsLegal = Insn.size() <= Limit;
  }

  LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
                    << " imm value: "; Imm.dump(););
  return IsLegal;
}

//===----------------------------------------------------------------------===//
//                          AArch64 Optimization Hooks
//===----------------------------------------------------------------------===//

static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
                           SDValue Operand, SelectionDAG &DAG,
                           int &ExtraSteps) {
  EVT VT = Operand.getValueType();
  if ((ST->hasNEON() &&
       (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
        VT == MVT::f32 || VT == MVT::v1f32 || VT == MVT::v2f32 ||
        VT == MVT::v4f32)) ||
      (ST->hasSVE() &&
       (VT == MVT::nxv8f16 || VT == MVT::nxv4f32 || VT == MVT::nxv2f64))) {
    if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
      // For the reciprocal estimates, convergence is quadratic, so the number
      // of digits is doubled after each iteration.  In ARMv8, the accuracy of
      // the initial estimate is 2^-8.  Thus the number of extra steps to refine
      // the result for float (23 mantissa bits) is 2 and for double (52
      // mantissa bits) is 3.
      ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;

    return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
  }

  return SDValue();
}

SDValue
AArch64TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
                                        const DenormalMode &Mode) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
  SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
  return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
}

SDValue
AArch64TargetLowering::getSqrtResultForDenormInput(SDValue Op,
                                                   SelectionDAG &DAG) const {
  return Op;
}

SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
                                               SelectionDAG &DAG, int Enabled,
                                               int &ExtraSteps,
                                               bool &UseOneConst,
                                               bool Reciprocal) const {
  if (Enabled == ReciprocalEstimate::Enabled ||
      (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
    if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
                                       DAG, ExtraSteps)) {
      SDLoc DL(Operand);
      EVT VT = Operand.getValueType();

      SDNodeFlags Flags;
      Flags.setAllowReassociation(true);

      // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
      // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
      for (int i = ExtraSteps; i > 0; --i) {
        SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
                                   Flags);
        Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
      }
      if (!Reciprocal)
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);

      ExtraSteps = 0;
      return Estimate;
    }

  return SDValue();
}

SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
                                                SelectionDAG &DAG, int Enabled,
                                                int &ExtraSteps) const {
  if (Enabled == ReciprocalEstimate::Enabled)
    if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
                                       DAG, ExtraSteps)) {
      SDLoc DL(Operand);
      EVT VT = Operand.getValueType();

      SDNodeFlags Flags;
      Flags.setAllowReassociation(true);

      // Newton reciprocal iteration: E * (2 - X * E)
      // AArch64 reciprocal iteration instruction: (2 - M * N)
      for (int i = ExtraSteps; i > 0; --i) {
        SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
                                   Estimate, Flags);
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
      }

      ExtraSteps = 0;
      return Estimate;
    }

  return SDValue();
}

//===----------------------------------------------------------------------===//
//                          AArch64 Inline Assembly Support
//===----------------------------------------------------------------------===//

// Table of Constraints
// TODO: This is the current set of constraints supported by ARM for the
// compiler, not all of them may make sense.
//
// r - A general register
// w - An FP/SIMD register of some size in the range v0-v31
// x - An FP/SIMD register of some size in the range v0-v15
// I - Constant that can be used with an ADD instruction
// J - Constant that can be used with a SUB instruction
// K - Constant that can be used with a 32-bit logical instruction
// L - Constant that can be used with a 64-bit logical instruction
// M - Constant that can be used as a 32-bit MOV immediate
// N - Constant that can be used as a 64-bit MOV immediate
// Q - A memory reference with base register and no offset
// S - A symbolic address
// Y - Floating point constant zero
// Z - Integer constant zero
//
//   Note that general register operands will be output using their 64-bit x
// register name, whatever the size of the variable, unless the asm operand
// is prefixed by the %w modifier. Floating-point and SIMD register operands
// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
// %q modifier.
const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
  // At this point, we have to lower this constraint to something else, so we
  // lower it to an "r" or "w". However, by doing this we will force the result
  // to be in register, while the X constraint is much more permissive.
  //
  // Although we are correct (we are free to emit anything, without
  // constraints), we might break use cases that would expect us to be more
  // efficient and emit something else.
  if (!Subtarget->hasFPARMv8())
    return "r";

  if (ConstraintVT.isFloatingPoint())
    return "w";

  if (ConstraintVT.isVector() &&
     (ConstraintVT.getSizeInBits() == 64 ||
      ConstraintVT.getSizeInBits() == 128))
    return "w";

  return "r";
}

enum PredicateConstraint {
  Upl,
  Upa,
  Invalid
};

static PredicateConstraint parsePredicateConstraint(StringRef Constraint) {
  PredicateConstraint P = PredicateConstraint::Invalid;
  if (Constraint == "Upa")
    P = PredicateConstraint::Upa;
  if (Constraint == "Upl")
    P = PredicateConstraint::Upl;
  return P;
}

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    default:
      break;
    case 'x':
    case 'w':
    case 'y':
      return C_RegisterClass;
    // An address with a single base register. Due to the way we
    // currently handle addresses it is the same as 'r'.
    case 'Q':
      return C_Memory;
    case 'I':
    case 'J':
    case 'K':
    case 'L':
    case 'M':
    case 'N':
    case 'Y':
    case 'Z':
      return C_Immediate;
    case 'z':
    case 'S': // A symbolic address
      return C_Other;
    }
  } else if (parsePredicateConstraint(Constraint) !=
             PredicateConstraint::Invalid)
      return C_RegisterClass;
  return TargetLowering::getConstraintType(Constraint);
}

/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
AArch64TargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;
  // If we don't have a value, we can't do a match,
  // but allow it at the lowest weight.
  if (!CallOperandVal)
    return CW_Default;
  Type *type = CallOperandVal->getType();
  // Look at the constraint type.
  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'x':
  case 'w':
  case 'y':
    if (type->isFloatingPointTy() || type->isVectorTy())
      weight = CW_Register;
    break;
  case 'z':
    weight = CW_Constant;
    break;
  case 'U':
    if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid)
      weight = CW_Register;
    break;
  }
  return weight;
}

std::pair<unsigned, const TargetRegisterClass *>
AArch64TargetLowering::getRegForInlineAsmConstraint(
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':
      if (VT.isScalableVector())
        return std::make_pair(0U, nullptr);
      if (Subtarget->hasLS64() && VT.getSizeInBits() == 512)
        return std::make_pair(0U, &AArch64::GPR64x8ClassRegClass);
      if (VT.getFixedSizeInBits() == 64)
        return std::make_pair(0U, &AArch64::GPR64commonRegClass);
      return std::make_pair(0U, &AArch64::GPR32commonRegClass);
    case 'w': {
      if (!Subtarget->hasFPARMv8())
        break;
      if (VT.isScalableVector()) {
        if (VT.getVectorElementType() != MVT::i1)
          return std::make_pair(0U, &AArch64::ZPRRegClass);
        return std::make_pair(0U, nullptr);
      }
      uint64_t VTSize = VT.getFixedSizeInBits();
      if (VTSize == 16)
        return std::make_pair(0U, &AArch64::FPR16RegClass);
      if (VTSize == 32)
        return std::make_pair(0U, &AArch64::FPR32RegClass);
      if (VTSize == 64)
        return std::make_pair(0U, &AArch64::FPR64RegClass);
      if (VTSize == 128)
        return std::make_pair(0U, &AArch64::FPR128RegClass);
      break;
    }
    // The instructions that this constraint is designed for can
    // only take 128-bit registers so just use that regclass.
    case 'x':
      if (!Subtarget->hasFPARMv8())
        break;
      if (VT.isScalableVector())
        return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
      if (VT.getSizeInBits() == 128)
        return std::make_pair(0U, &AArch64::FPR128_loRegClass);
      break;
    case 'y':
      if (!Subtarget->hasFPARMv8())
        break;
      if (VT.isScalableVector())
        return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
      break;
    }
  } else {
    PredicateConstraint PC = parsePredicateConstraint(Constraint);
    if (PC != PredicateConstraint::Invalid) {
      if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1)
        return std::make_pair(0U, nullptr);
      bool restricted = (PC == PredicateConstraint::Upl);
      return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass)
                        : std::make_pair(0U, &AArch64::PPRRegClass);
    }
  }
  if (StringRef("{cc}").equals_insensitive(Constraint))
    return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);

  // Use the default implementation in TargetLowering to convert the register
  // constraint into a member of a register class.
  std::pair<unsigned, const TargetRegisterClass *> Res;
  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);

  // Not found as a standard register?
  if (!Res.second) {
    unsigned Size = Constraint.size();
    if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
        tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
      int RegNo;
      bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
      if (!Failed && RegNo >= 0 && RegNo <= 31) {
        // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
        // By default we'll emit v0-v31 for this unless there's a modifier where
        // we'll emit the correct register as well.
        if (VT != MVT::Other && VT.getSizeInBits() == 64) {
          Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
          Res.second = &AArch64::FPR64RegClass;
        } else {
          Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
          Res.second = &AArch64::FPR128RegClass;
        }
      }
    }
  }

  if (Res.second && !Subtarget->hasFPARMv8() &&
      !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
      !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
    return std::make_pair(0U, nullptr);

  return Res;
}

EVT AArch64TargetLowering::getAsmOperandValueType(const DataLayout &DL,
                                                  llvm::Type *Ty,
                                                  bool AllowUnknown) const {
  if (Subtarget->hasLS64() && Ty->isIntegerTy(512))
    return EVT(MVT::i64x8);

  return TargetLowering::getAsmOperandValueType(DL, Ty, AllowUnknown);
}

/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector.  If it is invalid, don't add anything to Ops.
void AArch64TargetLowering::LowerAsmOperandForConstraint(
    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
    SelectionDAG &DAG) const {
  SDValue Result;

  // Currently only support length 1 constraints.
  if (Constraint.length() != 1)
    return;

  char ConstraintLetter = Constraint[0];
  switch (ConstraintLetter) {
  default:
    break;

  // This set of constraints deal with valid constants for various instructions.
  // Validate and return a target constant for them if we can.
  case 'z': {
    // 'z' maps to xzr or wzr so it needs an input of 0.
    if (!isNullConstant(Op))
      return;

    if (Op.getValueType() == MVT::i64)
      Result = DAG.getRegister(AArch64::XZR, MVT::i64);
    else
      Result = DAG.getRegister(AArch64::WZR, MVT::i32);
    break;
  }
  case 'S': {
    // An absolute symbolic address or label reference.
    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
                                          GA->getValueType(0));
    } else if (const BlockAddressSDNode *BA =
                   dyn_cast<BlockAddressSDNode>(Op)) {
      Result =
          DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
    } else
      return;
    break;
  }

  case 'I':
  case 'J':
  case 'K':
  case 'L':
  case 'M':
  case 'N':
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
    if (!C)
      return;

    // Grab the value and do some validation.
    uint64_t CVal = C->getZExtValue();
    switch (ConstraintLetter) {
    // The I constraint applies only to simple ADD or SUB immediate operands:
    // i.e. 0 to 4095 with optional shift by 12
    // The J constraint applies only to ADD or SUB immediates that would be
    // valid when negated, i.e. if [an add pattern] were to be output as a SUB
    // instruction [or vice versa], in other words -1 to -4095 with optional
    // left shift by 12.
    case 'I':
      if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
        break;
      return;
    case 'J': {
      uint64_t NVal = -C->getSExtValue();
      if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
        CVal = C->getSExtValue();
        break;
      }
      return;
    }
    // The K and L constraints apply *only* to logical immediates, including
    // what used to be the MOVI alias for ORR (though the MOVI alias has now
    // been removed and MOV should be used). So these constraints have to
    // distinguish between bit patterns that are valid 32-bit or 64-bit
    // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
    // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
    // versa.
    case 'K':
      if (AArch64_AM::isLogicalImmediate(CVal, 32))
        break;
      return;
    case 'L':
      if (AArch64_AM::isLogicalImmediate(CVal, 64))
        break;
      return;
    // The M and N constraints are a superset of K and L respectively, for use
    // with the MOV (immediate) alias. As well as the logical immediates they
    // also match 32 or 64-bit immediates that can be loaded either using a
    // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
    // (M) or 64-bit 0x1234000000000000 (N) etc.
    // As a note some of this code is liberally stolen from the asm parser.
    case 'M': {
      if (!isUInt<32>(CVal))
        return;
      if (AArch64_AM::isLogicalImmediate(CVal, 32))
        break;
      if ((CVal & 0xFFFF) == CVal)
        break;
      if ((CVal & 0xFFFF0000ULL) == CVal)
        break;
      uint64_t NCVal = ~(uint32_t)CVal;
      if ((NCVal & 0xFFFFULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF0000ULL) == NCVal)
        break;
      return;
    }
    case 'N': {
      if (AArch64_AM::isLogicalImmediate(CVal, 64))
        break;
      if ((CVal & 0xFFFFULL) == CVal)
        break;
      if ((CVal & 0xFFFF0000ULL) == CVal)
        break;
      if ((CVal & 0xFFFF00000000ULL) == CVal)
        break;
      if ((CVal & 0xFFFF000000000000ULL) == CVal)
        break;
      uint64_t NCVal = ~CVal;
      if ((NCVal & 0xFFFFULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF0000ULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF00000000ULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
        break;
      return;
    }
    default:
      return;
    }

    // All assembler immediates are 64-bit integers.
    Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
    break;
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }

  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

//===----------------------------------------------------------------------===//
//                     AArch64 Advanced SIMD Support
//===----------------------------------------------------------------------===//

/// WidenVector - Given a value in the V64 register class, produce the
/// equivalent value in the V128 register class.
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
  EVT VT = V64Reg.getValueType();
  unsigned NarrowSize = VT.getVectorNumElements();
  MVT EltTy = VT.getVectorElementType().getSimpleVT();
  MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
  SDLoc DL(V64Reg);

  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
                     V64Reg, DAG.getConstant(0, DL, MVT::i64));
}

/// getExtFactor - Determine the adjustment factor for the position when
/// generating an "extract from vector registers" instruction.
static unsigned getExtFactor(SDValue &V) {
  EVT EltType = V.getValueType().getVectorElementType();
  return EltType.getSizeInBits() / 8;
}

/// NarrowVector - Given a value in the V128 register class, produce the
/// equivalent value in the V64 register class.
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
  EVT VT = V128Reg.getValueType();
  unsigned WideSize = VT.getVectorNumElements();
  MVT EltTy = VT.getVectorElementType().getSimpleVT();
  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
  SDLoc DL(V128Reg);

  return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
}

// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
                                                  SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  assert(!VT.isScalableVector() &&
         "Scalable vectors cannot be used with ISD::BUILD_VECTOR");
  unsigned NumElts = VT.getVectorNumElements();

  struct ShuffleSourceInfo {
    SDValue Vec;
    unsigned MinElt;
    unsigned MaxElt;

    // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
    // be compatible with the shuffle we intend to construct. As a result
    // ShuffleVec will be some sliding window into the original Vec.
    SDValue ShuffleVec;

    // Code should guarantee that element i in Vec starts at element "WindowBase
    // + i * WindowScale in ShuffleVec".
    int WindowBase;
    int WindowScale;

    ShuffleSourceInfo(SDValue Vec)
      : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
          ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}

    bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
  };

  // First gather all vectors used as an immediate source for this BUILD_VECTOR
  // node.
  SmallVector<ShuffleSourceInfo, 2> Sources;
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (V.isUndef())
      continue;
    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
             !isa<ConstantSDNode>(V.getOperand(1)) ||
             V.getOperand(0).getValueType().isScalableVector()) {
      LLVM_DEBUG(
          dbgs() << "Reshuffle failed: "
                    "a shuffle can only come from building a vector from "
                    "various elements of other fixed-width vectors, provided "
                    "their indices are constant\n");
      return SDValue();
    }

    // Add this element source to the list if it's not already there.
    SDValue SourceVec = V.getOperand(0);
    auto Source = find(Sources, SourceVec);
    if (Source == Sources.end())
      Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));

    // Update the minimum and maximum lane number seen.
    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
    Source->MinElt = std::min(Source->MinElt, EltNo);
    Source->MaxElt = std::max(Source->MaxElt, EltNo);
  }

  // If we have 3 or 4 sources, try to generate a TBL, which will at least be
  // better than moving to/from gpr registers for larger vectors.
  if ((Sources.size() == 3 || Sources.size() == 4) && NumElts > 4) {
    // Construct a mask for the tbl. We may need to adjust the index for types
    // larger than i8.
    SmallVector<unsigned, 16> Mask;
    unsigned OutputFactor = VT.getScalarSizeInBits() / 8;
    for (unsigned I = 0; I < NumElts; ++I) {
      SDValue V = Op.getOperand(I);
      if (V.isUndef()) {
        for (unsigned OF = 0; OF < OutputFactor; OF++)
          Mask.push_back(-1);
        continue;
      }
      // Set the Mask lanes adjusted for the size of the input and output
      // lanes. The Mask is always i8, so it will set OutputFactor lanes per
      // output element, adjusted in their positions per input and output types.
      unsigned Lane = V.getConstantOperandVal(1);
      for (unsigned S = 0; S < Sources.size(); S++) {
        if (V.getOperand(0) == Sources[S].Vec) {
          unsigned InputSize = Sources[S].Vec.getScalarValueSizeInBits();
          unsigned InputBase = 16 * S + Lane * InputSize / 8;
          for (unsigned OF = 0; OF < OutputFactor; OF++)
            Mask.push_back(InputBase + OF);
          break;
        }
      }
    }

    // Construct the tbl3/tbl4 out of an intrinsic, the sources converted to
    // v16i8, and the TBLMask
    SmallVector<SDValue, 16> TBLOperands;
    TBLOperands.push_back(DAG.getConstant(Sources.size() == 3
                                              ? Intrinsic::aarch64_neon_tbl3
                                              : Intrinsic::aarch64_neon_tbl4,
                                          dl, MVT::i32));
    for (unsigned i = 0; i < Sources.size(); i++) {
      SDValue Src = Sources[i].Vec;
      EVT SrcVT = Src.getValueType();
      Src = DAG.getBitcast(SrcVT.is64BitVector() ? MVT::v8i8 : MVT::v16i8, Src);
      assert((SrcVT.is64BitVector() || SrcVT.is128BitVector()) &&
             "Expected a legally typed vector");
      if (SrcVT.is64BitVector())
        Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, Src,
                          DAG.getUNDEF(MVT::v8i8));
      TBLOperands.push_back(Src);
    }

    SmallVector<SDValue, 16> TBLMask;
    for (unsigned i = 0; i < Mask.size(); i++)
      TBLMask.push_back(DAG.getConstant(Mask[i], dl, MVT::i32));
    assert((Mask.size() == 8 || Mask.size() == 16) &&
           "Expected a v8i8 or v16i8 Mask");
    TBLOperands.push_back(
        DAG.getBuildVector(Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, dl, TBLMask));

    SDValue Shuffle =
        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
                    Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, TBLOperands);
    return DAG.getBitcast(VT, Shuffle);
  }

  if (Sources.size() > 2) {
    LLVM_DEBUG(dbgs() << "Reshuffle failed: currently only do something "
                      << "sensible when at most two source vectors are "
                      << "involved\n");
    return SDValue();
  }

  // Find out the smallest element size among result and two sources, and use
  // it as element size to build the shuffle_vector.
  EVT SmallestEltTy = VT.getVectorElementType();
  for (auto &Source : Sources) {
    EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
    if (SrcEltTy.bitsLT(SmallestEltTy)) {
      SmallestEltTy = SrcEltTy;
    }
  }
  unsigned ResMultiplier =
      VT.getScalarSizeInBits() / SmallestEltTy.getFixedSizeInBits();
  uint64_t VTSize = VT.getFixedSizeInBits();
  NumElts = VTSize / SmallestEltTy.getFixedSizeInBits();
  EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);

  // If the source vector is too wide or too narrow, we may nevertheless be able
  // to construct a compatible shuffle either by concatenating it with UNDEF or
  // extracting a suitable range of elements.
  for (auto &Src : Sources) {
    EVT SrcVT = Src.ShuffleVec.getValueType();

    TypeSize SrcVTSize = SrcVT.getSizeInBits();
    if (SrcVTSize == TypeSize::Fixed(VTSize))
      continue;

    // This stage of the search produces a source with the same element type as
    // the original, but with a total width matching the BUILD_VECTOR output.
    EVT EltVT = SrcVT.getVectorElementType();
    unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
    EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);

    if (SrcVTSize.getFixedValue() < VTSize) {
      assert(2 * SrcVTSize == VTSize);
      // We can pad out the smaller vector for free, so if it's part of a
      // shuffle...
      Src.ShuffleVec =
          DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
                      DAG.getUNDEF(Src.ShuffleVec.getValueType()));
      continue;
    }

    if (SrcVTSize.getFixedValue() != 2 * VTSize) {
      LLVM_DEBUG(
          dbgs() << "Reshuffle failed: result vector too small to extract\n");
      return SDValue();
    }

    if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
      LLVM_DEBUG(
          dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
      return SDValue();
    }

    if (Src.MinElt >= NumSrcElts) {
      // The extraction can just take the second half
      Src.ShuffleVec =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
      Src.WindowBase = -NumSrcElts;
    } else if (Src.MaxElt < NumSrcElts) {
      // The extraction can just take the first half
      Src.ShuffleVec =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(0, dl, MVT::i64));
    } else {
      // An actual VEXT is needed
      SDValue VEXTSrc1 =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(0, dl, MVT::i64));
      SDValue VEXTSrc2 =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
      unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);

      if (!SrcVT.is64BitVector()) {
        LLVM_DEBUG(
          dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT "
                    "for SVE vectors.");
        return SDValue();
      }

      Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
                                   VEXTSrc2,
                                   DAG.getConstant(Imm, dl, MVT::i32));
      Src.WindowBase = -Src.MinElt;
    }
  }

  // Another possible incompatibility occurs from the vector element types. We
  // can fix this by bitcasting the source vectors to the same type we intend
  // for the shuffle.
  for (auto &Src : Sources) {
    EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
    if (SrcEltTy == SmallestEltTy)
      continue;
    assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
    Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
    Src.WindowScale =
        SrcEltTy.getFixedSizeInBits() / SmallestEltTy.getFixedSizeInBits();
    Src.WindowBase *= Src.WindowScale;
  }

  // Final check before we try to actually produce a shuffle.
  LLVM_DEBUG(for (auto Src
                  : Sources)
                 assert(Src.ShuffleVec.getValueType() == ShuffleVT););

  // The stars all align, our next step is to produce the mask for the shuffle.
  SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
  int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
  for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
    SDValue Entry = Op.getOperand(i);
    if (Entry.isUndef())
      continue;

    auto Src = find(Sources, Entry.getOperand(0));
    int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();

    // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
    // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
    // segment.
    EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
    int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
                               VT.getScalarSizeInBits());
    int LanesDefined = BitsDefined / BitsPerShuffleLane;

    // This source is expected to fill ResMultiplier lanes of the final shuffle,
    // starting at the appropriate offset.
    int *LaneMask = &Mask[i * ResMultiplier];

    int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
    ExtractBase += NumElts * (Src - Sources.begin());
    for (int j = 0; j < LanesDefined; ++j)
      LaneMask[j] = ExtractBase + j;
  }

  // Final check before we try to produce nonsense...
  if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
    LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
    return SDValue();
  }

  SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
  for (unsigned i = 0; i < Sources.size(); ++i)
    ShuffleOps[i] = Sources[i].ShuffleVec;

  SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
                                         ShuffleOps[1], Mask);
  SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);

  LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
             dbgs() << "Reshuffle, creating node: "; V.dump(););

  return V;
}

// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
  unsigned NumElts = VT.getVectorNumElements();

  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
  if (M[0] < 0)
    return false;

  Imm = M[0];

  // If this is a VEXT shuffle, the immediate value is the index of the first
  // element.  The other shuffle indices must be the successive elements after
  // the first one.
  unsigned ExpectedElt = Imm;
  for (unsigned i = 1; i < NumElts; ++i) {
    // Increment the expected index.  If it wraps around, just follow it
    // back to index zero and keep going.
    ++ExpectedElt;
    if (ExpectedElt == NumElts)
      ExpectedElt = 0;

    if (M[i] < 0)
      continue; // ignore UNDEF indices
    if (ExpectedElt != static_cast<unsigned>(M[i]))
      return false;
  }

  return true;
}

// Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from
// v4i32s. This is really a truncate, which we can construct out of (legal)
// concats and truncate nodes.
static SDValue ReconstructTruncateFromBuildVector(SDValue V, SelectionDAG &DAG) {
  if (V.getValueType() != MVT::v16i8)
    return SDValue();
  assert(V.getNumOperands() == 16 && "Expected 16 operands on the BUILDVECTOR");

  for (unsigned X = 0; X < 4; X++) {
    // Check the first item in each group is an extract from lane 0 of a v4i32
    // or v4i16.
    SDValue BaseExt = V.getOperand(X * 4);
    if (BaseExt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
        (BaseExt.getOperand(0).getValueType() != MVT::v4i16 &&
         BaseExt.getOperand(0).getValueType() != MVT::v4i32) ||
        !isa<ConstantSDNode>(BaseExt.getOperand(1)) ||
        BaseExt.getConstantOperandVal(1) != 0)
      return SDValue();
    SDValue Base = BaseExt.getOperand(0);
    // And check the other items are extracts from the same vector.
    for (unsigned Y = 1; Y < 4; Y++) {
      SDValue Ext = V.getOperand(X * 4 + Y);
      if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
          Ext.getOperand(0) != Base ||
          !isa<ConstantSDNode>(Ext.getOperand(1)) ||
          Ext.getConstantOperandVal(1) != Y)
        return SDValue();
    }
  }

  // Turn the buildvector into a series of truncates and concates, which will
  // become uzip1's. Any v4i32s we found get truncated to v4i16, which are
  // concat together to produce 2 v8i16. These are both truncated and concat
  // together.
  SDLoc DL(V);
  SDValue Trunc[4] = {
      V.getOperand(0).getOperand(0), V.getOperand(4).getOperand(0),
      V.getOperand(8).getOperand(0), V.getOperand(12).getOperand(0)};
  for (int I = 0; I < 4; I++)
    if (Trunc[I].getValueType() == MVT::v4i32)
      Trunc[I] = DAG.getNode(ISD::TRUNCATE, DL, MVT::v4i16, Trunc[I]);
  SDValue Concat0 =
      DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[0], Trunc[1]);
  SDValue Concat1 =
      DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[2], Trunc[3]);
  SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat0);
  SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat1);
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, Trunc0, Trunc1);
}

/// Check if a vector shuffle corresponds to a DUP instructions with a larger
/// element width than the vector lane type. If that is the case the function
/// returns true and writes the value of the DUP instruction lane operand into
/// DupLaneOp
static bool isWideDUPMask(ArrayRef<int> M, EVT VT, unsigned BlockSize,
                          unsigned &DupLaneOp) {
  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
         "Only possible block sizes for wide DUP are: 16, 32, 64");

  if (BlockSize <= VT.getScalarSizeInBits())
    return false;
  if (BlockSize % VT.getScalarSizeInBits() != 0)
    return false;
  if (VT.getSizeInBits() % BlockSize != 0)
    return false;

  size_t SingleVecNumElements = VT.getVectorNumElements();
  size_t NumEltsPerBlock = BlockSize / VT.getScalarSizeInBits();
  size_t NumBlocks = VT.getSizeInBits() / BlockSize;

  // We are looking for masks like
  // [0, 1, 0, 1] or [2, 3, 2, 3] or [4, 5, 6, 7, 4, 5, 6, 7] where any element
  // might be replaced by 'undefined'. BlockIndices will eventually contain
  // lane indices of the duplicated block (i.e. [0, 1], [2, 3] and [4, 5, 6, 7]
  // for the above examples)
  SmallVector<int, 8> BlockElts(NumEltsPerBlock, -1);
  for (size_t BlockIndex = 0; BlockIndex < NumBlocks; BlockIndex++)
    for (size_t I = 0; I < NumEltsPerBlock; I++) {
      int Elt = M[BlockIndex * NumEltsPerBlock + I];
      if (Elt < 0)
        continue;
      // For now we don't support shuffles that use the second operand
      if ((unsigned)Elt >= SingleVecNumElements)
        return false;
      if (BlockElts[I] < 0)
        BlockElts[I] = Elt;
      else if (BlockElts[I] != Elt)
        return false;
    }

  // We found a candidate block (possibly with some undefs). It must be a
  // sequence of consecutive integers starting with a value divisible by
  // NumEltsPerBlock with some values possibly replaced by undef-s.

  // Find first non-undef element
  auto FirstRealEltIter = find_if(BlockElts, [](int Elt) { return Elt >= 0; });
  assert(FirstRealEltIter != BlockElts.end() &&
         "Shuffle with all-undefs must have been caught by previous cases, "
         "e.g. isSplat()");
  if (FirstRealEltIter == BlockElts.end()) {
    DupLaneOp = 0;
    return true;
  }

  // Index of FirstRealElt in BlockElts
  size_t FirstRealIndex = FirstRealEltIter - BlockElts.begin();

  if ((unsigned)*FirstRealEltIter < FirstRealIndex)
    return false;
  // BlockElts[0] must have the following value if it isn't undef:
  size_t Elt0 = *FirstRealEltIter - FirstRealIndex;

  // Check the first element
  if (Elt0 % NumEltsPerBlock != 0)
    return false;
  // Check that the sequence indeed consists of consecutive integers (modulo
  // undefs)
  for (size_t I = 0; I < NumEltsPerBlock; I++)
    if (BlockElts[I] >= 0 && (unsigned)BlockElts[I] != Elt0 + I)
      return false;

  DupLaneOp = Elt0 / NumEltsPerBlock;
  return true;
}

// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are different.
static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
                      unsigned &Imm) {
  // Look for the first non-undef element.
  const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });

  // Benefit form APInt to handle overflow when calculating expected element.
  unsigned NumElts = VT.getVectorNumElements();
  unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
  APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
  // The following shuffle indices must be the successive elements after the
  // first real element.
  const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
      [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
  if (FirstWrongElt != M.end())
    return false;

  // The index of an EXT is the first element if it is not UNDEF.
  // Watch out for the beginning UNDEFs. The EXT index should be the expected
  // value of the first element.  E.g.
  // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
  // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
  // ExpectedElt is the last mask index plus 1.
  Imm = ExpectedElt.getZExtValue();

  // There are two difference cases requiring to reverse input vectors.
  // For example, for vector <4 x i32> we have the following cases,
  // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
  // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
  // For both cases, we finally use mask <5, 6, 7, 0>, which requires
  // to reverse two input vectors.
  if (Imm < NumElts)
    ReverseEXT = true;
  else
    Imm -= NumElts;

  return true;
}

/// isREVMask - Check if a vector shuffle corresponds to a REV
/// instruction with the specified blocksize.  (The order of the elements
/// within each block of the vector is reversed.)
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
         "Only possible block sizes for REV are: 16, 32, 64");

  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  unsigned BlockElts = M[0] + 1;
  // If the first shuffle index is UNDEF, be optimistic.
  if (M[0] < 0)
    BlockElts = BlockSize / EltSz;

  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
    return false;

  for (unsigned i = 0; i < NumElts; ++i) {
    if (M[i] < 0)
      continue; // ignore UNDEF indices
    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
      return false;
  }

  return true;
}

static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  unsigned Idx = WhichResult * NumElts / 2;
  for (unsigned i = 0; i != NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
      return false;
    Idx += 1;
  }

  return true;
}

static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i != NumElts; ++i) {
    if (M[i] < 0)
      continue; // ignore UNDEF indices
    if ((unsigned)M[i] != 2 * i + WhichResult)
      return false;
  }

  return true;
}

static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i < NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
      return false;
  }
  return true;
}

/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  unsigned Idx = WhichResult * NumElts / 2;
  for (unsigned i = 0; i != NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
      return false;
    Idx += 1;
  }

  return true;
}

/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned Half = VT.getVectorNumElements() / 2;
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned j = 0; j != 2; ++j) {
    unsigned Idx = WhichResult;
    for (unsigned i = 0; i != Half; ++i) {
      int MIdx = M[i + j * Half];
      if (MIdx >= 0 && (unsigned)MIdx != Idx)
        return false;
      Idx += 2;
    }
  }

  return true;
}

/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i < NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
      return false;
  }
  return true;
}

static bool isINSMask(ArrayRef<int> M, int NumInputElements,
                      bool &DstIsLeft, int &Anomaly) {
  if (M.size() != static_cast<size_t>(NumInputElements))
    return false;

  int NumLHSMatch = 0, NumRHSMatch = 0;
  int LastLHSMismatch = -1, LastRHSMismatch = -1;

  for (int i = 0; i < NumInputElements; ++i) {
    if (M[i] == -1) {
      ++NumLHSMatch;
      ++NumRHSMatch;
      continue;
    }

    if (M[i] == i)
      ++NumLHSMatch;
    else
      LastLHSMismatch = i;

    if (M[i] == i + NumInputElements)
      ++NumRHSMatch;
    else
      LastRHSMismatch = i;
  }

  if (NumLHSMatch == NumInputElements - 1) {
    DstIsLeft = true;
    Anomaly = LastLHSMismatch;
    return true;
  } else if (NumRHSMatch == NumInputElements - 1) {
    DstIsLeft = false;
    Anomaly = LastRHSMismatch;
    return true;
  }

  return false;
}

static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
  if (VT.getSizeInBits() != 128)
    return false;

  unsigned NumElts = VT.getVectorNumElements();

  for (int I = 0, E = NumElts / 2; I != E; I++) {
    if (Mask[I] != I)
      return false;
  }

  int Offset = NumElts / 2;
  for (int I = NumElts / 2, E = NumElts; I != E; I++) {
    if (Mask[I] != I + SplitLHS * Offset)
      return false;
  }

  return true;
}

static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue V0 = Op.getOperand(0);
  SDValue V1 = Op.getOperand(1);
  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();

  if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
      VT.getVectorElementType() != V1.getValueType().getVectorElementType())
    return SDValue();

  bool SplitV0 = V0.getValueSizeInBits() == 128;

  if (!isConcatMask(Mask, VT, SplitV0))
    return SDValue();

  EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
  if (SplitV0) {
    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
                     DAG.getConstant(0, DL, MVT::i64));
  }
  if (V1.getValueSizeInBits() == 128) {
    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
                     DAG.getConstant(0, DL, MVT::i64));
  }
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
}

/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle. ID is the perfect-shuffle
//ID, V1 and V2 are the original shuffle inputs. PFEntry is the Perfect shuffle
//table entry and LHS/RHS are the immediate inputs for this stage of the
//shuffle.
static SDValue GeneratePerfectShuffle(unsigned ID, SDValue V1,
                                      SDValue V2, unsigned PFEntry, SDValue LHS,
                                      SDValue RHS, SelectionDAG &DAG,
                                      const SDLoc &dl) {
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
  unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);

  enum {
    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
    OP_VREV,
    OP_VDUP0,
    OP_VDUP1,
    OP_VDUP2,
    OP_VDUP3,
    OP_VEXT1,
    OP_VEXT2,
    OP_VEXT3,
    OP_VUZPL,  // VUZP, left result
    OP_VUZPR,  // VUZP, right result
    OP_VZIPL,  // VZIP, left result
    OP_VZIPR,  // VZIP, right result
    OP_VTRNL,  // VTRN, left result
    OP_VTRNR,  // VTRN, right result
    OP_MOVLANE // Move lane. RHSID is the lane to move into
  };

  if (OpNum == OP_COPY) {
    if (LHSID == (1 * 9 + 2) * 9 + 3)
      return LHS;
    assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
    return RHS;
  }

  if (OpNum == OP_MOVLANE) {
    // Decompose a PerfectShuffle ID to get the Mask for lane Elt
    auto getPFIDLane = [](unsigned ID, int Elt) -> int {
      assert(Elt < 4 && "Expected Perfect Lanes to be less than 4");
      Elt = 3 - Elt;
      while (Elt > 0) {
        ID /= 9;
        Elt--;
      }
      return (ID % 9 == 8) ? -1 : ID % 9;
    };

    // For OP_MOVLANE shuffles, the RHSID represents the lane to move into. We
    // get the lane to move from from the PFID, which is always from the
    // original vectors (V1 or V2).
    SDValue OpLHS = GeneratePerfectShuffle(
        LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
    EVT VT = OpLHS.getValueType();
    assert(RHSID < 8 && "Expected a lane index for RHSID!");
    unsigned ExtLane = 0;
    SDValue Input;

    // OP_MOVLANE are either D movs (if bit 0x4 is set) or S movs. D movs
    // convert into a higher type.
    if (RHSID & 0x4) {
      int MaskElt = getPFIDLane(ID, (RHSID & 0x01) << 1) >> 1;
      if (MaskElt == -1)
        MaskElt = (getPFIDLane(ID, ((RHSID & 0x01) << 1) + 1) - 1) >> 1;
      assert(MaskElt >= 0 && "Didn't expect an undef movlane index!");
      ExtLane = MaskElt < 2 ? MaskElt : (MaskElt - 2);
      Input = MaskElt < 2 ? V1 : V2;
      if (VT.getScalarSizeInBits() == 16) {
        Input = DAG.getBitcast(MVT::v2f32, Input);
        OpLHS = DAG.getBitcast(MVT::v2f32, OpLHS);
      } else {
        assert(VT.getScalarSizeInBits() == 32 &&
               "Expected 16 or 32 bit shuffle elemements");
        Input = DAG.getBitcast(MVT::v2f64, Input);
        OpLHS = DAG.getBitcast(MVT::v2f64, OpLHS);
      }
    } else {
      int MaskElt = getPFIDLane(ID, RHSID);
      assert(MaskElt >= 0 && "Didn't expect an undef movlane index!");
      ExtLane = MaskElt < 4 ? MaskElt : (MaskElt - 4);
      Input = MaskElt < 4 ? V1 : V2;
      // Be careful about creating illegal types. Use f16 instead of i16.
      if (VT == MVT::v4i16) {
        Input = DAG.getBitcast(MVT::v4f16, Input);
        OpLHS = DAG.getBitcast(MVT::v4f16, OpLHS);
      }
    }
    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
                              Input.getValueType().getVectorElementType(),
                              Input, DAG.getVectorIdxConstant(ExtLane, dl));
    SDValue Ins =
        DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Input.getValueType(), OpLHS,
                    Ext, DAG.getVectorIdxConstant(RHSID & 0x3, dl));
    return DAG.getBitcast(VT, Ins);
  }

  SDValue OpLHS, OpRHS;
  OpLHS = GeneratePerfectShuffle(LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS,
                                 RHS, DAG, dl);
  OpRHS = GeneratePerfectShuffle(RHSID, V1, V2, PerfectShuffleTable[RHSID], LHS,
                                 RHS, DAG, dl);
  EVT VT = OpLHS.getValueType();

  switch (OpNum) {
  default:
    llvm_unreachable("Unknown shuffle opcode!");
  case OP_VREV:
    // VREV divides the vector in half and swaps within the half.
    if (VT.getVectorElementType() == MVT::i32 ||
        VT.getVectorElementType() == MVT::f32)
      return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
    // vrev <4 x i16> -> REV32
    if (VT.getVectorElementType() == MVT::i16 ||
        VT.getVectorElementType() == MVT::f16 ||
        VT.getVectorElementType() == MVT::bf16)
      return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
    // vrev <4 x i8> -> REV16
    assert(VT.getVectorElementType() == MVT::i8);
    return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
  case OP_VDUP0:
  case OP_VDUP1:
  case OP_VDUP2:
  case OP_VDUP3: {
    EVT EltTy = VT.getVectorElementType();
    unsigned Opcode;
    if (EltTy == MVT::i8)
      Opcode = AArch64ISD::DUPLANE8;
    else if (EltTy == MVT::i16 || EltTy == MVT::f16 || EltTy == MVT::bf16)
      Opcode = AArch64ISD::DUPLANE16;
    else if (EltTy == MVT::i32 || EltTy == MVT::f32)
      Opcode = AArch64ISD::DUPLANE32;
    else if (EltTy == MVT::i64 || EltTy == MVT::f64)
      Opcode = AArch64ISD::DUPLANE64;
    else
      llvm_unreachable("Invalid vector element type?");

    if (VT.getSizeInBits() == 64)
      OpLHS = WidenVector(OpLHS, DAG);
    SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
    return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
  }
  case OP_VEXT1:
  case OP_VEXT2:
  case OP_VEXT3: {
    unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
    return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
                       DAG.getConstant(Imm, dl, MVT::i32));
  }
  case OP_VUZPL:
    return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VUZPR:
    return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VZIPL:
    return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VZIPR:
    return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VTRNL:
    return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VTRNR:
    return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  }
}

static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
                           SelectionDAG &DAG) {
  // Check to see if we can use the TBL instruction.
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  SDLoc DL(Op);

  EVT EltVT = Op.getValueType().getVectorElementType();
  unsigned BytesPerElt = EltVT.getSizeInBits() / 8;

  bool Swap = false;
  if (V1.isUndef() || isZerosVector(V1.getNode())) {
    std::swap(V1, V2);
    Swap = true;
  }

  // If the V2 source is undef or zero then we can use a tbl1, as tbl1 will fill
  // out of range values with 0s. We do need to make sure that any out-of-range
  // values are really out-of-range for a v16i8 vector.
  bool IsUndefOrZero = V2.isUndef() || isZerosVector(V2.getNode());
  MVT IndexVT = MVT::v8i8;
  unsigned IndexLen = 8;
  if (Op.getValueSizeInBits() == 128) {
    IndexVT = MVT::v16i8;
    IndexLen = 16;
  }

  SmallVector<SDValue, 8> TBLMask;
  for (int Val : ShuffleMask) {
    for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
      unsigned Offset = Byte + Val * BytesPerElt;
      if (Swap)
        Offset = Offset < IndexLen ? Offset + IndexLen : Offset - IndexLen;
      if (IsUndefOrZero && Offset >= IndexLen)
        Offset = 255;
      TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
    }
  }

  SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
  SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);

  SDValue Shuffle;
  if (IsUndefOrZero) {
    if (IndexLen == 8)
      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
    Shuffle = DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
        DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
        DAG.getBuildVector(IndexVT, DL,
                           makeArrayRef(TBLMask.data(), IndexLen)));
  } else {
    if (IndexLen == 8) {
      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
      Shuffle = DAG.getNode(
          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
          DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
          DAG.getBuildVector(IndexVT, DL,
                             makeArrayRef(TBLMask.data(), IndexLen)));
    } else {
      // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
      // cannot currently represent the register constraints on the input
      // table registers.
      //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
      //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
      //                   IndexLen));
      Shuffle = DAG.getNode(
          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
          DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
          V2Cst, DAG.getBuildVector(IndexVT, DL,
                                    makeArrayRef(TBLMask.data(), IndexLen)));
    }
  }
  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
}

static unsigned getDUPLANEOp(EVT EltType) {
  if (EltType == MVT::i8)
    return AArch64ISD::DUPLANE8;
  if (EltType == MVT::i16 || EltType == MVT::f16 || EltType == MVT::bf16)
    return AArch64ISD::DUPLANE16;
  if (EltType == MVT::i32 || EltType == MVT::f32)
    return AArch64ISD::DUPLANE32;
  if (EltType == MVT::i64 || EltType == MVT::f64)
    return AArch64ISD::DUPLANE64;

  llvm_unreachable("Invalid vector element type?");
}

static SDValue constructDup(SDValue V, int Lane, SDLoc dl, EVT VT,
                            unsigned Opcode, SelectionDAG &DAG) {
  // Try to eliminate a bitcasted extract subvector before a DUPLANE.
  auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) {
    // Match: dup (bitcast (extract_subv X, C)), LaneC
    if (BitCast.getOpcode() != ISD::BITCAST ||
        BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR)
      return false;

    // The extract index must align in the destination type. That may not
    // happen if the bitcast is from narrow to wide type.
    SDValue Extract = BitCast.getOperand(0);
    unsigned ExtIdx = Extract.getConstantOperandVal(1);
    unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits();
    unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth;
    unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits();
    if (ExtIdxInBits % CastedEltBitWidth != 0)
      return false;

    // Can't handle cases where vector size is not 128-bit
    if (!Extract.getOperand(0).getValueType().is128BitVector())
      return false;

    // Update the lane value by offsetting with the scaled extract index.
    LaneC += ExtIdxInBits / CastedEltBitWidth;

    // Determine the casted vector type of the wide vector input.
    // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC'
    // Examples:
    // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3
    // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5
    unsigned SrcVecNumElts =
        Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth;
    CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(),
                              SrcVecNumElts);
    return true;
  };
  MVT CastVT;
  if (getScaledOffsetDup(V, Lane, CastVT)) {
    V = DAG.getBitcast(CastVT, V.getOperand(0).getOperand(0));
  } else if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
             V.getOperand(0).getValueType().is128BitVector()) {
    // The lane is incremented by the index of the extract.
    // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3
    Lane += V.getConstantOperandVal(1);
    V = V.getOperand(0);
  } else if (V.getOpcode() == ISD::CONCAT_VECTORS) {
    // The lane is decremented if we are splatting from the 2nd operand.
    // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1
    unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
    Lane -= Idx * VT.getVectorNumElements() / 2;
    V = WidenVector(V.getOperand(Idx), DAG);
  } else if (VT.getSizeInBits() == 64) {
    // Widen the operand to 128-bit register with undef.
    V = WidenVector(V, DAG);
  }
  return DAG.getNode(Opcode, dl, VT, V, DAG.getConstant(Lane, dl, MVT::i64));
}

// Return true if we can get a new shuffle mask by checking the parameter mask
// array to test whether every two adjacent mask values are continuous and
// starting from an even number.
static bool isWideTypeMask(ArrayRef<int> M, EVT VT,
                           SmallVectorImpl<int> &NewMask) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;

  NewMask.clear();
  for (unsigned i = 0; i < NumElts; i += 2) {
    int M0 = M[i];
    int M1 = M[i + 1];

    // If both elements are undef, new mask is undef too.
    if (M0 == -1 && M1 == -1) {
      NewMask.push_back(-1);
      continue;
    }

    if (M0 == -1 && M1 != -1 && (M1 % 2) == 1) {
      NewMask.push_back(M1 / 2);
      continue;
    }

    if (M0 != -1 && (M0 % 2) == 0 && ((M0 + 1) == M1 || M1 == -1)) {
      NewMask.push_back(M0 / 2);
      continue;
    }

    NewMask.clear();
    return false;
  }

  assert(NewMask.size() == NumElts / 2 && "Incorrect size for mask!");
  return true;
}

// Try to widen element type to get a new mask value for a better permutation
// sequence, so that we can use NEON shuffle instructions, such as zip1/2,
// UZP1/2, TRN1/2, REV, INS, etc.
// For example:
//  shufflevector <4 x i32> %a, <4 x i32> %b,
//                <4 x i32> <i32 6, i32 7, i32 2, i32 3>
// is equivalent to:
//  shufflevector <2 x i64> %a, <2 x i64> %b, <2 x i32> <i32 3, i32 1>
// Finally, we can get:
//  mov     v0.d[0], v1.d[1]
static SDValue tryWidenMaskForShuffle(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  EVT ScalarVT = VT.getVectorElementType();
  unsigned ElementSize = ScalarVT.getFixedSizeInBits();
  SDValue V0 = Op.getOperand(0);
  SDValue V1 = Op.getOperand(1);
  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();

  // If combining adjacent elements, like two i16's -> i32, two i32's -> i64 ...
  // We need to make sure the wider element type is legal. Thus, ElementSize
  // should be not larger than 32 bits, and i1 type should also be excluded.
  if (ElementSize > 32 || ElementSize == 1)
    return SDValue();

  SmallVector<int, 8> NewMask;
  if (isWideTypeMask(Mask, VT, NewMask)) {
    MVT NewEltVT = VT.isFloatingPoint()
                       ? MVT::getFloatingPointVT(ElementSize * 2)
                       : MVT::getIntegerVT(ElementSize * 2);
    MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
    if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
      V0 = DAG.getBitcast(NewVT, V0);
      V1 = DAG.getBitcast(NewVT, V1);
      return DAG.getBitcast(VT,
                            DAG.getVectorShuffle(NewVT, DL, V0, V1, NewMask));
    }
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
                                                   SelectionDAG &DAG) const {
  SDLoc dl(Op);
  EVT VT = Op.getValueType();

  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());

  if (useSVEForFixedLengthVectorVT(VT))
    return LowerFixedLengthVECTOR_SHUFFLEToSVE(Op, DAG);

  // Convert shuffles that are directly supported on NEON to target-specific
  // DAG nodes, instead of keeping them as shuffles and matching them again
  // during code selection.  This is more efficient and avoids the possibility
  // of inconsistencies between legalization and selection.
  ArrayRef<int> ShuffleMask = SVN->getMask();

  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);

  assert(V1.getValueType() == VT && "Unexpected VECTOR_SHUFFLE type!");
  assert(ShuffleMask.size() == VT.getVectorNumElements() &&
         "Unexpected VECTOR_SHUFFLE mask size!");

  if (SVN->isSplat()) {
    int Lane = SVN->getSplatIndex();
    // If this is undef splat, generate it via "just" vdup, if possible.
    if (Lane == -1)
      Lane = 0;

    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
      return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
                         V1.getOperand(0));
    // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
    // constant. If so, we can just reference the lane's definition directly.
    if (V1.getOpcode() == ISD::BUILD_VECTOR &&
        !isa<ConstantSDNode>(V1.getOperand(Lane)))
      return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));

    // Otherwise, duplicate from the lane of the input vector.
    unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
    return constructDup(V1, Lane, dl, VT, Opcode, DAG);
  }

  // Check if the mask matches a DUP for a wider element
  for (unsigned LaneSize : {64U, 32U, 16U}) {
    unsigned Lane = 0;
    if (isWideDUPMask(ShuffleMask, VT, LaneSize, Lane)) {
      unsigned Opcode = LaneSize == 64 ? AArch64ISD::DUPLANE64
                                       : LaneSize == 32 ? AArch64ISD::DUPLANE32
                                                        : AArch64ISD::DUPLANE16;
      // Cast V1 to an integer vector with required lane size
      MVT NewEltTy = MVT::getIntegerVT(LaneSize);
      unsigned NewEltCount = VT.getSizeInBits() / LaneSize;
      MVT NewVecTy = MVT::getVectorVT(NewEltTy, NewEltCount);
      V1 = DAG.getBitcast(NewVecTy, V1);
      // Constuct the DUP instruction
      V1 = constructDup(V1, Lane, dl, NewVecTy, Opcode, DAG);
      // Cast back to the original type
      return DAG.getBitcast(VT, V1);
    }
  }

  if (isREVMask(ShuffleMask, VT, 64))
    return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
  if (isREVMask(ShuffleMask, VT, 32))
    return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
  if (isREVMask(ShuffleMask, VT, 16))
    return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);

  if (((VT.getVectorNumElements() == 8 && VT.getScalarSizeInBits() == 16) ||
       (VT.getVectorNumElements() == 16 && VT.getScalarSizeInBits() == 8)) &&
      ShuffleVectorInst::isReverseMask(ShuffleMask)) {
    SDValue Rev = DAG.getNode(AArch64ISD::REV64, dl, VT, V1);
    return DAG.getNode(AArch64ISD::EXT, dl, VT, Rev, Rev,
                       DAG.getConstant(8, dl, MVT::i32));
  }

  bool ReverseEXT = false;
  unsigned Imm;
  if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
    if (ReverseEXT)
      std::swap(V1, V2);
    Imm *= getExtFactor(V1);
    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
                       DAG.getConstant(Imm, dl, MVT::i32));
  } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
    Imm *= getExtFactor(V1);
    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
                       DAG.getConstant(Imm, dl, MVT::i32));
  }

  unsigned WhichResult;
  if (isZIPMask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
  }
  if (isUZPMask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
  }
  if (isTRNMask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
  }

  if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
  }
  if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
  }
  if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
  }

  if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
    return Concat;

  bool DstIsLeft;
  int Anomaly;
  int NumInputElements = V1.getValueType().getVectorNumElements();
  if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
    SDValue DstVec = DstIsLeft ? V1 : V2;
    SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);

    SDValue SrcVec = V1;
    int SrcLane = ShuffleMask[Anomaly];
    if (SrcLane >= NumInputElements) {
      SrcVec = V2;
      SrcLane -= VT.getVectorNumElements();
    }
    SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);

    EVT ScalarVT = VT.getVectorElementType();

    if (ScalarVT.getFixedSizeInBits() < 32 && ScalarVT.isInteger())
      ScalarVT = MVT::i32;

    return DAG.getNode(
        ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
        DstLaneV);
  }

  if (SDValue NewSD = tryWidenMaskForShuffle(Op, DAG))
    return NewSD;

  // If the shuffle is not directly supported and it has 4 elements, use
  // the PerfectShuffle-generated table to synthesize it from other shuffles.
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts == 4) {
    unsigned PFIndexes[4];
    for (unsigned i = 0; i != 4; ++i) {
      if (ShuffleMask[i] < 0)
        PFIndexes[i] = 8;
      else
        PFIndexes[i] = ShuffleMask[i];
    }

    // Compute the index in the perfect shuffle table.
    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
                            PFIndexes[2] * 9 + PFIndexes[3];
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
    return GeneratePerfectShuffle(PFTableIndex, V1, V2, PFEntry, V1, V2, DAG,
                                  dl);
  }

  return GenerateTBL(Op, ShuffleMask, DAG);
}

SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op,
                                                 SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  if (useSVEForFixedLengthVectorVT(VT))
    return LowerToScalableOp(Op, DAG);

  assert(VT.isScalableVector() && VT.getVectorElementType() == MVT::i1 &&
         "Unexpected vector type!");

  // We can handle the constant cases during isel.
  if (isa<ConstantSDNode>(Op.getOperand(0)))
    return Op;

  // There isn't a natural way to handle the general i1 case, so we use some
  // trickery with whilelo.
  SDLoc DL(Op);
  SDValue SplatVal = DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, MVT::i64);
  SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, SplatVal,
                         DAG.getValueType(MVT::i1));
  SDValue ID =
      DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64);
  SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
  if (VT == MVT::nxv1i1)
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::nxv1i1,
                       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::nxv2i1, ID,
                                   Zero, SplatVal),
                       Zero);
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, ID, Zero, SplatVal);
}

SDValue AArch64TargetLowering::LowerDUPQLane(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDLoc DL(Op);

  EVT VT = Op.getValueType();
  if (!isTypeLegal(VT) || !VT.isScalableVector())
    return SDValue();

  // Current lowering only supports the SVE-ACLE types.
  if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock)
    return SDValue();

  // The DUPQ operation is indepedent of element type so normalise to i64s.
  SDValue Idx128 = Op.getOperand(2);

  // DUPQ can be used when idx is in range.
  auto *CIdx = dyn_cast<ConstantSDNode>(Idx128);
  if (CIdx && (CIdx->getZExtValue() <= 3)) {
    SDValue CI = DAG.getTargetConstant(CIdx->getZExtValue(), DL, MVT::i64);
    return DAG.getNode(AArch64ISD::DUPLANE128, DL, VT, Op.getOperand(1), CI);
  }

  SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::nxv2i64, Op.getOperand(1));

  // The ACLE says this must produce the same result as:
  //   svtbl(data, svadd_x(svptrue_b64(),
  //                       svand_x(svptrue_b64(), svindex_u64(0, 1), 1),
  //                       index * 2))
  SDValue One = DAG.getConstant(1, DL, MVT::i64);
  SDValue SplatOne = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, One);

  // create the vector 0,1,0,1,...
  SDValue SV = DAG.getStepVector(DL, MVT::nxv2i64);
  SV = DAG.getNode(ISD::AND, DL, MVT::nxv2i64, SV, SplatOne);

  // create the vector idx64,idx64+1,idx64,idx64+1,...
  SDValue Idx64 = DAG.getNode(ISD::ADD, DL, MVT::i64, Idx128, Idx128);
  SDValue SplatIdx64 = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Idx64);
  SDValue ShuffleMask = DAG.getNode(ISD::ADD, DL, MVT::nxv2i64, SV, SplatIdx64);

  // create the vector Val[idx64],Val[idx64+1],Val[idx64],Val[idx64+1],...
  SDValue TBL = DAG.getNode(AArch64ISD::TBL, DL, MVT::nxv2i64, V, ShuffleMask);
  return DAG.getNode(ISD::BITCAST, DL, VT, TBL);
}


static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
                               APInt &UndefBits) {
  EVT VT = BVN->getValueType(0);
  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
    unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;

    for (unsigned i = 0; i < NumSplats; ++i) {
      CnstBits <<= SplatBitSize;
      UndefBits <<= SplatBitSize;
      CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
      UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
    }

    return true;
  }

  return false;
}

// Try 64-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                 const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;

    if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
      Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);

      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 32-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                  const APInt &Bits,
                                  const SDValue *LHS = nullptr) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
    bool isAdvSIMDModImm = false;
    uint64_t Shift;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
      Shift = 0;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
      Shift = 8;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
      Shift = 16;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
      Shift = 24;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov;

      if (LHS)
        Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));
      else
        Mov = DAG.getNode(NewOp, dl, MovTy,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));

      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 16-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                  const APInt &Bits,
                                  const SDValue *LHS = nullptr) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
    bool isAdvSIMDModImm = false;
    uint64_t Shift;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
      Shift = 0;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
      Shift = 8;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov;

      if (LHS)
        Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));
      else
        Mov = DAG.getNode(NewOp, dl, MovTy,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));

      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 32-bit splatted SIMD immediate with shifted ones.
static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
                                    SelectionDAG &DAG, const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
    bool isAdvSIMDModImm = false;
    uint64_t Shift;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
      Shift = 264;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
      Shift = 272;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32),
                                DAG.getConstant(Shift, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 8-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                 const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;

    if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
      Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);

      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try FP splatted SIMD immediate.
static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                  const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    bool isWide = (VT.getSizeInBits() == 128);
    MVT MovTy;
    bool isAdvSIMDModImm = false;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
      MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
    }
    else if (isWide &&
             (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
      MovTy = MVT::v2f64;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Specialized code to quickly find if PotentialBVec is a BuildVector that
// consists of only the same constant int value, returned in reference arg
// ConstVal
static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
                                     uint64_t &ConstVal) {
  BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
  if (!Bvec)
    return false;
  ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
  if (!FirstElt)
    return false;
  EVT VT = Bvec->getValueType(0);
  unsigned NumElts = VT.getVectorNumElements();
  for (unsigned i = 1; i < NumElts; ++i)
    if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
      return false;
  ConstVal = FirstElt->getZExtValue();
  return true;
}

// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
// BUILD_VECTORs with constant element C1, C2 is a constant, and:
//   - for the SLI case: C1 == ~(Ones(ElemSizeInBits) << C2)
//   - for the SRI case: C1 == ~(Ones(ElemSizeInBits) >> C2)
// The (or (lsl Y, C2), (and X, BvecC1)) case is also handled.
static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);

  if (!VT.isVector())
    return SDValue();

  SDLoc DL(N);

  SDValue And;
  SDValue Shift;

  SDValue FirstOp = N->getOperand(0);
  unsigned FirstOpc = FirstOp.getOpcode();
  SDValue SecondOp = N->getOperand(1);
  unsigned SecondOpc = SecondOp.getOpcode();

  // Is one of the operands an AND or a BICi? The AND may have been optimised to
  // a BICi in order to use an immediate instead of a register.
  // Is the other operand an shl or lshr? This will have been turned into:
  // AArch64ISD::VSHL vector, #shift or AArch64ISD::VLSHR vector, #shift.
  if ((FirstOpc == ISD::AND || FirstOpc == AArch64ISD::BICi) &&
      (SecondOpc == AArch64ISD::VSHL || SecondOpc == AArch64ISD::VLSHR)) {
    And = FirstOp;
    Shift = SecondOp;

  } else if ((SecondOpc == ISD::AND || SecondOpc == AArch64ISD::BICi) &&
             (FirstOpc == AArch64ISD::VSHL || FirstOpc == AArch64ISD::VLSHR)) {
    And = SecondOp;
    Shift = FirstOp;
  } else
    return SDValue();

  bool IsAnd = And.getOpcode() == ISD::AND;
  bool IsShiftRight = Shift.getOpcode() == AArch64ISD::VLSHR;

  // Is the shift amount constant?
  ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
  if (!C2node)
    return SDValue();

  uint64_t C1;
  if (IsAnd) {
    // Is the and mask vector all constant?
    if (!isAllConstantBuildVector(And.getOperand(1), C1))
      return SDValue();
  } else {
    // Reconstruct the corresponding AND immediate from the two BICi immediates.
    ConstantSDNode *C1nodeImm = dyn_cast<ConstantSDNode>(And.getOperand(1));
    ConstantSDNode *C1nodeShift = dyn_cast<ConstantSDNode>(And.getOperand(2));
    assert(C1nodeImm && C1nodeShift);
    C1 = ~(C1nodeImm->getZExtValue() << C1nodeShift->getZExtValue());
  }

  // Is C1 == ~(Ones(ElemSizeInBits) << C2) or
  // C1 == ~(Ones(ElemSizeInBits) >> C2), taking into account
  // how much one can shift elements of a particular size?
  uint64_t C2 = C2node->getZExtValue();
  unsigned ElemSizeInBits = VT.getScalarSizeInBits();
  if (C2 > ElemSizeInBits)
    return SDValue();

  APInt C1AsAPInt(ElemSizeInBits, C1);
  APInt RequiredC1 = IsShiftRight ? APInt::getHighBitsSet(ElemSizeInBits, C2)
                                  : APInt::getLowBitsSet(ElemSizeInBits, C2);
  if (C1AsAPInt != RequiredC1)
    return SDValue();

  SDValue X = And.getOperand(0);
  SDValue Y = Shift.getOperand(0);

  unsigned Inst = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI;
  SDValue ResultSLI = DAG.getNode(Inst, DL, VT, X, Y, Shift.getOperand(1));

  LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
  LLVM_DEBUG(N->dump(&DAG));
  LLVM_DEBUG(dbgs() << "into: \n");
  LLVM_DEBUG(ResultSLI->dump(&DAG));

  ++NumShiftInserts;
  return ResultSLI;
}

SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
                                             SelectionDAG &DAG) const {
  if (useSVEForFixedLengthVectorVT(Op.getValueType()))
    return LowerToScalableOp(Op, DAG);

  // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
  if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
    return Res;

  EVT VT = Op.getValueType();

  SDValue LHS = Op.getOperand(0);
  BuildVectorSDNode *BVN =
      dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
  if (!BVN) {
    // OR commutes, so try swapping the operands.
    LHS = Op.getOperand(1);
    BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
  }
  if (!BVN)
    return Op;

  APInt DefBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
    SDValue NewOp;

    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
                                    DefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
                                    DefBits, &LHS)))
      return NewOp;

    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
                                    UndefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
                                    UndefBits, &LHS)))
      return NewOp;
  }

  // We can always fall back to a non-immediate OR.
  return Op;
}

// Normalize the operands of BUILD_VECTOR. The value of constant operands will
// be truncated to fit element width.
static SDValue NormalizeBuildVector(SDValue Op,
                                    SelectionDAG &DAG) {
  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  EVT EltTy= VT.getVectorElementType();

  if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
    return Op;

  SmallVector<SDValue, 16> Ops;
  for (SDValue Lane : Op->ops()) {
    // For integer vectors, type legalization would have promoted the
    // operands already. Otherwise, if Op is a floating-point splat
    // (with operands cast to integers), then the only possibilities
    // are constants and UNDEFs.
    if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
      APInt LowBits(EltTy.getSizeInBits(),
                    CstLane->getZExtValue());
      Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
    } else if (Lane.getNode()->isUndef()) {
      Lane = DAG.getUNDEF(MVT::i32);
    } else {
      assert(Lane.getValueType() == MVT::i32 &&
             "Unexpected BUILD_VECTOR operand type");
    }
    Ops.push_back(Lane);
  }
  return DAG.getBuildVector(VT, dl, Ops);
}

static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
  EVT VT = Op.getValueType();

  APInt DefBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
    SDValue NewOp;
    if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
      return NewOp;

    DefBits = ~DefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
      return NewOp;

    DefBits = UndefBits;
    if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
      return NewOp;

    DefBits = ~UndefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
      return NewOp;
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
                                                 SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  if (useSVEForFixedLengthVectorVT(VT)) {
    if (auto SeqInfo = cast<BuildVectorSDNode>(Op)->isConstantSequence()) {
      SDLoc DL(Op);
      EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
      SDValue Start = DAG.getConstant(SeqInfo->first, DL, ContainerVT);
      SDValue Steps = DAG.getStepVector(DL, ContainerVT, SeqInfo->second);
      SDValue Seq = DAG.getNode(ISD::ADD, DL, ContainerVT, Start, Steps);
      return convertFromScalableVector(DAG, Op.getValueType(), Seq);
    }

    // Revert to common legalisation for all other variants.
    return SDValue();
  }

  // Try to build a simple constant vector.
  Op = NormalizeBuildVector(Op, DAG);
  if (VT.isInteger()) {
    // Certain vector constants, used to express things like logical NOT and
    // arithmetic NEG, are passed through unmodified.  This allows special
    // patterns for these operations to match, which will lower these constants
    // to whatever is proven necessary.
    BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
    if (BVN->isConstant())
      if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
        unsigned BitSize = VT.getVectorElementType().getSizeInBits();
        APInt Val(BitSize,
                  Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
        if (Val.isZero() || Val.isAllOnes())
          return Op;
      }
  }

  if (SDValue V = ConstantBuildVector(Op, DAG))
    return V;

  // Scan through the operands to find some interesting properties we can
  // exploit:
  //   1) If only one value is used, we can use a DUP, or
  //   2) if only the low element is not undef, we can just insert that, or
  //   3) if only one constant value is used (w/ some non-constant lanes),
  //      we can splat the constant value into the whole vector then fill
  //      in the non-constant lanes.
  //   4) FIXME: If different constant values are used, but we can intelligently
  //             select the values we'll be overwriting for the non-constant
  //             lanes such that we can directly materialize the vector
  //             some other way (MOVI, e.g.), we can be sneaky.
  //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
  SDLoc dl(Op);
  unsigned NumElts = VT.getVectorNumElements();
  bool isOnlyLowElement = true;
  bool usesOnlyOneValue = true;
  bool usesOnlyOneConstantValue = true;
  bool isConstant = true;
  bool AllLanesExtractElt = true;
  unsigned NumConstantLanes = 0;
  unsigned NumDifferentLanes = 0;
  unsigned NumUndefLanes = 0;
  SDValue Value;
  SDValue ConstantValue;
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
      AllLanesExtractElt = false;
    if (V.isUndef()) {
      ++NumUndefLanes;
      continue;
    }
    if (i > 0)
      isOnlyLowElement = false;
    if (!isIntOrFPConstant(V))
      isConstant = false;

    if (isIntOrFPConstant(V)) {
      ++NumConstantLanes;
      if (!ConstantValue.getNode())
        ConstantValue = V;
      else if (ConstantValue != V)
        usesOnlyOneConstantValue = false;
    }

    if (!Value.getNode())
      Value = V;
    else if (V != Value) {
      usesOnlyOneValue = false;
      ++NumDifferentLanes;
    }
  }

  if (!Value.getNode()) {
    LLVM_DEBUG(
        dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
    return DAG.getUNDEF(VT);
  }

  // Convert BUILD_VECTOR where all elements but the lowest are undef into
  // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
  // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
  if (isOnlyLowElement && !(NumElts == 1 && isIntOrFPConstant(Value))) {
    LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
                         "SCALAR_TO_VECTOR node\n");
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
  }

  if (AllLanesExtractElt) {
    SDNode *Vector = nullptr;
    bool Even = false;
    bool Odd = false;
    // Check whether the extract elements match the Even pattern <0,2,4,...> or
    // the Odd pattern <1,3,5,...>.
    for (unsigned i = 0; i < NumElts; ++i) {
      SDValue V = Op.getOperand(i);
      const SDNode *N = V.getNode();
      if (!isa<ConstantSDNode>(N->getOperand(1)))
        break;
      SDValue N0 = N->getOperand(0);

      // All elements are extracted from the same vector.
      if (!Vector) {
        Vector = N0.getNode();
        // Check that the type of EXTRACT_VECTOR_ELT matches the type of
        // BUILD_VECTOR.
        if (VT.getVectorElementType() !=
            N0.getValueType().getVectorElementType())
          break;
      } else if (Vector != N0.getNode()) {
        Odd = false;
        Even = false;
        break;
      }

      // Extracted values are either at Even indices <0,2,4,...> or at Odd
      // indices <1,3,5,...>.
      uint64_t Val = N->getConstantOperandVal(1);
      if (Val == 2 * i) {
        Even = true;
        continue;
      }
      if (Val - 1 == 2 * i) {
        Odd = true;
        continue;
      }

      // Something does not match: abort.
      Odd = false;
      Even = false;
      break;
    }
    if (Even || Odd) {
      SDValue LHS =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
                      DAG.getConstant(0, dl, MVT::i64));
      SDValue RHS =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
                      DAG.getConstant(NumElts, dl, MVT::i64));

      if (Even && !Odd)
        return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
                           RHS);
      if (Odd && !Even)
        return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
                           RHS);
    }
  }

  // Use DUP for non-constant splats. For f32 constant splats, reduce to
  // i32 and try again.
  if (usesOnlyOneValue) {
    if (!isConstant) {
      if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
          Value.getValueType() != VT) {
        LLVM_DEBUG(
            dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
        return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
      }

      // This is actually a DUPLANExx operation, which keeps everything vectory.

      SDValue Lane = Value.getOperand(1);
      Value = Value.getOperand(0);
      if (Value.getValueSizeInBits() == 64) {
        LLVM_DEBUG(
            dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
                      "widening it\n");
        Value = WidenVector(Value, DAG);
      }

      unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
      return DAG.getNode(Opcode, dl, VT, Value, Lane);
    }

    if (VT.getVectorElementType().isFloatingPoint()) {
      SmallVector<SDValue, 8> Ops;
      EVT EltTy = VT.getVectorElementType();
      assert ((EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 ||
               EltTy == MVT::f64) && "Unsupported floating-point vector type");
      LLVM_DEBUG(
          dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
                    "BITCASTS, and try again\n");
      MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
      for (unsigned i = 0; i < NumElts; ++i)
        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
      SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
      LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
                 Val.dump(););
      Val = LowerBUILD_VECTOR(Val, DAG);
      if (Val.getNode())
        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
    }
  }

  // If we need to insert a small number of different non-constant elements and
  // the vector width is sufficiently large, prefer using DUP with the common
  // value and INSERT_VECTOR_ELT for the different lanes. If DUP is preferred,
  // skip the constant lane handling below.
  bool PreferDUPAndInsert =
      !isConstant && NumDifferentLanes >= 1 &&
      NumDifferentLanes < ((NumElts - NumUndefLanes) / 2) &&
      NumDifferentLanes >= NumConstantLanes;

  // If there was only one constant value used and for more than one lane,
  // start by splatting that value, then replace the non-constant lanes. This
  // is better than the default, which will perform a separate initialization
  // for each lane.
  if (!PreferDUPAndInsert && NumConstantLanes > 0 && usesOnlyOneConstantValue) {
    // Firstly, try to materialize the splat constant.
    SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
            Val = ConstantBuildVector(Vec, DAG);
    if (!Val) {
      // Otherwise, materialize the constant and splat it.
      Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
      DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
    }

    // Now insert the non-constant lanes.
    for (unsigned i = 0; i < NumElts; ++i) {
      SDValue V = Op.getOperand(i);
      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
      if (!isIntOrFPConstant(V))
        // Note that type legalization likely mucked about with the VT of the
        // source operand, so we may have to convert it here before inserting.
        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
    }
    return Val;
  }

  // This will generate a load from the constant pool.
  if (isConstant) {
    LLVM_DEBUG(
        dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
                  "expansion\n");
    return SDValue();
  }

  // Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from
  // v4i32s. This is really a truncate, which we can construct out of (legal)
  // concats and truncate nodes.
  if (SDValue M = ReconstructTruncateFromBuildVector(Op, DAG))
    return M;

  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
  if (NumElts >= 4) {
    if (SDValue shuffle = ReconstructShuffle(Op, DAG))
      return shuffle;
  }

  if (PreferDUPAndInsert) {
    // First, build a constant vector with the common element.
    SmallVector<SDValue, 8> Ops(NumElts, Value);
    SDValue NewVector = LowerBUILD_VECTOR(DAG.getBuildVector(VT, dl, Ops), DAG);
    // Next, insert the elements that do not match the common value.
    for (unsigned I = 0; I < NumElts; ++I)
      if (Op.getOperand(I) != Value)
        NewVector =
            DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, NewVector,
                        Op.getOperand(I), DAG.getConstant(I, dl, MVT::i64));

    return NewVector;
  }

  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
  // know the default expansion would otherwise fall back on something even
  // worse. For a vector with one or two non-undef values, that's
  // scalar_to_vector for the elements followed by a shuffle (provided the
  // shuffle is valid for the target) and materialization element by element
  // on the stack followed by a load for everything else.
  if (!isConstant && !usesOnlyOneValue) {
    LLVM_DEBUG(
        dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
                  "of INSERT_VECTOR_ELT\n");

    SDValue Vec = DAG.getUNDEF(VT);
    SDValue Op0 = Op.getOperand(0);
    unsigned i = 0;

    // Use SCALAR_TO_VECTOR for lane zero to
    // a) Avoid a RMW dependency on the full vector register, and
    // b) Allow the register coalescer to fold away the copy if the
    //    value is already in an S or D register, and we're forced to emit an
    //    INSERT_SUBREG that we can't fold anywhere.
    //
    // We also allow types like i8 and i16 which are illegal scalar but legal
    // vector element types. After type-legalization the inserted value is
    // extended (i32) and it is safe to cast them to the vector type by ignoring
    // the upper bits of the lowest lane (e.g. v8i8, v4i16).
    if (!Op0.isUndef()) {
      LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
      Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
      ++i;
    }
    LLVM_DEBUG(if (i < NumElts) dbgs()
                   << "Creating nodes for the other vector elements:\n";);
    for (; i < NumElts; ++i) {
      SDValue V = Op.getOperand(i);
      if (V.isUndef())
        continue;
      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
    }
    return Vec;
  }

  LLVM_DEBUG(
      dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
                "better alternative\n");
  return SDValue();
}

SDValue AArch64TargetLowering::LowerCONCAT_VECTORS(SDValue Op,
                                                   SelectionDAG &DAG) const {
  if (useSVEForFixedLengthVectorVT(Op.getValueType()))
    return LowerFixedLengthConcatVectorsToSVE(Op, DAG);

  assert(Op.getValueType().isScalableVector() &&
         isTypeLegal(Op.getValueType()) &&
         "Expected legal scalable vector type!");

  if (isTypeLegal(Op.getOperand(0).getValueType())) {
    unsigned NumOperands = Op->getNumOperands();
    assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
           "Unexpected number of operands in CONCAT_VECTORS");

    if (NumOperands == 2)
      return Op;

    // Concat each pair of subvectors and pack into the lower half of the array.
    SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end());
    while (ConcatOps.size() > 1) {
      for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
        SDValue V1 = ConcatOps[I];
        SDValue V2 = ConcatOps[I + 1];
        EVT SubVT = V1.getValueType();
        EVT PairVT = SubVT.getDoubleNumVectorElementsVT(*DAG.getContext());
        ConcatOps[I / 2] =
            DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), PairVT, V1, V2);
      }
      ConcatOps.resize(ConcatOps.size() / 2);
    }
    return ConcatOps[0];
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                                      SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");

  if (useSVEForFixedLengthVectorVT(Op.getValueType()))
    return LowerFixedLengthInsertVectorElt(Op, DAG);

  // Check for non-constant or out of range lane.
  EVT VT = Op.getOperand(0).getValueType();

  if (VT.getScalarType() == MVT::i1) {
    EVT VectorVT = getPromotedVTForPredicate(VT);
    SDLoc DL(Op);
    SDValue ExtendedVector =
        DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, VectorVT);
    SDValue ExtendedValue =
        DAG.getAnyExtOrTrunc(Op.getOperand(1), DL,
                             VectorVT.getScalarType().getSizeInBits() < 32
                                 ? MVT::i32
                                 : VectorVT.getScalarType());
    ExtendedVector =
        DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VectorVT, ExtendedVector,
                    ExtendedValue, Op.getOperand(2));
    return DAG.getAnyExtOrTrunc(ExtendedVector, DL, VT);
  }

  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
    return SDValue();

  // Insertion/extraction are legal for V128 types.
  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
      VT == MVT::v8f16 || VT == MVT::v8bf16)
    return Op;

  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 &&
      VT != MVT::v4bf16)
    return SDValue();

  // For V64 types, we perform insertion by expanding the value
  // to a V128 type and perform the insertion on that.
  SDLoc DL(Op);
  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
  EVT WideTy = WideVec.getValueType();

  SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
                             Op.getOperand(1), Op.getOperand(2));
  // Re-narrow the resultant vector.
  return NarrowVector(Node, DAG);
}

SDValue
AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
                                               SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
  EVT VT = Op.getOperand(0).getValueType();

  if (VT.getScalarType() == MVT::i1) {
    // We can't directly extract from an SVE predicate; extend it first.
    // (This isn't the only possible lowering, but it's straightforward.)
    EVT VectorVT = getPromotedVTForPredicate(VT);
    SDLoc DL(Op);
    SDValue Extend =
        DAG.getNode(ISD::ANY_EXTEND, DL, VectorVT, Op.getOperand(0));
    MVT ExtractTy = VectorVT == MVT::nxv2i64 ? MVT::i64 : MVT::i32;
    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractTy,
                                  Extend, Op.getOperand(1));
    return DAG.getAnyExtOrTrunc(Extract, DL, Op.getValueType());
  }

  if (useSVEForFixedLengthVectorVT(VT))
    return LowerFixedLengthExtractVectorElt(Op, DAG);

  // Check for non-constant or out of range lane.
  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
    return SDValue();

  // Insertion/extraction are legal for V128 types.
  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
      VT == MVT::v8f16 || VT == MVT::v8bf16)
    return Op;

  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 &&
      VT != MVT::v4bf16)
    return SDValue();

  // For V64 types, we perform extraction by expanding the value
  // to a V128 type and perform the extraction on that.
  SDLoc DL(Op);
  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
  EVT WideTy = WideVec.getValueType();

  EVT ExtrTy = WideTy.getVectorElementType();
  if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
    ExtrTy = MVT::i32;

  // For extractions, we just return the result directly.
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
                     Op.getOperand(1));
}

SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
                                                      SelectionDAG &DAG) const {
  assert(Op.getValueType().isFixedLengthVector() &&
         "Only cases that extract a fixed length vector are supported!");

  EVT InVT = Op.getOperand(0).getValueType();
  unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
  unsigned Size = Op.getValueSizeInBits();

  // If we don't have legal types yet, do nothing
  if (!DAG.getTargetLoweringInfo().isTypeLegal(InVT))
    return SDValue();

  if (InVT.isScalableVector()) {
    // This will be matched by custom code during ISelDAGToDAG.
    if (Idx == 0 && isPackedVectorType(InVT, DAG))
      return Op;

    return SDValue();
  }

  // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
  if (Idx == 0 && InVT.getSizeInBits() <= 128)
    return Op;

  // If this is extracting the upper 64-bits of a 128-bit vector, we match
  // that directly.
  if (Size == 64 && Idx * InVT.getScalarSizeInBits() == 64 &&
      InVT.getSizeInBits() == 128)
    return Op;

  if (useSVEForFixedLengthVectorVT(InVT)) {
    SDLoc DL(Op);

    EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
    SDValue NewInVec =
        convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));

    SDValue Splice = DAG.getNode(ISD::VECTOR_SPLICE, DL, ContainerVT, NewInVec,
                                 NewInVec, DAG.getConstant(Idx, DL, MVT::i64));
    return convertFromScalableVector(DAG, Op.getValueType(), Splice);
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
                                                     SelectionDAG &DAG) const {
  assert(Op.getValueType().isScalableVector() &&
         "Only expect to lower inserts into scalable vectors!");

  EVT InVT = Op.getOperand(1).getValueType();
  unsigned Idx = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();

  SDValue Vec0 = Op.getOperand(0);
  SDValue Vec1 = Op.getOperand(1);
  SDLoc DL(Op);
  EVT VT = Op.getValueType();

  if (InVT.isScalableVector()) {
    if (!isTypeLegal(VT))
      return SDValue();

    // Break down insert_subvector into simpler parts.
    if (VT.getVectorElementType() == MVT::i1) {
      unsigned NumElts = VT.getVectorMinNumElements();
      EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());

      SDValue Lo, Hi;
      Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0,
                       DAG.getVectorIdxConstant(0, DL));
      Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0,
                       DAG.getVectorIdxConstant(NumElts / 2, DL));
      if (Idx < (NumElts / 2)) {
        SDValue NewLo = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Lo, Vec1,
                                    DAG.getVectorIdxConstant(Idx, DL));
        return DAG.getNode(AArch64ISD::UZP1, DL, VT, NewLo, Hi);
      } else {
        SDValue NewHi =
            DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Hi, Vec1,
                        DAG.getVectorIdxConstant(Idx - (NumElts / 2), DL));
        return DAG.getNode(AArch64ISD::UZP1, DL, VT, Lo, NewHi);
      }
    }

    // Ensure the subvector is half the size of the main vector.
    if (VT.getVectorElementCount() != (InVT.getVectorElementCount() * 2))
      return SDValue();

    // Here narrow and wide refers to the vector element types. After "casting"
    // both vectors must have the same bit length and so because the subvector
    // has fewer elements, those elements need to be bigger.
    EVT NarrowVT = getPackedSVEVectorVT(VT.getVectorElementCount());
    EVT WideVT = getPackedSVEVectorVT(InVT.getVectorElementCount());

    // NOP cast operands to the largest legal vector of the same element count.
    if (VT.isFloatingPoint()) {
      Vec0 = getSVESafeBitCast(NarrowVT, Vec0, DAG);
      Vec1 = getSVESafeBitCast(WideVT, Vec1, DAG);
    } else {
      // Legal integer vectors are already their largest so Vec0 is fine as is.
      Vec1 = DAG.getNode(ISD::ANY_EXTEND, DL, WideVT, Vec1);
    }

    // To replace the top/bottom half of vector V with vector SubV we widen the
    // preserved half of V, concatenate this to SubV (the order depending on the
    // half being replaced) and then narrow the result.
    SDValue Narrow;
    if (Idx == 0) {
      SDValue HiVec0 = DAG.getNode(AArch64ISD::UUNPKHI, DL, WideVT, Vec0);
      Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, Vec1, HiVec0);
    } else {
      assert(Idx == InVT.getVectorMinNumElements() &&
             "Invalid subvector index!");
      SDValue LoVec0 = DAG.getNode(AArch64ISD::UUNPKLO, DL, WideVT, Vec0);
      Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, LoVec0, Vec1);
    }

    return getSVESafeBitCast(VT, Narrow, DAG);
  }

  if (Idx == 0 && isPackedVectorType(VT, DAG)) {
    // This will be matched by custom code during ISelDAGToDAG.
    if (Vec0.isUndef())
      return Op;

    Optional<unsigned> PredPattern =
        getSVEPredPatternFromNumElements(InVT.getVectorNumElements());
    auto PredTy = VT.changeVectorElementType(MVT::i1);
    SDValue PTrue = getPTrue(DAG, DL, PredTy, *PredPattern);
    SDValue ScalableVec1 = convertToScalableVector(DAG, VT, Vec1);
    return DAG.getNode(ISD::VSELECT, DL, VT, PTrue, ScalableVec1, Vec0);
  }

  return SDValue();
}

static bool isPow2Splat(SDValue Op, uint64_t &SplatVal, bool &Negated) {
  if (Op.getOpcode() != AArch64ISD::DUP &&
      Op.getOpcode() != ISD::SPLAT_VECTOR &&
      Op.getOpcode() != ISD::BUILD_VECTOR)
    return false;

  if (Op.getOpcode() == ISD::BUILD_VECTOR &&
      !isAllConstantBuildVector(Op, SplatVal))
    return false;

  if (Op.getOpcode() != ISD::BUILD_VECTOR &&
      !isa<ConstantSDNode>(Op->getOperand(0)))
    return false;

  SplatVal = Op->getConstantOperandVal(0);
  if (Op.getValueType().getVectorElementType() != MVT::i64)
    SplatVal = (int32_t)SplatVal;

  Negated = false;
  if (isPowerOf2_64(SplatVal))
    return true;

  Negated = true;
  if (isPowerOf2_64(-SplatVal)) {
    SplatVal = -SplatVal;
    return true;
  }

  return false;
}

SDValue AArch64TargetLowering::LowerDIV(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc dl(Op);

  if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true))
    return LowerFixedLengthVectorIntDivideToSVE(Op, DAG);

  assert(VT.isScalableVector() && "Expected a scalable vector.");

  bool Signed = Op.getOpcode() == ISD::SDIV;
  unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED;

  bool Negated;
  uint64_t SplatVal;
  if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) {
    SDValue Pg = getPredicateForScalableVector(DAG, dl, VT);
    SDValue Res =
        DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, VT, Pg, Op->getOperand(0),
                    DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32));
    if (Negated)
      Res = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Res);

    return Res;
  }

  if (VT == MVT::nxv4i32 || VT == MVT::nxv2i64)
    return LowerToPredicatedOp(Op, DAG, PredOpcode);

  // SVE doesn't have i8 and i16 DIV operations; widen them to 32-bit
  // operations, and truncate the result.
  EVT WidenedVT;
  if (VT == MVT::nxv16i8)
    WidenedVT = MVT::nxv8i16;
  else if (VT == MVT::nxv8i16)
    WidenedVT = MVT::nxv4i32;
  else
    llvm_unreachable("Unexpected Custom DIV operation");

  unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;
  unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI;
  SDValue Op0Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(0));
  SDValue Op1Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(1));
  SDValue Op0Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(0));
  SDValue Op1Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(1));
  SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Lo, Op1Lo);
  SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Hi, Op1Hi);
  return DAG.getNode(AArch64ISD::UZP1, dl, VT, ResultLo, ResultHi);
}

bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
  // Currently no fixed length shuffles that require SVE are legal.
  if (useSVEForFixedLengthVectorVT(VT))
    return false;

  if (VT.getVectorNumElements() == 4 &&
      (VT.is128BitVector() || VT.is64BitVector())) {
    unsigned Cost = getPerfectShuffleCost(M);
    if (Cost <= 1)
      return true;
  }

  bool DummyBool;
  int DummyInt;
  unsigned DummyUnsigned;

  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
          isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
          isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
          // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
          isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
          isZIPMask(M, VT, DummyUnsigned) ||
          isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
          isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
          isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
          isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
          isConcatMask(M, VT, VT.getSizeInBits() == 128));
}

bool AArch64TargetLowering::isVectorClearMaskLegal(ArrayRef<int> M,
                                                   EVT VT) const {
  // Just delegate to the generic legality, clear masks aren't special.
  return isShuffleMaskLegal(M, VT);
}

/// getVShiftImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
  // Ignore bit_converts.
  while (Op.getOpcode() == ISD::BITCAST)
    Op = Op.getOperand(0);
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
                                    HasAnyUndefs, ElementBits) ||
      SplatBitSize > ElementBits)
    return false;
  Cnt = SplatBits.getSExtValue();
  return true;
}

/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation.  That value must be in the range:
///   0 <= Value < ElementBits for a left shift; or
///   0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
  assert(VT.isVector() && "vector shift count is not a vector type");
  int64_t ElementBits = VT.getScalarSizeInBits();
  if (!getVShiftImm(Op, ElementBits, Cnt))
    return false;
  return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
}

/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. The value must be in the range:
///   1 <= Value <= ElementBits for a right shift; or
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
  assert(VT.isVector() && "vector shift count is not a vector type");
  int64_t ElementBits = VT.getScalarSizeInBits();
  if (!getVShiftImm(Op, ElementBits, Cnt))
    return false;
  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
}

SDValue AArch64TargetLowering::LowerTRUNCATE(SDValue Op,
                                             SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  if (VT.getScalarType() == MVT::i1) {
    // Lower i1 truncate to `(x & 1) != 0`.
    SDLoc dl(Op);
    EVT OpVT = Op.getOperand(0).getValueType();
    SDValue Zero = DAG.getConstant(0, dl, OpVT);
    SDValue One = DAG.getConstant(1, dl, OpVT);
    SDValue And = DAG.getNode(ISD::AND, dl, OpVT, Op.getOperand(0), One);
    return DAG.getSetCC(dl, VT, And, Zero, ISD::SETNE);
  }

  if (!VT.isVector() || VT.isScalableVector())
    return SDValue();

  if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType()))
    return LowerFixedLengthVectorTruncateToSVE(Op, DAG);

  return SDValue();
}

SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
                                                      SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  int64_t Cnt;

  if (!Op.getOperand(1).getValueType().isVector())
    return Op;
  unsigned EltSize = VT.getScalarSizeInBits();

  switch (Op.getOpcode()) {
  case ISD::SHL:
    if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT))
      return LowerToPredicatedOp(Op, DAG, AArch64ISD::SHL_PRED);

    if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
      return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
                         DAG.getConstant(Cnt, DL, MVT::i32));
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
                       DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
                                       MVT::i32),
                       Op.getOperand(0), Op.getOperand(1));
  case ISD::SRA:
  case ISD::SRL:
    if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT)) {
      unsigned Opc = Op.getOpcode() == ISD::SRA ? AArch64ISD::SRA_PRED
                                                : AArch64ISD::SRL_PRED;
      return LowerToPredicatedOp(Op, DAG, Opc);
    }

    // Right shift immediate
    if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
      unsigned Opc =
          (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
      return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
                         DAG.getConstant(Cnt, DL, MVT::i32));
    }

    // Right shift register.  Note, there is not a shift right register
    // instruction, but the shift left register instruction takes a signed
    // value, where negative numbers specify a right shift.
    unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
                                                : Intrinsic::aarch64_neon_ushl;
    // negate the shift amount
    SDValue NegShift = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
                                   Op.getOperand(1));
    SDValue NegShiftLeft =
        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
                    DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
                    NegShift);
    return NegShiftLeft;
  }

  llvm_unreachable("unexpected shift opcode");
}

static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
                                    AArch64CC::CondCode CC, bool NoNans, EVT VT,
                                    const SDLoc &dl, SelectionDAG &DAG) {
  EVT SrcVT = LHS.getValueType();
  assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
         "function only supposed to emit natural comparisons");

  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
  APInt CnstBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
  bool IsZero = IsCnst && (CnstBits == 0);

  if (SrcVT.getVectorElementType().isFloatingPoint()) {
    switch (CC) {
    default:
      return SDValue();
    case AArch64CC::NE: {
      SDValue Fcmeq;
      if (IsZero)
        Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
      else
        Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
      return DAG.getNOT(dl, Fcmeq, VT);
    }
    case AArch64CC::EQ:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
    case AArch64CC::GE:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
    case AArch64CC::GT:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
    case AArch64CC::LE:
      if (!NoNans)
        return SDValue();
      // If we ignore NaNs then we can use to the LS implementation.
      LLVM_FALLTHROUGH;
    case AArch64CC::LS:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
    case AArch64CC::LT:
      if (!NoNans)
        return SDValue();
      // If we ignore NaNs then we can use to the MI implementation.
      LLVM_FALLTHROUGH;
    case AArch64CC::MI:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
    }
  }

  switch (CC) {
  default:
    return SDValue();
  case AArch64CC::NE: {
    SDValue Cmeq;
    if (IsZero)
      Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
    else
      Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
    return DAG.getNOT(dl, Cmeq, VT);
  }
  case AArch64CC::EQ:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
  case AArch64CC::GE:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
  case AArch64CC::GT:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
  case AArch64CC::LE:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
  case AArch64CC::LS:
    return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
  case AArch64CC::LO:
    return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
  case AArch64CC::LT:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
  case AArch64CC::HI:
    return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
  case AArch64CC::HS:
    return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
  }
}

SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
                                           SelectionDAG &DAG) const {
  if (Op.getValueType().isScalableVector())
    return LowerToPredicatedOp(Op, DAG, AArch64ISD::SETCC_MERGE_ZERO);

  if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType()))
    return LowerFixedLengthVectorSetccToSVE(Op, DAG);

  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
  SDLoc dl(Op);

  if (LHS.getValueType().getVectorElementType().isInteger()) {
    assert(LHS.getValueType() == RHS.getValueType());
    AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
    SDValue Cmp =
        EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
    return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
  }

  const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();

  // Make v4f16 (only) fcmp operations utilise vector instructions
  // v8f16 support will be a litle more complicated
  if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
    if (LHS.getValueType().getVectorNumElements() == 4) {
      LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
      RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
      SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
      DAG.ReplaceAllUsesWith(Op, NewSetcc);
      CmpVT = MVT::v4i32;
    } else
      return SDValue();
  }

  assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
          LHS.getValueType().getVectorElementType() != MVT::f128);

  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
  // clean.  Some of them require two branches to implement.
  AArch64CC::CondCode CC1, CC2;
  bool ShouldInvert;
  changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);

  bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs();
  SDValue Cmp =
      EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
  if (!Cmp.getNode())
    return SDValue();

  if (CC2 != AArch64CC::AL) {
    SDValue Cmp2 =
        EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
    if (!Cmp2.getNode())
      return SDValue();

    Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
  }

  Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());

  if (ShouldInvert)
    Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());

  return Cmp;
}

static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
                                  SelectionDAG &DAG) {
  SDValue VecOp = ScalarOp.getOperand(0);
  auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
                     DAG.getConstant(0, DL, MVT::i64));
}

SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDValue Src = Op.getOperand(0);

  // Try to lower fixed length reductions to SVE.
  EVT SrcVT = Src.getValueType();
  bool OverrideNEON = Op.getOpcode() == ISD::VECREDUCE_AND ||
                      Op.getOpcode() == ISD::VECREDUCE_OR ||
                      Op.getOpcode() == ISD::VECREDUCE_XOR ||
                      Op.getOpcode() == ISD::VECREDUCE_FADD ||
                      (Op.getOpcode() != ISD::VECREDUCE_ADD &&
                       SrcVT.getVectorElementType() == MVT::i64);
  if (SrcVT.isScalableVector() ||
      useSVEForFixedLengthVectorVT(
          SrcVT, OverrideNEON && Subtarget->useSVEForFixedLengthVectors())) {

    if (SrcVT.getVectorElementType() == MVT::i1)
      return LowerPredReductionToSVE(Op, DAG);

    switch (Op.getOpcode()) {
    case ISD::VECREDUCE_ADD:
      return LowerReductionToSVE(AArch64ISD::UADDV_PRED, Op, DAG);
    case ISD::VECREDUCE_AND:
      return LowerReductionToSVE(AArch64ISD::ANDV_PRED, Op, DAG);
    case ISD::VECREDUCE_OR:
      return LowerReductionToSVE(AArch64ISD::ORV_PRED, Op, DAG);
    case ISD::VECREDUCE_SMAX:
      return LowerReductionToSVE(AArch64ISD::SMAXV_PRED, Op, DAG);
    case ISD::VECREDUCE_SMIN:
      return LowerReductionToSVE(AArch64ISD::SMINV_PRED, Op, DAG);
    case ISD::VECREDUCE_UMAX:
      return LowerReductionToSVE(AArch64ISD::UMAXV_PRED, Op, DAG);
    case ISD::VECREDUCE_UMIN:
      return LowerReductionToSVE(AArch64ISD::UMINV_PRED, Op, DAG);
    case ISD::VECREDUCE_XOR:
      return LowerReductionToSVE(AArch64ISD::EORV_PRED, Op, DAG);
    case ISD::VECREDUCE_FADD:
      return LowerReductionToSVE(AArch64ISD::FADDV_PRED, Op, DAG);
    case ISD::VECREDUCE_FMAX:
      return LowerReductionToSVE(AArch64ISD::FMAXNMV_PRED, Op, DAG);
    case ISD::VECREDUCE_FMIN:
      return LowerReductionToSVE(AArch64ISD::FMINNMV_PRED, Op, DAG);
    default:
      llvm_unreachable("Unhandled fixed length reduction");
    }
  }

  // Lower NEON reductions.
  SDLoc dl(Op);
  switch (Op.getOpcode()) {
  case ISD::VECREDUCE_ADD:
    return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
  case ISD::VECREDUCE_SMAX:
    return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
  case ISD::VECREDUCE_SMIN:
    return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
  case ISD::VECREDUCE_UMAX:
    return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
  case ISD::VECREDUCE_UMIN:
    return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
  case ISD::VECREDUCE_FMAX: {
    return DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
        DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
        Src);
  }
  case ISD::VECREDUCE_FMIN: {
    return DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
        DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
        Src);
  }
  default:
    llvm_unreachable("Unhandled reduction");
  }
}

SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
                                                    SelectionDAG &DAG) const {
  auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
  if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics())
    return SDValue();

  // LSE has an atomic load-add instruction, but not a load-sub.
  SDLoc dl(Op);
  MVT VT = Op.getSimpleValueType();
  SDValue RHS = Op.getOperand(2);
  AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
  RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
                       Op.getOperand(0), Op.getOperand(1), RHS,
                       AN->getMemOperand());
}

SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
                                                    SelectionDAG &DAG) const {
  auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
  if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics())
    return SDValue();

  // LSE has an atomic load-clear instruction, but not a load-and.
  SDLoc dl(Op);
  MVT VT = Op.getSimpleValueType();
  SDValue RHS = Op.getOperand(2);
  AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
  RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
  return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
                       Op.getOperand(0), Op.getOperand(1), RHS,
                       AN->getMemOperand());
}

SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
    SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);

  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
  if (Subtarget->hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);

  Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
                     DAG.getConstant(4, dl, MVT::i64));
  Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
  Chain =
      DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
                  Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
                  DAG.getRegisterMask(Mask), Chain.getValue(1));
  // To match the actual intent better, we should read the output from X15 here
  // again (instead of potentially spilling it to the stack), but rereading Size
  // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
  // here.

  Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
                     DAG.getConstant(4, dl, MVT::i64));
  return Chain;
}

SDValue
AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
                                               SelectionDAG &DAG) const {
  assert(Subtarget->isTargetWindows() &&
         "Only Windows alloca probing supported");
  SDLoc dl(Op);
  // Get the inputs.
  SDNode *Node = Op.getNode();
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  MaybeAlign Align =
      cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
  EVT VT = Node->getValueType(0);

  if (DAG.getMachineFunction().getFunction().hasFnAttribute(
          "no-stack-arg-probe")) {
    SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
    Chain = SP.getValue(1);
    SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
    if (Align)
      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
                       DAG.getConstant(-(uint64_t)Align->value(), dl, VT));
    Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
    SDValue Ops[2] = {SP, Chain};
    return DAG.getMergeValues(Ops, dl);
  }

  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);

  Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);

  SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
  Chain = SP.getValue(1);
  SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
  if (Align)
    SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
                     DAG.getConstant(-(uint64_t)Align->value(), dl, VT));
  Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);

  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);

  SDValue Ops[2] = {SP, Chain};
  return DAG.getMergeValues(Ops, dl);
}

SDValue AArch64TargetLowering::LowerVSCALE(SDValue Op,
                                           SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT != MVT::i64 && "Expected illegal VSCALE node");

  SDLoc DL(Op);
  APInt MulImm = cast<ConstantSDNode>(Op.getOperand(0))->getAPIntValue();
  return DAG.getZExtOrTrunc(DAG.getVScale(DL, MVT::i64, MulImm.sext(64)), DL,
                            VT);
}

/// Set the IntrinsicInfo for the `aarch64_sve_st<N>` intrinsics.
template <unsigned NumVecs>
static bool
setInfoSVEStN(const AArch64TargetLowering &TLI, const DataLayout &DL,
              AArch64TargetLowering::IntrinsicInfo &Info, const CallInst &CI) {
  Info.opc = ISD::INTRINSIC_VOID;
  // Retrieve EC from first vector argument.
  const EVT VT = TLI.getMemValueType(DL, CI.getArgOperand(0)->getType());
  ElementCount EC = VT.getVectorElementCount();
#ifndef NDEBUG
  // Check the assumption that all input vectors are the same type.
  for (unsigned I = 0; I < NumVecs; ++I)
    assert(VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) &&
           "Invalid type.");
#endif
  // memVT is `NumVecs * VT`.
  Info.memVT = EVT::getVectorVT(CI.getType()->getContext(), VT.getScalarType(),
                                EC * NumVecs);
  Info.ptrVal = CI.getArgOperand(CI.arg_size() - 1);
  Info.offset = 0;
  Info.align.reset();
  Info.flags = MachineMemOperand::MOStore;
  return true;
}

/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
/// specified in the intrinsic calls.
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                               const CallInst &I,
                                               MachineFunction &MF,
                                               unsigned Intrinsic) const {
  auto &DL = I.getModule()->getDataLayout();
  switch (Intrinsic) {
  case Intrinsic::aarch64_sve_st2:
    return setInfoSVEStN<2>(*this, DL, Info, I);
  case Intrinsic::aarch64_sve_st3:
    return setInfoSVEStN<3>(*this, DL, Info, I);
  case Intrinsic::aarch64_sve_st4:
    return setInfoSVEStN<4>(*this, DL, Info, I);
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
  case Intrinsic::aarch64_neon_ld1x2:
  case Intrinsic::aarch64_neon_ld1x3:
  case Intrinsic::aarch64_neon_ld1x4:
  case Intrinsic::aarch64_neon_ld2lane:
  case Intrinsic::aarch64_neon_ld3lane:
  case Intrinsic::aarch64_neon_ld4lane:
  case Intrinsic::aarch64_neon_ld2r:
  case Intrinsic::aarch64_neon_ld3r:
  case Intrinsic::aarch64_neon_ld4r: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    // Conservatively set memVT to the entire set of vectors loaded.
    uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
    Info.offset = 0;
    Info.align.reset();
    // volatile loads with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4:
  case Intrinsic::aarch64_neon_st1x2:
  case Intrinsic::aarch64_neon_st1x3:
  case Intrinsic::aarch64_neon_st1x4:
  case Intrinsic::aarch64_neon_st2lane:
  case Intrinsic::aarch64_neon_st3lane:
  case Intrinsic::aarch64_neon_st4lane: {
    Info.opc = ISD::INTRINSIC_VOID;
    // Conservatively set memVT to the entire set of vectors stored.
    unsigned NumElts = 0;
    for (const Value *Arg : I.args()) {
      Type *ArgTy = Arg->getType();
      if (!ArgTy->isVectorTy())
        break;
      NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
    }
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
    Info.offset = 0;
    Info.align.reset();
    // volatile stores with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOStore;
    return true;
  }
  case Intrinsic::aarch64_ldaxr:
  case Intrinsic::aarch64_ldxr: {
    Type *ValTy = I.getParamElementType(0);
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(ValTy);
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = DL.getABITypeAlign(ValTy);
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::aarch64_stlxr:
  case Intrinsic::aarch64_stxr: {
    Type *ValTy = I.getParamElementType(1);
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(ValTy);
    Info.ptrVal = I.getArgOperand(1);
    Info.offset = 0;
    Info.align = DL.getABITypeAlign(ValTy);
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::aarch64_ldaxp:
  case Intrinsic::aarch64_ldxp:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i128;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = Align(16);
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
    return true;
  case Intrinsic::aarch64_stlxp:
  case Intrinsic::aarch64_stxp:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i128;
    Info.ptrVal = I.getArgOperand(2);
    Info.offset = 0;
    Info.align = Align(16);
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
    return true;
  case Intrinsic::aarch64_sve_ldnt1: {
    Type *ElTy = cast<VectorType>(I.getType())->getElementType();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(I.getType());
    Info.ptrVal = I.getArgOperand(1);
    Info.offset = 0;
    Info.align = DL.getABITypeAlign(ElTy);
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal;
    return true;
  }
  case Intrinsic::aarch64_sve_stnt1: {
    Type *ElTy =
        cast<VectorType>(I.getArgOperand(0)->getType())->getElementType();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(I.getOperand(0)->getType());
    Info.ptrVal = I.getArgOperand(2);
    Info.offset = 0;
    Info.align = DL.getABITypeAlign(ElTy);
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal;
    return true;
  }
  case Intrinsic::aarch64_mops_memset_tag: {
    Value *Dst = I.getArgOperand(0);
    Value *Val = I.getArgOperand(1);
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(Val->getType());
    Info.ptrVal = Dst;
    Info.offset = 0;
    Info.align = I.getParamAlign(0).valueOrOne();
    Info.flags = MachineMemOperand::MOStore;
    // The size of the memory being operated on is unknown at this point
    Info.size = MemoryLocation::UnknownSize;
    return true;
  }
  default:
    break;
  }

  return false;
}

bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
                                                  ISD::LoadExtType ExtTy,
                                                  EVT NewVT) const {
  // TODO: This may be worth removing. Check regression tests for diffs.
  if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
    return false;

  // If we're reducing the load width in order to avoid having to use an extra
  // instruction to do extension then it's probably a good idea.
  if (ExtTy != ISD::NON_EXTLOAD)
    return true;
  // Don't reduce load width if it would prevent us from combining a shift into
  // the offset.
  MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
  assert(Mem);
  const SDValue &Base = Mem->getBasePtr();
  if (Base.getOpcode() == ISD::ADD &&
      Base.getOperand(1).getOpcode() == ISD::SHL &&
      Base.getOperand(1).hasOneUse() &&
      Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
    // It's unknown whether a scalable vector has a power-of-2 bitwidth.
    if (Mem->getMemoryVT().isScalableVector())
      return false;
    // The shift can be combined if it matches the size of the value being
    // loaded (and so reducing the width would make it not match).
    uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
    uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
    if (ShiftAmount == Log2_32(LoadBytes))
      return false;
  }
  // We have no reason to disallow reducing the load width, so allow it.
  return true;
}

// Truncations from 64-bit GPR to 32-bit GPR is free.
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;
  uint64_t NumBits1 = Ty1->getPrimitiveSizeInBits().getFixedSize();
  uint64_t NumBits2 = Ty2->getPrimitiveSizeInBits().getFixedSize();
  return NumBits1 > NumBits2;
}
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
    return false;
  uint64_t NumBits1 = VT1.getFixedSizeInBits();
  uint64_t NumBits2 = VT2.getFixedSizeInBits();
  return NumBits1 > NumBits2;
}

/// Check if it is profitable to hoist instruction in then/else to if.
/// Not profitable if I and it's user can form a FMA instruction
/// because we prefer FMSUB/FMADD.
bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
  if (I->getOpcode() != Instruction::FMul)
    return true;

  if (!I->hasOneUse())
    return true;

  Instruction *User = I->user_back();

  if (!(User->getOpcode() == Instruction::FSub ||
        User->getOpcode() == Instruction::FAdd))
    return true;

  const TargetOptions &Options = getTargetMachine().Options;
  const Function *F = I->getFunction();
  const DataLayout &DL = F->getParent()->getDataLayout();
  Type *Ty = User->getOperand(0)->getType();

  return !(isFMAFasterThanFMulAndFAdd(*F, Ty) &&
           isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
           (Options.AllowFPOpFusion == FPOpFusion::Fast ||
            Options.UnsafeFPMath));
}

// All 32-bit GPR operations implicitly zero the high-half of the corresponding
// 64-bit GPR.
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
  return NumBits1 == 32 && NumBits2 == 64;
}
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
    return false;
  unsigned NumBits1 = VT1.getSizeInBits();
  unsigned NumBits2 = VT2.getSizeInBits();
  return NumBits1 == 32 && NumBits2 == 64;
}

bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
  EVT VT1 = Val.getValueType();
  if (isZExtFree(VT1, VT2)) {
    return true;
  }

  if (Val.getOpcode() != ISD::LOAD)
    return false;

  // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
  return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
          VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
          VT1.getSizeInBits() <= 32);
}

bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
  if (isa<FPExtInst>(Ext))
    return false;

  // Vector types are not free.
  if (Ext->getType()->isVectorTy())
    return false;

  for (const Use &U : Ext->uses()) {
    // The extension is free if we can fold it with a left shift in an
    // addressing mode or an arithmetic operation: add, sub, and cmp.

    // Is there a shift?
    const Instruction *Instr = cast<Instruction>(U.getUser());

    // Is this a constant shift?
    switch (Instr->getOpcode()) {
    case Instruction::Shl:
      if (!isa<ConstantInt>(Instr->getOperand(1)))
        return false;
      break;
    case Instruction::GetElementPtr: {
      gep_type_iterator GTI = gep_type_begin(Instr);
      auto &DL = Ext->getModule()->getDataLayout();
      std::advance(GTI, U.getOperandNo()-1);
      Type *IdxTy = GTI.getIndexedType();
      // This extension will end up with a shift because of the scaling factor.
      // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
      // Get the shift amount based on the scaling factor:
      // log2(sizeof(IdxTy)) - log2(8).
      uint64_t ShiftAmt =
        countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3;
      // Is the constant foldable in the shift of the addressing mode?
      // I.e., shift amount is between 1 and 4 inclusive.
      if (ShiftAmt == 0 || ShiftAmt > 4)
        return false;
      break;
    }
    case Instruction::Trunc:
      // Check if this is a noop.
      // trunc(sext ty1 to ty2) to ty1.
      if (Instr->getType() == Ext->getOperand(0)->getType())
        continue;
      LLVM_FALLTHROUGH;
    default:
      return false;
    }

    // At this point we can use the bfm family, so this extension is free
    // for that use.
  }
  return true;
}

/// Check if both Op1 and Op2 are shufflevector extracts of either the lower
/// or upper half of the vector elements.
static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
  auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
    auto *FullTy = FullV->getType();
    auto *HalfTy = HalfV->getType();
    return FullTy->getPrimitiveSizeInBits().getFixedSize() ==
           2 * HalfTy->getPrimitiveSizeInBits().getFixedSize();
  };

  auto extractHalf = [](Value *FullV, Value *HalfV) {
    auto *FullVT = cast<FixedVectorType>(FullV->getType());
    auto *HalfVT = cast<FixedVectorType>(HalfV->getType());
    return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
  };

  ArrayRef<int> M1, M2;
  Value *S1Op1, *S2Op1;
  if (!match(Op1, m_Shuffle(m_Value(S1Op1), m_Undef(), m_Mask(M1))) ||
      !match(Op2, m_Shuffle(m_Value(S2Op1), m_Undef(), m_Mask(M2))))
    return false;

  // Check that the operands are half as wide as the result and we extract
  // half of the elements of the input vectors.
  if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
      !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
    return false;

  // Check the mask extracts either the lower or upper half of vector
  // elements.
  int M1Start = -1;
  int M2Start = -1;
  int NumElements = cast<FixedVectorType>(Op1->getType())->getNumElements() * 2;
  if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
      !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
      M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
    return false;

  return true;
}

/// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
/// of the vector elements.
static bool areExtractExts(Value *Ext1, Value *Ext2) {
  auto areExtDoubled = [](Instruction *Ext) {
    return Ext->getType()->getScalarSizeInBits() ==
           2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
  };

  if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
      !match(Ext2, m_ZExtOrSExt(m_Value())) ||
      !areExtDoubled(cast<Instruction>(Ext1)) ||
      !areExtDoubled(cast<Instruction>(Ext2)))
    return false;

  return true;
}

/// Check if Op could be used with vmull_high_p64 intrinsic.
static bool isOperandOfVmullHighP64(Value *Op) {
  Value *VectorOperand = nullptr;
  ConstantInt *ElementIndex = nullptr;
  return match(Op, m_ExtractElt(m_Value(VectorOperand),
                                m_ConstantInt(ElementIndex))) &&
         ElementIndex->getValue() == 1 &&
         isa<FixedVectorType>(VectorOperand->getType()) &&
         cast<FixedVectorType>(VectorOperand->getType())->getNumElements() == 2;
}

/// Check if Op1 and Op2 could be used with vmull_high_p64 intrinsic.
static bool areOperandsOfVmullHighP64(Value *Op1, Value *Op2) {
  return isOperandOfVmullHighP64(Op1) && isOperandOfVmullHighP64(Op2);
}

static bool isSplatShuffle(Value *V) {
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V))
    return is_splat(Shuf->getShuffleMask());
  return false;
}

/// Check if sinking \p I's operands to I's basic block is profitable, because
/// the operands can be folded into a target instruction, e.g.
/// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
bool AArch64TargetLowering::shouldSinkOperands(
    Instruction *I, SmallVectorImpl<Use *> &Ops) const {
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::aarch64_neon_smull:
    case Intrinsic::aarch64_neon_umull:
      if (areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) {
        Ops.push_back(&II->getOperandUse(0));
        Ops.push_back(&II->getOperandUse(1));
        return true;
      }
      LLVM_FALLTHROUGH;

    case Intrinsic::fma:
      if (isa<VectorType>(I->getType()) &&
          cast<VectorType>(I->getType())->getElementType()->isHalfTy() &&
          !Subtarget->hasFullFP16())
        return false;
      LLVM_FALLTHROUGH;
    case Intrinsic::aarch64_neon_sqdmull:
    case Intrinsic::aarch64_neon_sqdmulh:
    case Intrinsic::aarch64_neon_sqrdmulh:
      // Sink splats for index lane variants
      if (isSplatShuffle(II->getOperand(0)))
        Ops.push_back(&II->getOperandUse(0));
      if (isSplatShuffle(II->getOperand(1)))
        Ops.push_back(&II->getOperandUse(1));
      return !Ops.empty();
    case Intrinsic::aarch64_sve_ptest_first:
    case Intrinsic::aarch64_sve_ptest_last:
      if (auto *IIOp = dyn_cast<IntrinsicInst>(II->getOperand(0)))
        if (IIOp->getIntrinsicID() == Intrinsic::aarch64_sve_ptrue)
          Ops.push_back(&II->getOperandUse(0));
      return !Ops.empty();
    case Intrinsic::aarch64_sme_write_horiz:
    case Intrinsic::aarch64_sme_write_vert:
    case Intrinsic::aarch64_sme_writeq_horiz:
    case Intrinsic::aarch64_sme_writeq_vert: {
      auto *Idx = dyn_cast<Instruction>(II->getOperand(1));
      if (!Idx || Idx->getOpcode() != Instruction::Add)
        return false;
      Ops.push_back(&II->getOperandUse(1));
      return true;
    }
    case Intrinsic::aarch64_sme_read_horiz:
    case Intrinsic::aarch64_sme_read_vert:
    case Intrinsic::aarch64_sme_readq_horiz:
    case Intrinsic::aarch64_sme_readq_vert:
    case Intrinsic::aarch64_sme_ld1b_vert:
    case Intrinsic::aarch64_sme_ld1h_vert:
    case Intrinsic::aarch64_sme_ld1w_vert:
    case Intrinsic::aarch64_sme_ld1d_vert:
    case Intrinsic::aarch64_sme_ld1q_vert:
    case Intrinsic::aarch64_sme_st1b_vert:
    case Intrinsic::aarch64_sme_st1h_vert:
    case Intrinsic::aarch64_sme_st1w_vert:
    case Intrinsic::aarch64_sme_st1d_vert:
    case Intrinsic::aarch64_sme_st1q_vert:
    case Intrinsic::aarch64_sme_ld1b_horiz:
    case Intrinsic::aarch64_sme_ld1h_horiz:
    case Intrinsic::aarch64_sme_ld1w_horiz:
    case Intrinsic::aarch64_sme_ld1d_horiz:
    case Intrinsic::aarch64_sme_ld1q_horiz:
    case Intrinsic::aarch64_sme_st1b_horiz:
    case Intrinsic::aarch64_sme_st1h_horiz:
    case Intrinsic::aarch64_sme_st1w_horiz:
    case Intrinsic::aarch64_sme_st1d_horiz:
    case Intrinsic::aarch64_sme_st1q_horiz: {
      auto *Idx = dyn_cast<Instruction>(II->getOperand(3));
      if (!Idx || Idx->getOpcode() != Instruction::Add)
        return false;
      Ops.push_back(&II->getOperandUse(3));
      return true;
    }
    case Intrinsic::aarch64_neon_pmull:
      if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
        return false;
      Ops.push_back(&II->getOperandUse(0));
      Ops.push_back(&II->getOperandUse(1));
      return true;
    case Intrinsic::aarch64_neon_pmull64:
      if (!areOperandsOfVmullHighP64(II->getArgOperand(0),
                                     II->getArgOperand(1)))
        return false;
      Ops.push_back(&II->getArgOperandUse(0));
      Ops.push_back(&II->getArgOperandUse(1));
      return true;
    default:
      return false;
    }
  }

  if (!I->getType()->isVectorTy())
    return false;

  switch (I->getOpcode()) {
  case Instruction::Sub:
  case Instruction::Add: {
    if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
      return false;

    // If the exts' operands extract either the lower or upper elements, we
    // can sink them too.
    auto Ext1 = cast<Instruction>(I->getOperand(0));
    auto Ext2 = cast<Instruction>(I->getOperand(1));
    if (areExtractShuffleVectors(Ext1->getOperand(0), Ext2->getOperand(0))) {
      Ops.push_back(&Ext1->getOperandUse(0));
      Ops.push_back(&Ext2->getOperandUse(0));
    }

    Ops.push_back(&I->getOperandUse(0));
    Ops.push_back(&I->getOperandUse(1));

    return true;
  }
  case Instruction::Mul: {
    bool IsProfitable = false;
    for (auto &Op : I->operands()) {
      // Make sure we are not already sinking this operand
      if (any_of(Ops, [&](Use *U) { return U->get() == Op; }))
        continue;

      ShuffleVectorInst *Shuffle = dyn_cast<ShuffleVectorInst>(Op);
      if (!Shuffle || !Shuffle->isZeroEltSplat())
        continue;

      Value *ShuffleOperand = Shuffle->getOperand(0);
      InsertElementInst *Insert = dyn_cast<InsertElementInst>(ShuffleOperand);
      if (!Insert)
        continue;

      Instruction *OperandInstr = dyn_cast<Instruction>(Insert->getOperand(1));
      if (!OperandInstr)
        continue;

      ConstantInt *ElementConstant =
          dyn_cast<ConstantInt>(Insert->getOperand(2));
      // Check that the insertelement is inserting into element 0
      if (!ElementConstant || ElementConstant->getZExtValue() != 0)
        continue;

      unsigned Opcode = OperandInstr->getOpcode();
      if (Opcode != Instruction::SExt && Opcode != Instruction::ZExt)
        continue;

      Ops.push_back(&Shuffle->getOperandUse(0));
      Ops.push_back(&Op);
      IsProfitable = true;
    }

    return IsProfitable;
  }
  default:
    return false;
  }
  return false;
}

bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
                                          Align &RequiredAligment) const {
  if (!LoadedType.isSimple() ||
      (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
    return false;
  // Cyclone supports unaligned accesses.
  RequiredAligment = Align(1);
  unsigned NumBits = LoadedType.getSizeInBits();
  return NumBits == 32 || NumBits == 64;
}

/// A helper function for determining the number of interleaved accesses we
/// will generate when lowering accesses of the given type.
unsigned AArch64TargetLowering::getNumInterleavedAccesses(
    VectorType *VecTy, const DataLayout &DL, bool UseScalable) const {
  unsigned VecSize = UseScalable ? Subtarget->getMinSVEVectorSizeInBits() : 128;
  return std::max<unsigned>(1, (DL.getTypeSizeInBits(VecTy) + 127) / VecSize);
}

MachineMemOperand::Flags
AArch64TargetLowering::getTargetMMOFlags(const Instruction &I) const {
  if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
      I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
    return MOStridedAccess;
  return MachineMemOperand::MONone;
}

bool AArch64TargetLowering::isLegalInterleavedAccessType(
    VectorType *VecTy, const DataLayout &DL, bool &UseScalable) const {

  unsigned VecSize = DL.getTypeSizeInBits(VecTy);
  unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
  unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();

  UseScalable = false;

  // Ensure the number of vector elements is greater than 1.
  if (NumElements < 2)
    return false;

  // Ensure the element type is legal.
  if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
    return false;

  if (Subtarget->useSVEForFixedLengthVectors() &&
      (VecSize % Subtarget->getMinSVEVectorSizeInBits() == 0 ||
       (VecSize < Subtarget->getMinSVEVectorSizeInBits() &&
        isPowerOf2_32(NumElements) && VecSize > 128))) {
    UseScalable = true;
    return true;
  }

  // Ensure the total vector size is 64 or a multiple of 128. Types larger than
  // 128 will be split into multiple interleaved accesses.
  return VecSize == 64 || VecSize % 128 == 0;
}

static ScalableVectorType *getSVEContainerIRType(FixedVectorType *VTy) {
  if (VTy->getElementType() == Type::getDoubleTy(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 2);

  if (VTy->getElementType() == Type::getFloatTy(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 4);

  if (VTy->getElementType() == Type::getBFloatTy(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 8);

  if (VTy->getElementType() == Type::getHalfTy(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 8);

  if (VTy->getElementType() == Type::getInt64Ty(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 2);

  if (VTy->getElementType() == Type::getInt32Ty(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 4);

  if (VTy->getElementType() == Type::getInt16Ty(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 8);

  if (VTy->getElementType() == Type::getInt8Ty(VTy->getContext()))
    return ScalableVectorType::get(VTy->getElementType(), 16);

  llvm_unreachable("Cannot handle input vector type");
}

/// Lower an interleaved load into a ldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
///
///      Into:
///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
bool AArch64TargetLowering::lowerInterleavedLoad(
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
    ArrayRef<unsigned> Indices, unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");
  assert(!Shuffles.empty() && "Empty shufflevector input");
  assert(Shuffles.size() == Indices.size() &&
         "Unmatched number of shufflevectors and indices");

  const DataLayout &DL = LI->getModule()->getDataLayout();

  VectorType *VTy = Shuffles[0]->getType();

  // Skip if we do not have NEON and skip illegal vector types. We can
  // "legalize" wide vector types into multiple interleaved accesses as long as
  // the vector types are divisible by 128.
  bool UseScalable;
  if (!Subtarget->hasNEON() ||
      !isLegalInterleavedAccessType(VTy, DL, UseScalable))
    return false;

  unsigned NumLoads = getNumInterleavedAccesses(VTy, DL, UseScalable);

  auto *FVTy = cast<FixedVectorType>(VTy);

  // A pointer vector can not be the return type of the ldN intrinsics. Need to
  // load integer vectors first and then convert to pointer vectors.
  Type *EltTy = FVTy->getElementType();
  if (EltTy->isPointerTy())
    FVTy =
        FixedVectorType::get(DL.getIntPtrType(EltTy), FVTy->getNumElements());

  // If we're going to generate more than one load, reset the sub-vector type
  // to something legal.
  FVTy = FixedVectorType::get(FVTy->getElementType(),
                              FVTy->getNumElements() / NumLoads);

  auto *LDVTy =
      UseScalable ? cast<VectorType>(getSVEContainerIRType(FVTy)) : FVTy;

  IRBuilder<> Builder(LI);

  // The base address of the load.
  Value *BaseAddr = LI->getPointerOperand();

  if (NumLoads > 1) {
    // We will compute the pointer operand of each load from the original base
    // address using GEPs. Cast the base address to a pointer to the scalar
    // element type.
    BaseAddr = Builder.CreateBitCast(
        BaseAddr,
        LDVTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()));
  }

  Type *PtrTy =
      UseScalable
          ? LDVTy->getElementType()->getPointerTo(LI->getPointerAddressSpace())
          : LDVTy->getPointerTo(LI->getPointerAddressSpace());
  Type *PredTy = VectorType::get(Type::getInt1Ty(LDVTy->getContext()),
                                 LDVTy->getElementCount());

  static const Intrinsic::ID SVELoadIntrs[3] = {
      Intrinsic::aarch64_sve_ld2_sret, Intrinsic::aarch64_sve_ld3_sret,
      Intrinsic::aarch64_sve_ld4_sret};
  static const Intrinsic::ID NEONLoadIntrs[3] = {Intrinsic::aarch64_neon_ld2,
                                                 Intrinsic::aarch64_neon_ld3,
                                                 Intrinsic::aarch64_neon_ld4};
  Function *LdNFunc;
  if (UseScalable)
    LdNFunc = Intrinsic::getDeclaration(LI->getModule(),
                                        SVELoadIntrs[Factor - 2], {LDVTy});
  else
    LdNFunc = Intrinsic::getDeclaration(
        LI->getModule(), NEONLoadIntrs[Factor - 2], {LDVTy, PtrTy});

  // Holds sub-vectors extracted from the load intrinsic return values. The
  // sub-vectors are associated with the shufflevector instructions they will
  // replace.
  DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;

  Value *PTrue = nullptr;
  if (UseScalable) {
    Optional<unsigned> PgPattern =
        getSVEPredPatternFromNumElements(FVTy->getNumElements());
    if (Subtarget->getMinSVEVectorSizeInBits() ==
            Subtarget->getMaxSVEVectorSizeInBits() &&
        Subtarget->getMinSVEVectorSizeInBits() == DL.getTypeSizeInBits(FVTy))
      PgPattern = AArch64SVEPredPattern::all;

    auto *PTruePat =
        ConstantInt::get(Type::getInt32Ty(LDVTy->getContext()), *PgPattern);
    PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy},
                                    {PTruePat});
  }

  for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {

    // If we're generating more than one load, compute the base address of
    // subsequent loads as an offset from the previous.
    if (LoadCount > 0)
      BaseAddr = Builder.CreateConstGEP1_32(LDVTy->getElementType(), BaseAddr,
                                            FVTy->getNumElements() * Factor);

    CallInst *LdN;
    if (UseScalable)
      LdN = Builder.CreateCall(
          LdNFunc, {PTrue, Builder.CreateBitCast(BaseAddr, PtrTy)}, "ldN");
    else
      LdN = Builder.CreateCall(LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy),
                               "ldN");

    // Extract and store the sub-vectors returned by the load intrinsic.
    for (unsigned i = 0; i < Shuffles.size(); i++) {
      ShuffleVectorInst *SVI = Shuffles[i];
      unsigned Index = Indices[i];

      Value *SubVec = Builder.CreateExtractValue(LdN, Index);

      if (UseScalable)
        SubVec = Builder.CreateExtractVector(
            FVTy, SubVec,
            ConstantInt::get(Type::getInt64Ty(VTy->getContext()), 0));

      // Convert the integer vector to pointer vector if the element is pointer.
      if (EltTy->isPointerTy())
        SubVec = Builder.CreateIntToPtr(
            SubVec, FixedVectorType::get(SVI->getType()->getElementType(),
                                         FVTy->getNumElements()));

      SubVecs[SVI].push_back(SubVec);
    }
  }

  // Replace uses of the shufflevector instructions with the sub-vectors
  // returned by the load intrinsic. If a shufflevector instruction is
  // associated with more than one sub-vector, those sub-vectors will be
  // concatenated into a single wide vector.
  for (ShuffleVectorInst *SVI : Shuffles) {
    auto &SubVec = SubVecs[SVI];
    auto *WideVec =
        SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
    SVI->replaceAllUsesWith(WideVec);
  }

  return true;
}

/// Lower an interleaved store into a stN intrinsic.
///
/// E.g. Lower an interleaved store (Factor = 3):
///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
///        store <12 x i32> %i.vec, <12 x i32>* %ptr
///
///      Into:
///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
///
/// Note that the new shufflevectors will be removed and we'll only generate one
/// st3 instruction in CodeGen.
///
/// Example for a more general valid mask (Factor 3). Lower:
///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
///        store <12 x i32> %i.vec, <12 x i32>* %ptr
///
///      Into:
///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
                                                  ShuffleVectorInst *SVI,
                                                  unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");

  auto *VecTy = cast<FixedVectorType>(SVI->getType());
  assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");

  unsigned LaneLen = VecTy->getNumElements() / Factor;
  Type *EltTy = VecTy->getElementType();
  auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);

  const DataLayout &DL = SI->getModule()->getDataLayout();
  bool UseScalable;

  // Skip if we do not have NEON and skip illegal vector types. We can
  // "legalize" wide vector types into multiple interleaved accesses as long as
  // the vector types are divisible by 128.
  if (!Subtarget->hasNEON() ||
      !isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
    return false;

  unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL, UseScalable);

  Value *Op0 = SVI->getOperand(0);
  Value *Op1 = SVI->getOperand(1);
  IRBuilder<> Builder(SI);

  // StN intrinsics don't support pointer vectors as arguments. Convert pointer
  // vectors to integer vectors.
  if (EltTy->isPointerTy()) {
    Type *IntTy = DL.getIntPtrType(EltTy);
    unsigned NumOpElts =
        cast<FixedVectorType>(Op0->getType())->getNumElements();

    // Convert to the corresponding integer vector.
    auto *IntVecTy = FixedVectorType::get(IntTy, NumOpElts);
    Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
    Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);

    SubVecTy = FixedVectorType::get(IntTy, LaneLen);
  }

  // If we're going to generate more than one store, reset the lane length
  // and sub-vector type to something legal.
  LaneLen /= NumStores;
  SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);

  auto *STVTy = UseScalable ? cast<VectorType>(getSVEContainerIRType(SubVecTy))
                            : SubVecTy;

  // The base address of the store.
  Value *BaseAddr = SI->getPointerOperand();

  if (NumStores > 1) {
    // We will compute the pointer operand of each store from the original base
    // address using GEPs. Cast the base address to a pointer to the scalar
    // element type.
    BaseAddr = Builder.CreateBitCast(
        BaseAddr,
        SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()));
  }

  auto Mask = SVI->getShuffleMask();

  Type *PtrTy =
      UseScalable
          ? STVTy->getElementType()->getPointerTo(SI->getPointerAddressSpace())
          : STVTy->getPointerTo(SI->getPointerAddressSpace());
  Type *PredTy = VectorType::get(Type::getInt1Ty(STVTy->getContext()),
                                 STVTy->getElementCount());

  static const Intrinsic::ID SVEStoreIntrs[3] = {Intrinsic::aarch64_sve_st2,
                                                 Intrinsic::aarch64_sve_st3,
                                                 Intrinsic::aarch64_sve_st4};
  static const Intrinsic::ID NEONStoreIntrs[3] = {Intrinsic::aarch64_neon_st2,
                                                  Intrinsic::aarch64_neon_st3,
                                                  Intrinsic::aarch64_neon_st4};
  Function *StNFunc;
  if (UseScalable)
    StNFunc = Intrinsic::getDeclaration(SI->getModule(),
                                        SVEStoreIntrs[Factor - 2], {STVTy});
  else
    StNFunc = Intrinsic::getDeclaration(
        SI->getModule(), NEONStoreIntrs[Factor - 2], {STVTy, PtrTy});

  Value *PTrue = nullptr;
  if (UseScalable) {
    Optional<unsigned> PgPattern =
        getSVEPredPatternFromNumElements(SubVecTy->getNumElements());
    if (Subtarget->getMinSVEVectorSizeInBits() ==
            Subtarget->getMaxSVEVectorSizeInBits() &&
        Subtarget->getMinSVEVectorSizeInBits() ==
            DL.getTypeSizeInBits(SubVecTy))
      PgPattern = AArch64SVEPredPattern::all;

    auto *PTruePat =
        ConstantInt::get(Type::getInt32Ty(STVTy->getContext()), *PgPattern);
    PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy},
                                    {PTruePat});
  }

  for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {

    SmallVector<Value *, 5> Ops;

    // Split the shufflevector operands into sub vectors for the new stN call.
    for (unsigned i = 0; i < Factor; i++) {
      Value *Shuffle;
      unsigned IdxI = StoreCount * LaneLen * Factor + i;
      if (Mask[IdxI] >= 0) {
        Shuffle = Builder.CreateShuffleVector(
            Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0));
      } else {
        unsigned StartMask = 0;
        for (unsigned j = 1; j < LaneLen; j++) {
          unsigned IdxJ = StoreCount * LaneLen * Factor + j;
          if (Mask[IdxJ * Factor + IdxI] >= 0) {
            StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
            break;
          }
        }
        // Note: Filling undef gaps with random elements is ok, since
        // those elements were being written anyway (with undefs).
        // In the case of all undefs we're defaulting to using elems from 0
        // Note: StartMask cannot be negative, it's checked in
        // isReInterleaveMask
        Shuffle = Builder.CreateShuffleVector(
            Op0, Op1, createSequentialMask(StartMask, LaneLen, 0));
      }

      if (UseScalable)
        Shuffle = Builder.CreateInsertVector(
            STVTy, UndefValue::get(STVTy), Shuffle,
            ConstantInt::get(Type::getInt64Ty(STVTy->getContext()), 0));

      Ops.push_back(Shuffle);
    }

    if (UseScalable)
      Ops.push_back(PTrue);

    // If we generating more than one store, we compute the base address of
    // subsequent stores as an offset from the previous.
    if (StoreCount > 0)
      BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
                                            BaseAddr, LaneLen * Factor);

    Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
    Builder.CreateCall(StNFunc, Ops);
  }
  return true;
}

// Lower an SVE structured load intrinsic returning a tuple type to target
// specific intrinsic taking the same input but returning a multi-result value
// of the split tuple type.
//
// E.g. Lowering an LD3:
//
//  call <vscale x 12 x i32> @llvm.aarch64.sve.ld3.nxv12i32(
//                                                    <vscale x 4 x i1> %pred,
//                                                    <vscale x 4 x i32>* %addr)
//
//  Output DAG:
//
//    t0: ch = EntryToken
//        t2: nxv4i1,ch = CopyFromReg t0, Register:nxv4i1 %0
//        t4: i64,ch = CopyFromReg t0, Register:i64 %1
//    t5: nxv4i32,nxv4i32,nxv4i32,ch = AArch64ISD::SVE_LD3 t0, t2, t4
//    t6: nxv12i32 = concat_vectors t5, t5:1, t5:2
//
// This is called pre-legalization to avoid widening/splitting issues with
// non-power-of-2 tuple types used for LD3, such as nxv12i32.
SDValue AArch64TargetLowering::LowerSVEStructLoad(unsigned Intrinsic,
                                                  ArrayRef<SDValue> LoadOps,
                                                  EVT VT, SelectionDAG &DAG,
                                                  const SDLoc &DL) const {
  assert(VT.isScalableVector() && "Can only lower scalable vectors");

  unsigned N, Opcode;
  static const std::pair<unsigned, std::pair<unsigned, unsigned>>
      IntrinsicMap[] = {
          {Intrinsic::aarch64_sve_ld2, {2, AArch64ISD::SVE_LD2_MERGE_ZERO}},
          {Intrinsic::aarch64_sve_ld3, {3, AArch64ISD::SVE_LD3_MERGE_ZERO}},
          {Intrinsic::aarch64_sve_ld4, {4, AArch64ISD::SVE_LD4_MERGE_ZERO}}};

  std::tie(N, Opcode) = llvm::find_if(IntrinsicMap, [&](auto P) {
                          return P.first == Intrinsic;
                        })->second;
  assert(VT.getVectorElementCount().getKnownMinValue() % N == 0 &&
         "invalid tuple vector type!");

  EVT SplitVT =
      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
                       VT.getVectorElementCount().divideCoefficientBy(N));
  assert(isTypeLegal(SplitVT));

  SmallVector<EVT, 5> VTs(N, SplitVT);
  VTs.push_back(MVT::Other); // Chain
  SDVTList NodeTys = DAG.getVTList(VTs);

  SDValue PseudoLoad = DAG.getNode(Opcode, DL, NodeTys, LoadOps);
  SmallVector<SDValue, 4> PseudoLoadOps;
  for (unsigned I = 0; I < N; ++I)
    PseudoLoadOps.push_back(SDValue(PseudoLoad.getNode(), I));
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, PseudoLoadOps);
}

EVT AArch64TargetLowering::getOptimalMemOpType(
    const MemOp &Op, const AttributeList &FuncAttributes) const {
  bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat);
  bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
  bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
  // Only use AdvSIMD to implement memset of 32-byte and above. It would have
  // taken one instruction to materialize the v2i64 zero and one store (with
  // restrictive addressing mode). Just do i64 stores.
  bool IsSmallMemset = Op.isMemset() && Op.size() < 32;
  auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) {
    if (Op.isAligned(AlignCheck))
      return true;
    bool Fast;
    return allowsMisalignedMemoryAccesses(VT, 0, Align(1),
                                          MachineMemOperand::MONone, &Fast) &&
           Fast;
  };

  if (CanUseNEON && Op.isMemset() && !IsSmallMemset &&
      AlignmentIsAcceptable(MVT::v16i8, Align(16)))
    return MVT::v16i8;
  if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16)))
    return MVT::f128;
  if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8)))
    return MVT::i64;
  if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4)))
    return MVT::i32;
  return MVT::Other;
}

LLT AArch64TargetLowering::getOptimalMemOpLLT(
    const MemOp &Op, const AttributeList &FuncAttributes) const {
  bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat);
  bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
  bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
  // Only use AdvSIMD to implement memset of 32-byte and above. It would have
  // taken one instruction to materialize the v2i64 zero and one store (with
  // restrictive addressing mode). Just do i64 stores.
  bool IsSmallMemset = Op.isMemset() && Op.size() < 32;
  auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) {
    if (Op.isAligned(AlignCheck))
      return true;
    bool Fast;
    return allowsMisalignedMemoryAccesses(VT, 0, Align(1),
                                          MachineMemOperand::MONone, &Fast) &&
           Fast;
  };

  if (CanUseNEON && Op.isMemset() && !IsSmallMemset &&
      AlignmentIsAcceptable(MVT::v2i64, Align(16)))
    return LLT::fixed_vector(2, 64);
  if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16)))
    return LLT::scalar(128);
  if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8)))
    return LLT::scalar(64);
  if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4)))
    return LLT::scalar(32);
  return LLT();
}

// 12-bit optionally shifted immediates are legal for adds.
bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
  if (Immed == std::numeric_limits<int64_t>::min()) {
    LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
                      << ": avoid UB for INT64_MIN\n");
    return false;
  }
  // Same encoding for add/sub, just flip the sign.
  Immed = std::abs(Immed);
  bool IsLegal = ((Immed >> 12) == 0 ||
                  ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
  LLVM_DEBUG(dbgs() << "Is " << Immed
                    << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
  return IsLegal;
}

// Return false to prevent folding
// (mul (add x, c1), c2) -> (add (mul x, c2), c2*c1) in DAGCombine,
// if the folding leads to worse code.
bool AArch64TargetLowering::isMulAddWithConstProfitable(
    SDValue AddNode, SDValue ConstNode) const {
  // Let the DAGCombiner decide for vector types and large types.
  const EVT VT = AddNode.getValueType();
  if (VT.isVector() || VT.getScalarSizeInBits() > 64)
    return true;

  // It is worse if c1 is legal add immediate, while c1*c2 is not
  // and has to be composed by at least two instructions.
  const ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
  const ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
  const int64_t C1 = C1Node->getSExtValue();
  const APInt C1C2 = C1Node->getAPIntValue() * C2Node->getAPIntValue();
  if (!isLegalAddImmediate(C1) || isLegalAddImmediate(C1C2.getSExtValue()))
    return true;
  SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
  AArch64_IMM::expandMOVImm(C1C2.getZExtValue(), VT.getSizeInBits(), Insn);
  if (Insn.size() > 1)
    return false;

  // Default to true and let the DAGCombiner decide.
  return true;
}

// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
// immediates is the same as for an add or a sub.
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
  return isLegalAddImmediate(Immed);
}

/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                                  const AddrMode &AM, Type *Ty,
                                                  unsigned AS, Instruction *I) const {
  // AArch64 has five basic addressing modes:
  //  reg
  //  reg + 9-bit signed offset
  //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
  //  reg1 + reg2
  //  reg + SIZE_IN_BYTES * reg

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  // No reg+reg+imm addressing.
  if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
    return false;

  // FIXME: Update this method to support scalable addressing modes.
  if (isa<ScalableVectorType>(Ty)) {
    uint64_t VecElemNumBytes =
        DL.getTypeSizeInBits(cast<VectorType>(Ty)->getElementType()) / 8;
    return AM.HasBaseReg && !AM.BaseOffs &&
           (AM.Scale == 0 || (uint64_t)AM.Scale == VecElemNumBytes);
  }

  // check reg + imm case:
  // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
  uint64_t NumBytes = 0;
  if (Ty->isSized()) {
    uint64_t NumBits = DL.getTypeSizeInBits(Ty);
    NumBytes = NumBits / 8;
    if (!isPowerOf2_64(NumBits))
      NumBytes = 0;
  }

  if (!AM.Scale) {
    int64_t Offset = AM.BaseOffs;

    // 9-bit signed offset
    if (isInt<9>(Offset))
      return true;

    // 12-bit unsigned offset
    unsigned shift = Log2_64(NumBytes);
    if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
        // Must be a multiple of NumBytes (NumBytes is a power of 2)
        (Offset >> shift) << shift == Offset)
      return true;
    return false;
  }

  // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2

  return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
}

bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
  // Consider splitting large offset of struct or array.
  return true;
}

InstructionCost AArch64TargetLowering::getScalingFactorCost(
    const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const {
  // Scaling factors are not free at all.
  // Operands                     | Rt Latency
  // -------------------------------------------
  // Rt, [Xn, Xm]                 | 4
  // -------------------------------------------
  // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
  // Rt, [Xn, Wm, <extend> #imm]  |
  if (isLegalAddressingMode(DL, AM, Ty, AS))
    // Scale represents reg2 * scale, thus account for 1 if
    // it is not equal to 0 or 1.
    return AM.Scale != 0 && AM.Scale != 1;
  return -1;
}

bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(
    const MachineFunction &MF, EVT VT) const {
  VT = VT.getScalarType();

  if (!VT.isSimple())
    return false;

  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::f16:
    return Subtarget->hasFullFP16();
  case MVT::f32:
  case MVT::f64:
    return true;
  default:
    break;
  }

  return false;
}

bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
                                                       Type *Ty) const {
  switch (Ty->getScalarType()->getTypeID()) {
  case Type::FloatTyID:
  case Type::DoubleTyID:
    return true;
  default:
    return false;
  }
}

bool AArch64TargetLowering::generateFMAsInMachineCombiner(
    EVT VT, CodeGenOpt::Level OptLevel) const {
  return (OptLevel >= CodeGenOpt::Aggressive) && !VT.isScalableVector() &&
         !useSVEForFixedLengthVectorVT(VT);
}

const MCPhysReg *
AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
  // LR is a callee-save register, but we must treat it as clobbered by any call
  // site. Hence we include LR in the scratch registers, which are in turn added
  // as implicit-defs for stackmaps and patchpoints.
  static const MCPhysReg ScratchRegs[] = {
    AArch64::X16, AArch64::X17, AArch64::LR, 0
  };
  return ScratchRegs;
}

bool
AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
                                                     CombineLevel Level) const {
  assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
          N->getOpcode() == ISD::SRL) &&
         "Expected shift op");

  SDValue ShiftLHS = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // If ShiftLHS is unsigned bit extraction: ((x >> C) & mask), then do not combine
  // it with shift 'N' to let it be lowered to UBFX.
  if (ShiftLHS.getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
      isa<ConstantSDNode>(ShiftLHS.getOperand(1))) {
    uint64_t TruncMask = ShiftLHS.getConstantOperandVal(1);
    if (isMask_64(TruncMask) &&
        ShiftLHS.getOperand(0).getOpcode() == ISD::SRL &&
        isa<ConstantSDNode>(ShiftLHS.getOperand(0).getOperand(1)))
      return false;
  }
  return true;
}

bool AArch64TargetLowering::isDesirableToCommuteXorWithShift(
    const SDNode *N) const {
  assert(N->getOpcode() == ISD::XOR &&
         (N->getOperand(0).getOpcode() == ISD::SHL ||
          N->getOperand(0).getOpcode() == ISD::SRL) &&
         "Expected XOR(SHIFT) pattern");

  // Only commute if the entire NOT mask is a hidden shifted mask.
  auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1));
  auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
  if (XorC && ShiftC) {
    unsigned MaskIdx, MaskLen;
    if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) {
      unsigned ShiftAmt = ShiftC->getZExtValue();
      unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
      if (N->getOperand(0).getOpcode() == ISD::SHL)
        return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt);
      return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt);
    }
  }

  return false;
}

bool AArch64TargetLowering::shouldFoldConstantShiftPairToMask(
    const SDNode *N, CombineLevel Level) const {
  assert(((N->getOpcode() == ISD::SHL &&
           N->getOperand(0).getOpcode() == ISD::SRL) ||
          (N->getOpcode() == ISD::SRL &&
           N->getOperand(0).getOpcode() == ISD::SHL)) &&
         "Expected shift-shift mask");
  // Don't allow multiuse shift folding with the same shift amount.
  if (!N->getOperand(0)->hasOneUse())
    return false;

  // Only fold srl(shl(x,c1),c2) iff C1 >= C2 to prevent loss of UBFX patterns.
  EVT VT = N->getValueType(0);
  if (N->getOpcode() == ISD::SRL && (VT == MVT::i32 || VT == MVT::i64)) {
    auto *C1 = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
    auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
    return (!C1 || !C2 || C1->getZExtValue() >= C2->getZExtValue());
  }

  return true;
}

bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                                              Type *Ty) const {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return false;

  int64_t Val = Imm.getSExtValue();
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
    return true;

  if ((int64_t)Val < 0)
    Val = ~Val;
  if (BitSize == 32)
    Val &= (1LL << 32) - 1;

  unsigned LZ = countLeadingZeros((uint64_t)Val);
  unsigned Shift = (63 - LZ) / 16;
  // MOVZ is free so return true for one or fewer MOVK.
  return Shift < 3;
}

bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                                    unsigned Index) const {
  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
    return false;

  return (Index == 0 || Index == ResVT.getVectorMinNumElements());
}

/// Turn vector tests of the signbit in the form of:
///   xor (sra X, elt_size(X)-1), -1
/// into:
///   cmge X, X, #0
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
                                         const AArch64Subtarget *Subtarget) {
  EVT VT = N->getValueType(0);
  if (!Subtarget->hasNEON() || !VT.isVector())
    return SDValue();

  // There must be a shift right algebraic before the xor, and the xor must be a
  // 'not' operation.
  SDValue Shift = N->getOperand(0);
  SDValue Ones = N->getOperand(1);
  if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
      !ISD::isBuildVectorAllOnes(Ones.getNode()))
    return SDValue();

  // The shift should be smearing the sign bit across each vector element.
  auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
  EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
  if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
    return SDValue();

  return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
}

// Given a vecreduce_add node, detect the below pattern and convert it to the
// node sequence with UABDL, [S|U]ADB and UADDLP.
//
// i32 vecreduce_add(
//  v16i32 abs(
//    v16i32 sub(
//     v16i32 [sign|zero]_extend(v16i8 a), v16i32 [sign|zero]_extend(v16i8 b))))
// =================>
// i32 vecreduce_add(
//   v4i32 UADDLP(
//     v8i16 add(
//       v8i16 zext(
//         v8i8 [S|U]ABD low8:v16i8 a, low8:v16i8 b
//       v8i16 zext(
//         v8i8 [S|U]ABD high8:v16i8 a, high8:v16i8 b
static SDValue performVecReduceAddCombineWithUADDLP(SDNode *N,
                                                    SelectionDAG &DAG) {
  // Assumed i32 vecreduce_add
  if (N->getValueType(0) != MVT::i32)
    return SDValue();

  SDValue VecReduceOp0 = N->getOperand(0);
  unsigned Opcode = VecReduceOp0.getOpcode();
  // Assumed v16i32 abs
  if (Opcode != ISD::ABS || VecReduceOp0->getValueType(0) != MVT::v16i32)
    return SDValue();

  SDValue ABS = VecReduceOp0;
  // Assumed v16i32 sub
  if (ABS->getOperand(0)->getOpcode() != ISD::SUB ||
      ABS->getOperand(0)->getValueType(0) != MVT::v16i32)
    return SDValue();

  SDValue SUB = ABS->getOperand(0);
  unsigned Opcode0 = SUB->getOperand(0).getOpcode();
  unsigned Opcode1 = SUB->getOperand(1).getOpcode();
  // Assumed v16i32 type
  if (SUB->getOperand(0)->getValueType(0) != MVT::v16i32 ||
      SUB->getOperand(1)->getValueType(0) != MVT::v16i32)
    return SDValue();

  // Assumed zext or sext
  bool IsZExt = false;
  if (Opcode0 == ISD::ZERO_EXTEND && Opcode1 == ISD::ZERO_EXTEND) {
    IsZExt = true;
  } else if (Opcode0 == ISD::SIGN_EXTEND && Opcode1 == ISD::SIGN_EXTEND) {
    IsZExt = false;
  } else
    return SDValue();

  SDValue EXT0 = SUB->getOperand(0);
  SDValue EXT1 = SUB->getOperand(1);
  // Assumed zext's operand has v16i8 type
  if (EXT0->getOperand(0)->getValueType(0) != MVT::v16i8 ||
      EXT1->getOperand(0)->getValueType(0) != MVT::v16i8)
    return SDValue();

  // Pattern is dectected. Let's convert it to sequence of nodes.
  SDLoc DL(N);

  // First, create the node pattern of UABD/SABD.
  SDValue UABDHigh8Op0 =
      DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0),
                  DAG.getConstant(8, DL, MVT::i64));
  SDValue UABDHigh8Op1 =
      DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0),
                  DAG.getConstant(8, DL, MVT::i64));
  SDValue UABDHigh8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8,
                                  UABDHigh8Op0, UABDHigh8Op1);
  SDValue UABDL = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDHigh8);

  // Second, create the node pattern of UABAL.
  SDValue UABDLo8Op0 =
      DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0),
                  DAG.getConstant(0, DL, MVT::i64));
  SDValue UABDLo8Op1 =
      DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0),
                  DAG.getConstant(0, DL, MVT::i64));
  SDValue UABDLo8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8,
                                UABDLo8Op0, UABDLo8Op1);
  SDValue ZExtUABD = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDLo8);
  SDValue UABAL = DAG.getNode(ISD::ADD, DL, MVT::v8i16, UABDL, ZExtUABD);

  // Third, create the node of UADDLP.
  SDValue UADDLP = DAG.getNode(AArch64ISD::UADDLP, DL, MVT::v4i32, UABAL);

  // Fourth, create the node of VECREDUCE_ADD.
  return DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i32, UADDLP);
}

// Turn a v8i8/v16i8 extended vecreduce into a udot/sdot and vecreduce
//   vecreduce.add(ext(A)) to vecreduce.add(DOT(zero, A, one))
//   vecreduce.add(mul(ext(A), ext(B))) to vecreduce.add(DOT(zero, A, B))
static SDValue performVecReduceAddCombine(SDNode *N, SelectionDAG &DAG,
                                          const AArch64Subtarget *ST) {
  if (!ST->hasDotProd())
    return performVecReduceAddCombineWithUADDLP(N, DAG);

  SDValue Op0 = N->getOperand(0);
  if (N->getValueType(0) != MVT::i32 ||
      Op0.getValueType().getVectorElementType() != MVT::i32)
    return SDValue();

  unsigned ExtOpcode = Op0.getOpcode();
  SDValue A = Op0;
  SDValue B;
  if (ExtOpcode == ISD::MUL) {
    A = Op0.getOperand(0);
    B = Op0.getOperand(1);
    if (A.getOpcode() != B.getOpcode() ||
        A.getOperand(0).getValueType() != B.getOperand(0).getValueType())
      return SDValue();
    ExtOpcode = A.getOpcode();
  }
  if (ExtOpcode != ISD::ZERO_EXTEND && ExtOpcode != ISD::SIGN_EXTEND)
    return SDValue();

  EVT Op0VT = A.getOperand(0).getValueType();
  if (Op0VT != MVT::v8i8 && Op0VT != MVT::v16i8)
    return SDValue();

  SDLoc DL(Op0);
  // For non-mla reductions B can be set to 1. For MLA we take the operand of
  // the extend B.
  if (!B)
    B = DAG.getConstant(1, DL, Op0VT);
  else
    B = B.getOperand(0);

  SDValue Zeros =
      DAG.getConstant(0, DL, Op0VT == MVT::v8i8 ? MVT::v2i32 : MVT::v4i32);
  auto DotOpcode =
      (ExtOpcode == ISD::ZERO_EXTEND) ? AArch64ISD::UDOT : AArch64ISD::SDOT;
  SDValue Dot = DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros,
                            A.getOperand(0), B);
  return DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot);
}

// Given an (integer) vecreduce, we know the order of the inputs does not
// matter. We can convert UADDV(add(zext(extract_lo(x)), zext(extract_hi(x))))
// into UADDV(UADDLP(x)). This can also happen through an extra add, where we
// transform UADDV(add(y, add(zext(extract_lo(x)), zext(extract_hi(x))))).
static SDValue performUADDVCombine(SDNode *N, SelectionDAG &DAG) {
  auto DetectAddExtract = [&](SDValue A) {
    // Look for add(zext(extract_lo(x)), zext(extract_hi(x))), returning
    // UADDLP(x) if found.
    if (A.getOpcode() != ISD::ADD)
      return SDValue();
    EVT VT = A.getValueType();
    SDValue Op0 = A.getOperand(0);
    SDValue Op1 = A.getOperand(1);
    if (Op0.getOpcode() != Op0.getOpcode() ||
        (Op0.getOpcode() != ISD::ZERO_EXTEND &&
         Op0.getOpcode() != ISD::SIGN_EXTEND))
      return SDValue();
    SDValue Ext0 = Op0.getOperand(0);
    SDValue Ext1 = Op1.getOperand(0);
    if (Ext0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
        Ext1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
        Ext0.getOperand(0) != Ext1.getOperand(0))
      return SDValue();
    // Check that the type is twice the add types, and the extract are from
    // upper/lower parts of the same source.
    if (Ext0.getOperand(0).getValueType().getVectorNumElements() !=
        VT.getVectorNumElements() * 2)
      return SDValue();
    if ((Ext0.getConstantOperandVal(1) != 0 &&
         Ext1.getConstantOperandVal(1) != VT.getVectorNumElements()) &&
        (Ext1.getConstantOperandVal(1) != 0 &&
         Ext0.getConstantOperandVal(1) != VT.getVectorNumElements()))
      return SDValue();
    unsigned Opcode = Op0.getOpcode() == ISD::ZERO_EXTEND ? AArch64ISD::UADDLP
                                                          : AArch64ISD::SADDLP;
    return DAG.getNode(Opcode, SDLoc(A), VT, Ext0.getOperand(0));
  };

  SDValue A = N->getOperand(0);
  if (SDValue R = DetectAddExtract(A))
    return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), R);
  if (A.getOpcode() == ISD::ADD) {
    if (SDValue R = DetectAddExtract(A.getOperand(0)))
      return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
                         DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R,
                                     A.getOperand(1)));
    if (SDValue R = DetectAddExtract(A.getOperand(1)))
      return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
                         DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R,
                                     A.getOperand(0)));
  }
  return SDValue();
}


static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const AArch64Subtarget *Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  return foldVectorXorShiftIntoCmp(N, DAG, Subtarget);
}

SDValue
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
                                     SelectionDAG &DAG,
                                     SmallVectorImpl<SDNode *> &Created) const {
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
  if (isIntDivCheap(N->getValueType(0), Attr))
    return SDValue(N,0); // Lower SDIV as SDIV

  EVT VT = N->getValueType(0);

  // For scalable and fixed types, mark them as cheap so we can handle it much
  // later. This allows us to handle larger than legal types.
  if (VT.isScalableVector() || Subtarget->useSVEForFixedLengthVectors())
    return SDValue(N, 0);

  // fold (sdiv X, pow2)
  if ((VT != MVT::i32 && VT != MVT::i64) ||
      !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
    return SDValue();

  SDLoc DL(N);
  SDValue N0 = N->getOperand(0);
  unsigned Lg2 = Divisor.countTrailingZeros();
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);

  // Add (N0 < 0) ? Pow2 - 1 : 0;
  SDValue CCVal;
  SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
  SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
  SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);

  Created.push_back(Cmp.getNode());
  Created.push_back(Add.getNode());
  Created.push_back(CSel.getNode());

  // Divide by pow2.
  SDValue SRA =
      DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));

  // If we're dividing by a positive value, we're done.  Otherwise, we must
  // negate the result.
  if (Divisor.isNonNegative())
    return SRA;

  Created.push_back(SRA.getNode());
  return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
}

SDValue
AArch64TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
                                     SelectionDAG &DAG,
                                     SmallVectorImpl<SDNode *> &Created) const {
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
  if (isIntDivCheap(N->getValueType(0), Attr))
    return SDValue(N, 0); // Lower SREM as SREM

  EVT VT = N->getValueType(0);

  // For scalable and fixed types, mark them as cheap so we can handle it much
  // later. This allows us to handle larger than legal types.
  if (VT.isScalableVector() || Subtarget->useSVEForFixedLengthVectors())
    return SDValue(N, 0);

  // fold (srem X, pow2)
  if ((VT != MVT::i32 && VT != MVT::i64) ||
      !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
    return SDValue();

  unsigned Lg2 = Divisor.countTrailingZeros();
  if (Lg2 == 0)
    return SDValue();

  SDLoc DL(N);
  SDValue N0 = N->getOperand(0);
  SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue CCVal, CSNeg;
  if (Lg2 == 1) {
    SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETGE, CCVal, DAG, DL);
    SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne);
    CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, And, And, CCVal, Cmp);

    Created.push_back(Cmp.getNode());
    Created.push_back(And.getNode());
  } else {
    SDValue CCVal = DAG.getConstant(AArch64CC::MI, DL, MVT_CC);
    SDVTList VTs = DAG.getVTList(VT, MVT::i32);

    SDValue Negs = DAG.getNode(AArch64ISD::SUBS, DL, VTs, Zero, N0);
    SDValue AndPos = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne);
    SDValue AndNeg = DAG.getNode(ISD::AND, DL, VT, Negs, Pow2MinusOne);
    CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, AndPos, AndNeg, CCVal,
                        Negs.getValue(1));

    Created.push_back(Negs.getNode());
    Created.push_back(AndPos.getNode());
    Created.push_back(AndNeg.getNode());
  }

  return CSNeg;
}

static bool IsSVECntIntrinsic(SDValue S) {
  switch(getIntrinsicID(S.getNode())) {
  default:
    break;
  case Intrinsic::aarch64_sve_cntb:
  case Intrinsic::aarch64_sve_cnth:
  case Intrinsic::aarch64_sve_cntw:
  case Intrinsic::aarch64_sve_cntd:
    return true;
  }
  return false;
}

/// Calculates what the pre-extend type is, based on the extension
/// operation node provided by \p Extend.
///
/// In the case that \p Extend is a SIGN_EXTEND or a ZERO_EXTEND, the
/// pre-extend type is pulled directly from the operand, while other extend
/// operations need a bit more inspection to get this information.
///
/// \param Extend The SDNode from the DAG that represents the extend operation
///
/// \returns The type representing the \p Extend source type, or \p MVT::Other
/// if no valid type can be determined
static EVT calculatePreExtendType(SDValue Extend) {
  switch (Extend.getOpcode()) {
  case ISD::SIGN_EXTEND:
  case ISD::ZERO_EXTEND:
    return Extend.getOperand(0).getValueType();
  case ISD::AssertSext:
  case ISD::AssertZext:
  case ISD::SIGN_EXTEND_INREG: {
    VTSDNode *TypeNode = dyn_cast<VTSDNode>(Extend.getOperand(1));
    if (!TypeNode)
      return MVT::Other;
    return TypeNode->getVT();
  }
  case ISD::AND: {
    ConstantSDNode *Constant =
        dyn_cast<ConstantSDNode>(Extend.getOperand(1).getNode());
    if (!Constant)
      return MVT::Other;

    uint32_t Mask = Constant->getZExtValue();

    if (Mask == UCHAR_MAX)
      return MVT::i8;
    else if (Mask == USHRT_MAX)
      return MVT::i16;
    else if (Mask == UINT_MAX)
      return MVT::i32;

    return MVT::Other;
  }
  default:
    return MVT::Other;
  }
}

/// Combines a buildvector(sext/zext) or shuffle(sext/zext, undef) node pattern
/// into sext/zext(buildvector) or sext/zext(shuffle) making use of the vector
/// SExt/ZExt rather than the scalar SExt/ZExt
static SDValue performBuildShuffleExtendCombine(SDValue BV, SelectionDAG &DAG) {
  EVT VT = BV.getValueType();
  if (BV.getOpcode() != ISD::BUILD_VECTOR &&
      BV.getOpcode() != ISD::VECTOR_SHUFFLE)
    return SDValue();

  // Use the first item in the buildvector/shuffle to get the size of the
  // extend, and make sure it looks valid.
  SDValue Extend = BV->getOperand(0);
  unsigned ExtendOpcode = Extend.getOpcode();
  bool IsSExt = ExtendOpcode == ISD::SIGN_EXTEND ||
                ExtendOpcode == ISD::SIGN_EXTEND_INREG ||
                ExtendOpcode == ISD::AssertSext;
  if (!IsSExt && ExtendOpcode != ISD::ZERO_EXTEND &&
      ExtendOpcode != ISD::AssertZext && ExtendOpcode != ISD::AND)
    return SDValue();
  // Shuffle inputs are vector, limit to SIGN_EXTEND and ZERO_EXTEND to ensure
  // calculatePreExtendType will work without issue.
  if (BV.getOpcode() == ISD::VECTOR_SHUFFLE &&
      ExtendOpcode != ISD::SIGN_EXTEND && ExtendOpcode != ISD::ZERO_EXTEND)
    return SDValue();

  // Restrict valid pre-extend data type
  EVT PreExtendType = calculatePreExtendType(Extend);
  if (PreExtendType == MVT::Other ||
      PreExtendType.getScalarSizeInBits() != VT.getScalarSizeInBits() / 2)
    return SDValue();

  // Make sure all other operands are equally extended
  for (SDValue Op : drop_begin(BV->ops())) {
    if (Op.isUndef())
      continue;
    unsigned Opc = Op.getOpcode();
    bool OpcIsSExt = Opc == ISD::SIGN_EXTEND || Opc == ISD::SIGN_EXTEND_INREG ||
                     Opc == ISD::AssertSext;
    if (OpcIsSExt != IsSExt || calculatePreExtendType(Op) != PreExtendType)
      return SDValue();
  }

  SDValue NBV;
  SDLoc DL(BV);
  if (BV.getOpcode() == ISD::BUILD_VECTOR) {
    EVT PreExtendVT = VT.changeVectorElementType(PreExtendType);
    EVT PreExtendLegalType =
        PreExtendType.getScalarSizeInBits() < 32 ? MVT::i32 : PreExtendType;
    SmallVector<SDValue, 8> NewOps;
    for (SDValue Op : BV->ops())
      NewOps.push_back(Op.isUndef() ? DAG.getUNDEF(PreExtendLegalType)
                                    : DAG.getAnyExtOrTrunc(Op.getOperand(0), DL,
                                                           PreExtendLegalType));
    NBV = DAG.getNode(ISD::BUILD_VECTOR, DL, PreExtendVT, NewOps);
  } else { // BV.getOpcode() == ISD::VECTOR_SHUFFLE
    EVT PreExtendVT = VT.changeVectorElementType(PreExtendType.getScalarType());
    NBV = DAG.getVectorShuffle(PreExtendVT, DL, BV.getOperand(0).getOperand(0),
                               BV.getOperand(1).isUndef()
                                   ? DAG.getUNDEF(PreExtendVT)
                                   : BV.getOperand(1).getOperand(0),
                               cast<ShuffleVectorSDNode>(BV)->getMask());
  }
  return DAG.getNode(IsSExt ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, NBV);
}

/// Combines a mul(dup(sext/zext)) node pattern into mul(sext/zext(dup))
/// making use of the vector SExt/ZExt rather than the scalar SExt/ZExt
static SDValue performMulVectorExtendCombine(SDNode *Mul, SelectionDAG &DAG) {
  // If the value type isn't a vector, none of the operands are going to be dups
  EVT VT = Mul->getValueType(0);
  if (VT != MVT::v8i16 && VT != MVT::v4i32 && VT != MVT::v2i64)
    return SDValue();

  SDValue Op0 = performBuildShuffleExtendCombine(Mul->getOperand(0), DAG);
  SDValue Op1 = performBuildShuffleExtendCombine(Mul->getOperand(1), DAG);

  // Neither operands have been changed, don't make any further changes
  if (!Op0 && !Op1)
    return SDValue();

  SDLoc DL(Mul);
  return DAG.getNode(Mul->getOpcode(), DL, VT, Op0 ? Op0 : Mul->getOperand(0),
                     Op1 ? Op1 : Mul->getOperand(1));
}

static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const AArch64Subtarget *Subtarget) {

  if (SDValue Ext = performMulVectorExtendCombine(N, DAG))
    return Ext;

  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  // Canonicalize X*(Y+1) -> X*Y+X and (X+1)*Y -> X*Y+Y,
  // and in MachineCombiner pass, add+mul will be combined into madd.
  // Similarly, X*(1-Y) -> X - X*Y and (1-Y)*X -> X - Y*X.
  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue MulOper;
  unsigned AddSubOpc;

  auto IsAddSubWith1 = [&](SDValue V) -> bool {
    AddSubOpc = V->getOpcode();
    if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) {
      SDValue Opnd = V->getOperand(1);
      MulOper = V->getOperand(0);
      if (AddSubOpc == ISD::SUB)
        std::swap(Opnd, MulOper);
      if (auto C = dyn_cast<ConstantSDNode>(Opnd))
        return C->isOne();
    }
    return false;
  };

  if (IsAddSubWith1(N0)) {
    SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper);
    return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal);
  }

  if (IsAddSubWith1(N1)) {
    SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper);
    return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal);
  }

  // The below optimizations require a constant RHS.
  if (!isa<ConstantSDNode>(N1))
    return SDValue();

  ConstantSDNode *C = cast<ConstantSDNode>(N1);
  const APInt &ConstValue = C->getAPIntValue();

  // Allow the scaling to be folded into the `cnt` instruction by preventing
  // the scaling to be obscured here. This makes it easier to pattern match.
  if (IsSVECntIntrinsic(N0) ||
     (N0->getOpcode() == ISD::TRUNCATE &&
      (IsSVECntIntrinsic(N0->getOperand(0)))))
       if (ConstValue.sge(1) && ConstValue.sle(16))
         return SDValue();

  // Multiplication of a power of two plus/minus one can be done more
  // cheaply as as shift+add/sub. For now, this is true unilaterally. If
  // future CPUs have a cheaper MADD instruction, this may need to be
  // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
  // 64-bit is 5 cycles, so this is always a win.
  // More aggressively, some multiplications N0 * C can be lowered to
  // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
  // e.g. 6=3*2=(2+1)*2.
  // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
  // which equals to (1+2)*16-(1+2).

  // TrailingZeroes is used to test if the mul can be lowered to
  // shift+add+shift.
  unsigned TrailingZeroes = ConstValue.countTrailingZeros();
  if (TrailingZeroes) {
    // Conservatively do not lower to shift+add+shift if the mul might be
    // folded into smul or umul.
    if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
                            isZeroExtended(N0.getNode(), DAG)))
      return SDValue();
    // Conservatively do not lower to shift+add+shift if the mul might be
    // folded into madd or msub.
    if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
                           N->use_begin()->getOpcode() == ISD::SUB))
      return SDValue();
  }
  // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
  // and shift+add+shift.
  APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);

  unsigned ShiftAmt;
  // Is the shifted value the LHS operand of the add/sub?
  bool ShiftValUseIsN0 = true;
  // Do we need to negate the result?
  bool NegateResult = false;

  if (ConstValue.isNonNegative()) {
    // (mul x, 2^N + 1) => (add (shl x, N), x)
    // (mul x, 2^N - 1) => (sub (shl x, N), x)
    // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
    APInt SCVMinus1 = ShiftedConstValue - 1;
    APInt CVPlus1 = ConstValue + 1;
    if (SCVMinus1.isPowerOf2()) {
      ShiftAmt = SCVMinus1.logBase2();
      AddSubOpc = ISD::ADD;
    } else if (CVPlus1.isPowerOf2()) {
      ShiftAmt = CVPlus1.logBase2();
      AddSubOpc = ISD::SUB;
    } else
      return SDValue();
  } else {
    // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
    // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
    APInt CVNegPlus1 = -ConstValue + 1;
    APInt CVNegMinus1 = -ConstValue - 1;
    if (CVNegPlus1.isPowerOf2()) {
      ShiftAmt = CVNegPlus1.logBase2();
      AddSubOpc = ISD::SUB;
      ShiftValUseIsN0 = false;
    } else if (CVNegMinus1.isPowerOf2()) {
      ShiftAmt = CVNegMinus1.logBase2();
      AddSubOpc = ISD::ADD;
      NegateResult = true;
    } else
      return SDValue();
  }

  SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
                                   DAG.getConstant(ShiftAmt, DL, MVT::i64));

  SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
  SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
  SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
  assert(!(NegateResult && TrailingZeroes) &&
         "NegateResult and TrailingZeroes cannot both be true for now.");
  // Negate the result.
  if (NegateResult)
    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
  // Shift the result.
  if (TrailingZeroes)
    return DAG.getNode(ISD::SHL, DL, VT, Res,
                       DAG.getConstant(TrailingZeroes, DL, MVT::i64));
  return Res;
}

static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
                                                         SelectionDAG &DAG) {
  // Take advantage of vector comparisons producing 0 or -1 in each lane to
  // optimize away operation when it's from a constant.
  //
  // The general transformation is:
  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
  //       AND(VECTOR_CMP(x,y), constant2)
  //    constant2 = UNARYOP(constant)

  // Early exit if this isn't a vector operation, the operand of the
  // unary operation isn't a bitwise AND, or if the sizes of the operations
  // aren't the same.
  EVT VT = N->getValueType(0);
  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
    return SDValue();

  // Now check that the other operand of the AND is a constant. We could
  // make the transformation for non-constant splats as well, but it's unclear
  // that would be a benefit as it would not eliminate any operations, just
  // perform one more step in scalar code before moving to the vector unit.
  if (BuildVectorSDNode *BV =
          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
    // Bail out if the vector isn't a constant.
    if (!BV->isConstant())
      return SDValue();

    // Everything checks out. Build up the new and improved node.
    SDLoc DL(N);
    EVT IntVT = BV->getValueType(0);
    // Create a new constant of the appropriate type for the transformed
    // DAG.
    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
    // The AND node needs bitcasts to/from an integer vector type around it.
    SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
                                 N->getOperand(0)->getOperand(0), MaskConst);
    SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
    return Res;
  }

  return SDValue();
}

static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
                                     const AArch64Subtarget *Subtarget) {
  // First try to optimize away the conversion when it's conditionally from
  // a constant. Vectors only.
  if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
    return Res;

  EVT VT = N->getValueType(0);
  if (VT != MVT::f32 && VT != MVT::f64)
    return SDValue();

  // Only optimize when the source and destination types have the same width.
  if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
    return SDValue();

  // If the result of an integer load is only used by an integer-to-float
  // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
  // This eliminates an "integer-to-vector-move" UOP and improves throughput.
  SDValue N0 = N->getOperand(0);
  if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
      // Do not change the width of a volatile load.
      !cast<LoadSDNode>(N0)->isVolatile()) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
                               LN0->getPointerInfo(), LN0->getAlign(),
                               LN0->getMemOperand()->getFlags());

    // Make sure successors of the original load stay after it by updating them
    // to use the new Chain.
    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));

    unsigned Opcode =
        (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
    return DAG.getNode(Opcode, SDLoc(N), VT, Load);
  }

  return SDValue();
}

/// Fold a floating-point multiply by power of two into floating-point to
/// fixed-point conversion.
static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     const AArch64Subtarget *Subtarget) {
  if (!Subtarget->hasNEON())
    return SDValue();

  if (!N->getValueType(0).isSimple())
    return SDValue();

  SDValue Op = N->getOperand(0);
  if (!Op.getValueType().isSimple() || Op.getOpcode() != ISD::FMUL)
    return SDValue();

  if (!Op.getValueType().is64BitVector() && !Op.getValueType().is128BitVector())
    return SDValue();

  SDValue ConstVec = Op->getOperand(1);
  if (!isa<BuildVectorSDNode>(ConstVec))
    return SDValue();

  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
  uint32_t FloatBits = FloatTy.getSizeInBits();
  if (FloatBits != 32 && FloatBits != 64 &&
      (FloatBits != 16 || !Subtarget->hasFullFP16()))
    return SDValue();

  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
  uint32_t IntBits = IntTy.getSizeInBits();
  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
    return SDValue();

  // Avoid conversions where iN is larger than the float (e.g., float -> i64).
  if (IntBits > FloatBits)
    return SDValue();

  BitVector UndefElements;
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
  int32_t Bits = IntBits == 64 ? 64 : 32;
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
  if (C == -1 || C == 0 || C > Bits)
    return SDValue();

  EVT ResTy = Op.getValueType().changeVectorElementTypeToInteger();
  if (!DAG.getTargetLoweringInfo().isTypeLegal(ResTy))
    return SDValue();

  if (N->getOpcode() == ISD::FP_TO_SINT_SAT ||
      N->getOpcode() == ISD::FP_TO_UINT_SAT) {
    EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
    if (SatVT.getScalarSizeInBits() != IntBits || IntBits != FloatBits)
      return SDValue();
  }

  SDLoc DL(N);
  bool IsSigned = (N->getOpcode() == ISD::FP_TO_SINT ||
                   N->getOpcode() == ISD::FP_TO_SINT_SAT);
  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
                                      : Intrinsic::aarch64_neon_vcvtfp2fxu;
  SDValue FixConv =
      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
                  DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
                  Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
  // We can handle smaller integers by generating an extra trunc.
  if (IntBits < FloatBits)
    FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);

  return FixConv;
}

/// Fold a floating-point divide by power of two into fixed-point to
/// floating-point conversion.
static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const AArch64Subtarget *Subtarget) {
  if (!Subtarget->hasNEON())
    return SDValue();

  SDValue Op = N->getOperand(0);
  unsigned Opc = Op->getOpcode();
  if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
      !Op.getOperand(0).getValueType().isSimple() ||
      (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
    return SDValue();

  SDValue ConstVec = N->getOperand(1);
  if (!isa<BuildVectorSDNode>(ConstVec))
    return SDValue();

  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
  int32_t IntBits = IntTy.getSizeInBits();
  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
    return SDValue();

  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
  int32_t FloatBits = FloatTy.getSizeInBits();
  if (FloatBits != 32 && FloatBits != 64)
    return SDValue();

  // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
  if (IntBits > FloatBits)
    return SDValue();

  BitVector UndefElements;
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
  if (C == -1 || C == 0 || C > FloatBits)
    return SDValue();

  MVT ResTy;
  unsigned NumLanes = Op.getValueType().getVectorNumElements();
  switch (NumLanes) {
  default:
    return SDValue();
  case 2:
    ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
    break;
  case 4:
    ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
    break;
  }

  if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
    return SDValue();

  SDLoc DL(N);
  SDValue ConvInput = Op.getOperand(0);
  bool IsSigned = Opc == ISD::SINT_TO_FP;
  if (IntBits < FloatBits)
    ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
                            ResTy, ConvInput);

  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
                                      : Intrinsic::aarch64_neon_vcvtfxu2fp;
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
                     DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
                     DAG.getConstant(C, DL, MVT::i32));
}

/// An EXTR instruction is made up of two shifts, ORed together. This helper
/// searches for and classifies those shifts.
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
                         bool &FromHi) {
  if (N.getOpcode() == ISD::SHL)
    FromHi = false;
  else if (N.getOpcode() == ISD::SRL)
    FromHi = true;
  else
    return false;

  if (!isa<ConstantSDNode>(N.getOperand(1)))
    return false;

  ShiftAmount = N->getConstantOperandVal(1);
  Src = N->getOperand(0);
  return true;
}

/// EXTR instruction extracts a contiguous chunk of bits from two existing
/// registers viewed as a high/low pair. This function looks for the pattern:
/// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
/// with an EXTR. Can't quite be done in TableGen because the two immediates
/// aren't independent.
static SDValue tryCombineToEXTR(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  assert(N->getOpcode() == ISD::OR && "Unexpected root");

  if (VT != MVT::i32 && VT != MVT::i64)
    return SDValue();

  SDValue LHS;
  uint32_t ShiftLHS = 0;
  bool LHSFromHi = false;
  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
    return SDValue();

  SDValue RHS;
  uint32_t ShiftRHS = 0;
  bool RHSFromHi = false;
  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
    return SDValue();

  // If they're both trying to come from the high part of the register, they're
  // not really an EXTR.
  if (LHSFromHi == RHSFromHi)
    return SDValue();

  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
    return SDValue();

  if (LHSFromHi) {
    std::swap(LHS, RHS);
    std::swap(ShiftLHS, ShiftRHS);
  }

  return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
                     DAG.getConstant(ShiftRHS, DL, MVT::i64));
}

static SDValue tryCombineToBSL(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI) {
  EVT VT = N->getValueType(0);
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  if (!VT.isVector())
    return SDValue();

  // The combining code currently only works for NEON vectors. In particular,
  // it does not work for SVE when dealing with vectors wider than 128 bits.
  if (!VT.is64BitVector() && !VT.is128BitVector())
    return SDValue();

  SDValue N0 = N->getOperand(0);
  if (N0.getOpcode() != ISD::AND)
    return SDValue();

  SDValue N1 = N->getOperand(1);
  if (N1.getOpcode() != ISD::AND)
    return SDValue();

  // InstCombine does (not (neg a)) => (add a -1).
  // Try: (or (and (neg a) b) (and (add a -1) c)) => (bsl (neg a) b c)
  // Loop over all combinations of AND operands.
  for (int i = 1; i >= 0; --i) {
    for (int j = 1; j >= 0; --j) {
      SDValue O0 = N0->getOperand(i);
      SDValue O1 = N1->getOperand(j);
      SDValue Sub, Add, SubSibling, AddSibling;

      // Find a SUB and an ADD operand, one from each AND.
      if (O0.getOpcode() == ISD::SUB && O1.getOpcode() == ISD::ADD) {
        Sub = O0;
        Add = O1;
        SubSibling = N0->getOperand(1 - i);
        AddSibling = N1->getOperand(1 - j);
      } else if (O0.getOpcode() == ISD::ADD && O1.getOpcode() == ISD::SUB) {
        Add = O0;
        Sub = O1;
        AddSibling = N0->getOperand(1 - i);
        SubSibling = N1->getOperand(1 - j);
      } else
        continue;

      if (!ISD::isBuildVectorAllZeros(Sub.getOperand(0).getNode()))
        continue;

      // Constant ones is always righthand operand of the Add.
      if (!ISD::isBuildVectorAllOnes(Add.getOperand(1).getNode()))
        continue;

      if (Sub.getOperand(1) != Add.getOperand(0))
        continue;

      return DAG.getNode(AArch64ISD::BSP, DL, VT, Sub, SubSibling, AddSibling);
    }
  }

  // (or (and a b) (and (not a) c)) => (bsl a b c)
  // We only have to look for constant vectors here since the general, variable
  // case can be handled in TableGen.
  unsigned Bits = VT.getScalarSizeInBits();
  uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
  for (int i = 1; i >= 0; --i)
    for (int j = 1; j >= 0; --j) {
      BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
      if (!BVN0 || !BVN1)
        continue;

      bool FoundMatch = true;
      for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
        ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
        ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
        if (!CN0 || !CN1 ||
            CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
          FoundMatch = false;
          break;
        }
      }

      if (FoundMatch)
        return DAG.getNode(AArch64ISD::BSP, DL, VT, SDValue(BVN0, 0),
                           N0->getOperand(1 - i), N1->getOperand(1 - j));
    }

  return SDValue();
}

// Given a tree of and/or(csel(0, 1, cc0), csel(0, 1, cc1)), we may be able to
// convert to csel(ccmp(.., cc0)), depending on cc1:

// (AND (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1)))
// =>
// (CSET cc1 (CCMP x1 y1 !cc1 cc0 cmp0))
//
// (OR (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1)))
// =>
// (CSET cc1 (CCMP x1 y1 cc1 !cc0 cmp0))
static SDValue performANDORCSELCombine(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);
  SDValue CSel0 = N->getOperand(0);
  SDValue CSel1 = N->getOperand(1);

  if (CSel0.getOpcode() != AArch64ISD::CSEL ||
      CSel1.getOpcode() != AArch64ISD::CSEL)
    return SDValue();

  if (!CSel0->hasOneUse() || !CSel1->hasOneUse())
    return SDValue();

  if (!isNullConstant(CSel0.getOperand(0)) ||
      !isOneConstant(CSel0.getOperand(1)) ||
      !isNullConstant(CSel1.getOperand(0)) ||
      !isOneConstant(CSel1.getOperand(1)))
    return SDValue();

  SDValue Cmp0 = CSel0.getOperand(3);
  SDValue Cmp1 = CSel1.getOperand(3);
  AArch64CC::CondCode CC0 = (AArch64CC::CondCode)CSel0.getConstantOperandVal(2);
  AArch64CC::CondCode CC1 = (AArch64CC::CondCode)CSel1.getConstantOperandVal(2);
  if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
    return SDValue();
  if (Cmp1.getOpcode() != AArch64ISD::SUBS &&
      Cmp0.getOpcode() == AArch64ISD::SUBS) {
    std::swap(Cmp0, Cmp1);
    std::swap(CC0, CC1);
  }

  if (Cmp1.getOpcode() != AArch64ISD::SUBS)
    return SDValue();

  SDLoc DL(N);
  SDValue CCmp;

  if (N->getOpcode() == ISD::AND) {
    AArch64CC::CondCode InvCC0 = AArch64CC::getInvertedCondCode(CC0);
    SDValue Condition = DAG.getConstant(InvCC0, DL, MVT_CC);
    unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(CC1);
    SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
    CCmp = DAG.getNode(AArch64ISD::CCMP, DL, MVT_CC, Cmp1.getOperand(0),
                       Cmp1.getOperand(1), NZCVOp, Condition, Cmp0);
  } else {
    SDLoc DL(N);
    AArch64CC::CondCode InvCC1 = AArch64CC::getInvertedCondCode(CC1);
    SDValue Condition = DAG.getConstant(CC0, DL, MVT_CC);
    unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvCC1);
    SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
    CCmp = DAG.getNode(AArch64ISD::CCMP, DL, MVT_CC, Cmp1.getOperand(0),
                       Cmp1.getOperand(1), NZCVOp, Condition, Cmp0);
  }
  return DAG.getNode(AArch64ISD::CSEL, DL, VT, CSel0.getOperand(0),
                     CSel0.getOperand(1), DAG.getConstant(CC1, DL, MVT::i32),
                     CCmp);
}

static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                                const AArch64Subtarget *Subtarget) {
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  if (SDValue R = performANDORCSELCombine(N, DAG))
    return R;

  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
  if (SDValue Res = tryCombineToEXTR(N, DCI))
    return Res;

  if (SDValue Res = tryCombineToBSL(N, DCI))
    return Res;

  return SDValue();
}

static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) {
  if (!MemVT.getVectorElementType().isSimple())
    return false;

  uint64_t MaskForTy = 0ull;
  switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) {
  case MVT::i8:
    MaskForTy = 0xffull;
    break;
  case MVT::i16:
    MaskForTy = 0xffffull;
    break;
  case MVT::i32:
    MaskForTy = 0xffffffffull;
    break;
  default:
    return false;
    break;
  }

  if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR)
    if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0)))
      return Op0->getAPIntValue().getLimitedValue() == MaskForTy;

  return false;
}

static SDValue performSVEAndCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDValue Src = N->getOperand(0);
  unsigned Opc = Src->getOpcode();

  // Zero/any extend of an unsigned unpack
  if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) {
    SDValue UnpkOp = Src->getOperand(0);
    SDValue Dup = N->getOperand(1);

    if (Dup.getOpcode() != ISD::SPLAT_VECTOR)
      return SDValue();

    SDLoc DL(N);
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Dup->getOperand(0));
    if (!C)
      return SDValue();

    uint64_t ExtVal = C->getZExtValue();

    // If the mask is fully covered by the unpack, we don't need to push
    // a new AND onto the operand
    EVT EltTy = UnpkOp->getValueType(0).getVectorElementType();
    if ((ExtVal == 0xFF && EltTy == MVT::i8) ||
        (ExtVal == 0xFFFF && EltTy == MVT::i16) ||
        (ExtVal == 0xFFFFFFFF && EltTy == MVT::i32))
      return Src;

    // Truncate to prevent a DUP with an over wide constant
    APInt Mask = C->getAPIntValue().trunc(EltTy.getSizeInBits());

    // Otherwise, make sure we propagate the AND to the operand
    // of the unpack
    Dup = DAG.getNode(ISD::SPLAT_VECTOR, DL, UnpkOp->getValueType(0),
                      DAG.getConstant(Mask.zextOrTrunc(32), DL, MVT::i32));

    SDValue And = DAG.getNode(ISD::AND, DL,
                              UnpkOp->getValueType(0), UnpkOp, Dup);

    return DAG.getNode(Opc, DL, N->getValueType(0), And);
  }

  if (!EnableCombineMGatherIntrinsics)
    return SDValue();

  SDValue Mask = N->getOperand(1);

  if (!Src.hasOneUse())
    return SDValue();

  EVT MemVT;

  // SVE load instructions perform an implicit zero-extend, which makes them
  // perfect candidates for combining.
  switch (Opc) {
  case AArch64ISD::LD1_MERGE_ZERO:
  case AArch64ISD::LDNF1_MERGE_ZERO:
  case AArch64ISD::LDFF1_MERGE_ZERO:
    MemVT = cast<VTSDNode>(Src->getOperand(3))->getVT();
    break;
  case AArch64ISD::GLD1_MERGE_ZERO:
  case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
  case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
  case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1_IMM_MERGE_ZERO:
  case AArch64ISD::GLDFF1_MERGE_ZERO:
  case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO:
  case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO:
  case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO:
  case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLDFF1_IMM_MERGE_ZERO:
  case AArch64ISD::GLDNT1_MERGE_ZERO:
    MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();
    break;
  default:
    return SDValue();
  }

  if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT))
    return Src;

  return SDValue();
}

static SDValue performANDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  EVT VT = N->getValueType(0);

  if (SDValue R = performANDORCSELCombine(N, DAG))
    return R;

  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  if (VT.isScalableVector())
    return performSVEAndCombine(N, DCI);

  // The combining code below works only for NEON vectors. In particular, it
  // does not work for SVE when dealing with vectors wider than 128 bits.
  if (!VT.is64BitVector() && !VT.is128BitVector())
    return SDValue();

  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
  if (!BVN)
    return SDValue();

  // AND does not accept an immediate, so check if we can use a BIC immediate
  // instruction instead. We do this here instead of using a (and x, (mvni imm))
  // pattern in isel, because some immediates may be lowered to the preferred
  // (and x, (movi imm)) form, even though an mvni representation also exists.
  APInt DefBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
    SDValue NewOp;

    DefBits = ~DefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    DefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    DefBits, &LHS)))
      return NewOp;

    UndefBits = ~UndefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    UndefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    UndefBits, &LHS)))
      return NewOp;
  }

  return SDValue();
}

static bool hasPairwiseAdd(unsigned Opcode, EVT VT, bool FullFP16) {
  switch (Opcode) {
  case ISD::STRICT_FADD:
  case ISD::FADD:
    return (FullFP16 && VT == MVT::f16) || VT == MVT::f32 || VT == MVT::f64;
  case ISD::ADD:
    return VT == MVT::i64;
  default:
    return false;
  }
}

static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
                        AArch64CC::CondCode Cond);

static bool isPredicateCCSettingOp(SDValue N) {
  if ((N.getOpcode() == ISD::SETCC) ||
      (N.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
       (N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilege ||
        N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilegt ||
        N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehi ||
        N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehs ||
        N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilele ||
        N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelo ||
        N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilels ||
        N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelt ||
        // get_active_lane_mask is lowered to a whilelo instruction.
        N.getConstantOperandVal(0) == Intrinsic::get_active_lane_mask)))
    return true;

  return false;
}

// Materialize : i1 = extract_vector_elt t37, Constant:i64<0>
// ... into: "ptrue p, all" + PTEST
static SDValue
performFirstTrueTestVectorCombine(SDNode *N,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const AArch64Subtarget *Subtarget) {
  assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT);
  // Make sure PTEST can be legalised with illegal types.
  if (!Subtarget->hasSVE() || DCI.isBeforeLegalize())
    return SDValue();

  SDValue N0 = N->getOperand(0);
  EVT VT = N0.getValueType();

  if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1 ||
      !isNullConstant(N->getOperand(1)))
    return SDValue();

  // Restricted the DAG combine to only cases where we're extracting from a
  // flag-setting operation.
  if (!isPredicateCCSettingOp(N0))
    return SDValue();

  // Extracts of lane 0 for SVE can be expressed as PTEST(Op, FIRST) ? 1 : 0
  SelectionDAG &DAG = DCI.DAG;
  SDValue Pg = getPTrue(DAG, SDLoc(N), VT, AArch64SVEPredPattern::all);
  return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::FIRST_ACTIVE);
}

// Materialize : Idx = (add (mul vscale, NumEls), -1)
//               i1 = extract_vector_elt t37, Constant:i64<Idx>
//     ... into: "ptrue p, all" + PTEST
static SDValue
performLastTrueTestVectorCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const AArch64Subtarget *Subtarget) {
  assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT);
  // Make sure PTEST is legal types.
  if (!Subtarget->hasSVE() || DCI.isBeforeLegalize())
    return SDValue();

  SDValue N0 = N->getOperand(0);
  EVT OpVT = N0.getValueType();

  if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1)
    return SDValue();

  // Idx == (add (mul vscale, NumEls), -1)
  SDValue Idx = N->getOperand(1);
  if (Idx.getOpcode() != ISD::ADD || !isAllOnesConstant(Idx.getOperand(1)))
    return SDValue();

  SDValue VS = Idx.getOperand(0);
  if (VS.getOpcode() != ISD::VSCALE)
    return SDValue();

  unsigned NumEls = OpVT.getVectorElementCount().getKnownMinValue();
  if (VS.getConstantOperandVal(0) != NumEls)
    return SDValue();

  // Extracts of lane EC-1 for SVE can be expressed as PTEST(Op, LAST) ? 1 : 0
  SelectionDAG &DAG = DCI.DAG;
  SDValue Pg = getPTrue(DAG, SDLoc(N), OpVT, AArch64SVEPredPattern::all);
  return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::LAST_ACTIVE);
}

static SDValue
performExtractVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                               const AArch64Subtarget *Subtarget) {
  assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT);
  if (SDValue Res = performFirstTrueTestVectorCombine(N, DCI, Subtarget))
    return Res;
  if (SDValue Res = performLastTrueTestVectorCombine(N, DCI, Subtarget))
    return Res;

  SelectionDAG &DAG = DCI.DAG;
  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
  ConstantSDNode *ConstantN1 = dyn_cast<ConstantSDNode>(N1);

  EVT VT = N->getValueType(0);
  const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();
  bool IsStrict = N0->isStrictFPOpcode();

  // extract(dup x) -> x
  if (N0.getOpcode() == AArch64ISD::DUP)
    return DAG.getZExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);

  // Rewrite for pairwise fadd pattern
  //   (f32 (extract_vector_elt
  //           (fadd (vXf32 Other)
  //                 (vector_shuffle (vXf32 Other) undef <1,X,...> )) 0))
  // ->
  //   (f32 (fadd (extract_vector_elt (vXf32 Other) 0)
  //              (extract_vector_elt (vXf32 Other) 1))
  // For strict_fadd we need to make sure the old strict_fadd can be deleted, so
  // we can only do this when it's used only by the extract_vector_elt.
  if (ConstantN1 && ConstantN1->getZExtValue() == 0 &&
      hasPairwiseAdd(N0->getOpcode(), VT, FullFP16) &&
      (!IsStrict || N0.hasOneUse())) {
    SDLoc DL(N0);
    SDValue N00 = N0->getOperand(IsStrict ? 1 : 0);
    SDValue N01 = N0->getOperand(IsStrict ? 2 : 1);

    ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(N01);
    SDValue Other = N00;

    // And handle the commutative case.
    if (!Shuffle) {
      Shuffle = dyn_cast<ShuffleVectorSDNode>(N00);
      Other = N01;
    }

    if (Shuffle && Shuffle->getMaskElt(0) == 1 &&
        Other == Shuffle->getOperand(0)) {
      SDValue Extract1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other,
                                     DAG.getConstant(0, DL, MVT::i64));
      SDValue Extract2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other,
                                     DAG.getConstant(1, DL, MVT::i64));
      if (!IsStrict)
        return DAG.getNode(N0->getOpcode(), DL, VT, Extract1, Extract2);

      // For strict_fadd we need uses of the final extract_vector to be replaced
      // with the strict_fadd, but we also need uses of the chain output of the
      // original strict_fadd to use the chain output of the new strict_fadd as
      // otherwise it may not be deleted.
      SDValue Ret = DAG.getNode(N0->getOpcode(), DL,
                                {VT, MVT::Other},
                                {N0->getOperand(0), Extract1, Extract2});
      DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Ret);
      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Ret.getValue(1));
      return SDValue(N, 0);
    }
  }

  return SDValue();
}

static SDValue performConcatVectorsCombine(SDNode *N,
                                           TargetLowering::DAGCombinerInfo &DCI,
                                           SelectionDAG &DAG) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
  unsigned N0Opc = N0->getOpcode(), N1Opc = N1->getOpcode();

  if (VT.isScalableVector())
    return SDValue();

  // Optimize concat_vectors of truncated vectors, where the intermediate
  // type is illegal, to avoid said illegality,  e.g.,
  //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
  //                          (v2i16 (truncate (v2i64)))))
  // ->
  //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
  //                                    (v4i32 (bitcast (v2i64))),
  //                                    <0, 2, 4, 6>)))
  // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
  // on both input and result type, so we might generate worse code.
  // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
  if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE &&
      N1Opc == ISD::TRUNCATE) {
    SDValue N00 = N0->getOperand(0);
    SDValue N10 = N1->getOperand(0);
    EVT N00VT = N00.getValueType();

    if (N00VT == N10.getValueType() &&
        (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
        N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
      MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
      SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
      for (size_t i = 0; i < Mask.size(); ++i)
        Mask[i] = i * 2;
      return DAG.getNode(ISD::TRUNCATE, dl, VT,
                         DAG.getVectorShuffle(
                             MidVT, dl,
                             DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
                             DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
    }
  }

  if (N->getOperand(0).getValueType() == MVT::v4i8) {
    // If we have a concat of v4i8 loads, convert them to a buildvector of f32
    // loads to prevent having to go through the v4i8 load legalization that
    // needs to extend each element into a larger type.
    if (N->getNumOperands() % 2 == 0 && all_of(N->op_values(), [](SDValue V) {
          if (V.getValueType() != MVT::v4i8)
            return false;
          if (V.isUndef())
            return true;
          LoadSDNode *LD = dyn_cast<LoadSDNode>(V);
          return LD && V.hasOneUse() && LD->isSimple() && !LD->isIndexed() &&
                 LD->getExtensionType() == ISD::NON_EXTLOAD;
        })) {
      EVT NVT =
          EVT::getVectorVT(*DAG.getContext(), MVT::f32, N->getNumOperands());
      SmallVector<SDValue> Ops;

      for (unsigned i = 0; i < N->getNumOperands(); i++) {
        SDValue V = N->getOperand(i);
        if (V.isUndef())
          Ops.push_back(DAG.getUNDEF(MVT::f32));
        else {
          LoadSDNode *LD = cast<LoadSDNode>(V);
          SDValue NewLoad =
              DAG.getLoad(MVT::f32, dl, LD->getChain(), LD->getBasePtr(),
                          LD->getMemOperand());
          DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLoad.getValue(1));
          Ops.push_back(NewLoad);
        }
      }
      return DAG.getBitcast(N->getValueType(0),
                            DAG.getBuildVector(NVT, dl, Ops));
    }
  }


  // Wait 'til after everything is legalized to try this. That way we have
  // legal vector types and such.
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  // Optimise concat_vectors of two [us]avgceils or [us]avgfloors that use
  // extracted subvectors from the same original vectors. Combine these into a
  // single avg that operates on the two original vectors.
  // avgceil is the target independant name for rhadd, avgfloor is a hadd.
  // Example:
  //  (concat_vectors (v8i8 (avgceils (extract_subvector (v16i8 OpA, <0>),
  //                                   extract_subvector (v16i8 OpB, <0>))),
  //                  (v8i8 (avgceils (extract_subvector (v16i8 OpA, <8>),
  //                                   extract_subvector (v16i8 OpB, <8>)))))
  // ->
  //  (v16i8(avgceils(v16i8 OpA, v16i8 OpB)))
  if (N->getNumOperands() == 2 && N0Opc == N1Opc &&
      (N0Opc == ISD::AVGCEILU || N0Opc == ISD::AVGCEILS ||
       N0Opc == ISD::AVGFLOORU || N0Opc == ISD::AVGFLOORS)) {
    SDValue N00 = N0->getOperand(0);
    SDValue N01 = N0->getOperand(1);
    SDValue N10 = N1->getOperand(0);
    SDValue N11 = N1->getOperand(1);

    EVT N00VT = N00.getValueType();
    EVT N10VT = N10.getValueType();

    if (N00->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
        N01->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
        N10->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
        N11->getOpcode() == ISD::EXTRACT_SUBVECTOR && N00VT == N10VT) {
      SDValue N00Source = N00->getOperand(0);
      SDValue N01Source = N01->getOperand(0);
      SDValue N10Source = N10->getOperand(0);
      SDValue N11Source = N11->getOperand(0);

      if (N00Source == N10Source && N01Source == N11Source &&
          N00Source.getValueType() == VT && N01Source.getValueType() == VT) {
        assert(N0.getValueType() == N1.getValueType());

        uint64_t N00Index = N00.getConstantOperandVal(1);
        uint64_t N01Index = N01.getConstantOperandVal(1);
        uint64_t N10Index = N10.getConstantOperandVal(1);
        uint64_t N11Index = N11.getConstantOperandVal(1);

        if (N00Index == N01Index && N10Index == N11Index && N00Index == 0 &&
            N10Index == N00VT.getVectorNumElements())
          return DAG.getNode(N0Opc, dl, VT, N00Source, N01Source);
      }
    }
  }

  // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
  // splat. The indexed instructions are going to be expecting a DUPLANE64, so
  // canonicalise to that.
  if (N->getNumOperands() == 2 && N0 == N1 && VT.getVectorNumElements() == 2) {
    assert(VT.getScalarSizeInBits() == 64);
    return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
                       DAG.getConstant(0, dl, MVT::i64));
  }

  // Canonicalise concat_vectors so that the right-hand vector has as few
  // bit-casts as possible before its real operation. The primary matching
  // destination for these operations will be the narrowing "2" instructions,
  // which depend on the operation being performed on this right-hand vector.
  // For example,
  //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
  // becomes
  //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))

  if (N->getNumOperands() != 2 || N1Opc != ISD::BITCAST)
    return SDValue();
  SDValue RHS = N1->getOperand(0);
  MVT RHSTy = RHS.getValueType().getSimpleVT();
  // If the RHS is not a vector, this is not the pattern we're looking for.
  if (!RHSTy.isVector())
    return SDValue();

  LLVM_DEBUG(
      dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");

  MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
                                  RHSTy.getVectorNumElements() * 2);
  return DAG.getNode(ISD::BITCAST, dl, VT,
                     DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
                                 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
                                 RHS));
}

static SDValue
performExtractSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                               SelectionDAG &DAG) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  EVT VT = N->getValueType(0);
  if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1)
    return SDValue();

  SDValue V = N->getOperand(0);

  // NOTE: This combine exists in DAGCombiner, but that version's legality check
  // blocks this combine because the non-const case requires custom lowering.
  //
  // ty1 extract_vector(ty2 splat(const))) -> ty1 splat(const)
  if (V.getOpcode() == ISD::SPLAT_VECTOR)
    if (isa<ConstantSDNode>(V.getOperand(0)))
      return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V.getOperand(0));

  return SDValue();
}

static SDValue
performInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                              SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Vec = N->getOperand(0);
  SDValue SubVec = N->getOperand(1);
  uint64_t IdxVal = N->getConstantOperandVal(2);
  EVT VecVT = Vec.getValueType();
  EVT SubVT = SubVec.getValueType();

  // Only do this for legal fixed vector types.
  if (!VecVT.isFixedLengthVector() ||
      !DAG.getTargetLoweringInfo().isTypeLegal(VecVT) ||
      !DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
    return SDValue();

  // Ignore widening patterns.
  if (IdxVal == 0 && Vec.isUndef())
    return SDValue();

  // Subvector must be half the width and an "aligned" insertion.
  unsigned NumSubElts = SubVT.getVectorNumElements();
  if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() ||
      (IdxVal != 0 && IdxVal != NumSubElts))
    return SDValue();

  // Fold insert_subvector -> concat_vectors
  // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
  // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
  SDValue Lo, Hi;
  if (IdxVal == 0) {
    Lo = SubVec;
    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
                     DAG.getVectorIdxConstant(NumSubElts, DL));
  } else {
    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
                     DAG.getVectorIdxConstant(0, DL));
    Hi = SubVec;
  }
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi);
}

static SDValue tryCombineFixedPointConvert(SDNode *N,
                                           TargetLowering::DAGCombinerInfo &DCI,
                                           SelectionDAG &DAG) {
  // Wait until after everything is legalized to try this. That way we have
  // legal vector types and such.
  if (DCI.isBeforeLegalizeOps())
    return SDValue();
  // Transform a scalar conversion of a value from a lane extract into a
  // lane extract of a vector conversion. E.g., from foo1 to foo2:
  // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
  // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
  //
  // The second form interacts better with instruction selection and the
  // register allocator to avoid cross-class register copies that aren't
  // coalescable due to a lane reference.

  // Check the operand and see if it originates from a lane extract.
  SDValue Op1 = N->getOperand(1);
  if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
    return SDValue();

  // Yep, no additional predication needed. Perform the transform.
  SDValue IID = N->getOperand(0);
  SDValue Shift = N->getOperand(2);
  SDValue Vec = Op1.getOperand(0);
  SDValue Lane = Op1.getOperand(1);
  EVT ResTy = N->getValueType(0);
  EVT VecResTy;
  SDLoc DL(N);

  // The vector width should be 128 bits by the time we get here, even
  // if it started as 64 bits (the extract_vector handling will have
  // done so). Bail if it is not.
  if (Vec.getValueSizeInBits() != 128)
    return SDValue();

  if (Vec.getValueType() == MVT::v4i32)
    VecResTy = MVT::v4f32;
  else if (Vec.getValueType() == MVT::v2i64)
    VecResTy = MVT::v2f64;
  else
    return SDValue();

  SDValue Convert =
      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
}

// AArch64 high-vector "long" operations are formed by performing the non-high
// version on an extract_subvector of each operand which gets the high half:
//
//  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
//
// However, there are cases which don't have an extract_high explicitly, but
// have another operation that can be made compatible with one for free. For
// example:
//
//  (dupv64 scalar) --> (extract_high (dup128 scalar))
//
// This routine does the actual conversion of such DUPs, once outer routines
// have determined that everything else is in order.
// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
// similarly here.
static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
  MVT VT = N.getSimpleValueType();
  if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
      N.getConstantOperandVal(1) == 0)
    N = N.getOperand(0);

  switch (N.getOpcode()) {
  case AArch64ISD::DUP:
  case AArch64ISD::DUPLANE8:
  case AArch64ISD::DUPLANE16:
  case AArch64ISD::DUPLANE32:
  case AArch64ISD::DUPLANE64:
  case AArch64ISD::MOVI:
  case AArch64ISD::MOVIshift:
  case AArch64ISD::MOVIedit:
  case AArch64ISD::MOVImsl:
  case AArch64ISD::MVNIshift:
  case AArch64ISD::MVNImsl:
    break;
  default:
    // FMOV could be supported, but isn't very useful, as it would only occur
    // if you passed a bitcast' floating point immediate to an eligible long
    // integer op (addl, smull, ...).
    return SDValue();
  }

  if (!VT.is64BitVector())
    return SDValue();

  SDLoc DL(N);
  unsigned NumElems = VT.getVectorNumElements();
  if (N.getValueType().is64BitVector()) {
    MVT ElementTy = VT.getVectorElementType();
    MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
    N = DAG.getNode(N->getOpcode(), DL, NewVT, N->ops());
  }

  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, N,
                     DAG.getConstant(NumElems, DL, MVT::i64));
}

static bool isEssentiallyExtractHighSubvector(SDValue N) {
  if (N.getOpcode() == ISD::BITCAST)
    N = N.getOperand(0);
  if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
    return false;
  if (N.getOperand(0).getValueType().isScalableVector())
    return false;
  return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
         N.getOperand(0).getValueType().getVectorNumElements() / 2;
}

/// Helper structure to keep track of ISD::SET_CC operands.
struct GenericSetCCInfo {
  const SDValue *Opnd0;
  const SDValue *Opnd1;
  ISD::CondCode CC;
};

/// Helper structure to keep track of a SET_CC lowered into AArch64 code.
struct AArch64SetCCInfo {
  const SDValue *Cmp;
  AArch64CC::CondCode CC;
};

/// Helper structure to keep track of SetCC information.
union SetCCInfo {
  GenericSetCCInfo Generic;
  AArch64SetCCInfo AArch64;
};

/// Helper structure to be able to read SetCC information.  If set to
/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
/// GenericSetCCInfo.
struct SetCCInfoAndKind {
  SetCCInfo Info;
  bool IsAArch64;
};

/// Check whether or not \p Op is a SET_CC operation, either a generic or
/// an
/// AArch64 lowered one.
/// \p SetCCInfo is filled accordingly.
/// \post SetCCInfo is meanginfull only when this function returns true.
/// \return True when Op is a kind of SET_CC operation.
static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
  // If this is a setcc, this is straight forward.
  if (Op.getOpcode() == ISD::SETCC) {
    SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
    SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
    SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    SetCCInfo.IsAArch64 = false;
    return true;
  }
  // Otherwise, check if this is a matching csel instruction.
  // In other words:
  // - csel 1, 0, cc
  // - csel 0, 1, !cc
  if (Op.getOpcode() != AArch64ISD::CSEL)
    return false;
  // Set the information about the operands.
  // TODO: we want the operands of the Cmp not the csel
  SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
  SetCCInfo.IsAArch64 = true;
  SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
      cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());

  // Check that the operands matches the constraints:
  // (1) Both operands must be constants.
  // (2) One must be 1 and the other must be 0.
  ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
  ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));

  // Check (1).
  if (!TValue || !FValue)
    return false;

  // Check (2).
  if (!TValue->isOne()) {
    // Update the comparison when we are interested in !cc.
    std::swap(TValue, FValue);
    SetCCInfo.Info.AArch64.CC =
        AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
  }
  return TValue->isOne() && FValue->isZero();
}

// Returns true if Op is setcc or zext of setcc.
static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
  if (isSetCC(Op, Info))
    return true;
  return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
    isSetCC(Op->getOperand(0), Info));
}

// The folding we want to perform is:
// (add x, [zext] (setcc cc ...) )
//   -->
// (csel x, (add x, 1), !cc ...)
//
// The latter will get matched to a CSINC instruction.
static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
  assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
  SDValue LHS = Op->getOperand(0);
  SDValue RHS = Op->getOperand(1);
  SetCCInfoAndKind InfoAndKind;

  // If both operands are a SET_CC, then we don't want to perform this
  // folding and create another csel as this results in more instructions
  // (and higher register usage).
  if (isSetCCOrZExtSetCC(LHS, InfoAndKind) &&
      isSetCCOrZExtSetCC(RHS, InfoAndKind))
    return SDValue();

  // If neither operand is a SET_CC, give up.
  if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
    std::swap(LHS, RHS);
    if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
      return SDValue();
  }

  // FIXME: This could be generatized to work for FP comparisons.
  EVT CmpVT = InfoAndKind.IsAArch64
                  ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
                  : InfoAndKind.Info.Generic.Opnd0->getValueType();
  if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
    return SDValue();

  SDValue CCVal;
  SDValue Cmp;
  SDLoc dl(Op);
  if (InfoAndKind.IsAArch64) {
    CCVal = DAG.getConstant(
        AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
        MVT::i32);
    Cmp = *InfoAndKind.Info.AArch64.Cmp;
  } else
    Cmp = getAArch64Cmp(
        *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1,
        ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG,
        dl);

  EVT VT = Op->getValueType(0);
  LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
  return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
}

// ADD(UADDV a, UADDV b) -->  UADDV(ADD a, b)
static SDValue performAddUADDVCombine(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);
  // Only scalar integer and vector types.
  if (N->getOpcode() != ISD::ADD || !VT.isScalarInteger())
    return SDValue();

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
      RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || LHS.getValueType() != VT)
    return SDValue();

  auto *LHSN1 = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
  auto *RHSN1 = dyn_cast<ConstantSDNode>(RHS->getOperand(1));
  if (!LHSN1 || LHSN1 != RHSN1 || !RHSN1->isZero())
    return SDValue();

  SDValue Op1 = LHS->getOperand(0);
  SDValue Op2 = RHS->getOperand(0);
  EVT OpVT1 = Op1.getValueType();
  EVT OpVT2 = Op2.getValueType();
  if (Op1.getOpcode() != AArch64ISD::UADDV || OpVT1 != OpVT2 ||
      Op2.getOpcode() != AArch64ISD::UADDV ||
      OpVT1.getVectorElementType() != VT)
    return SDValue();

  SDValue Val1 = Op1.getOperand(0);
  SDValue Val2 = Op2.getOperand(0);
  EVT ValVT = Val1->getValueType(0);
  SDLoc DL(N);
  SDValue AddVal = DAG.getNode(ISD::ADD, DL, ValVT, Val1, Val2);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
                     DAG.getNode(AArch64ISD::UADDV, DL, ValVT, AddVal),
                     DAG.getConstant(0, DL, MVT::i64));
}

/// Perform the scalar expression combine in the form of:
///   CSEL(c, 1, cc) + b => CSINC(b+c, b, cc)
///   CSNEG(c, -1, cc) + b => CSINC(b+c, b, cc)
static SDValue performAddCSelIntoCSinc(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);
  if (!VT.isScalarInteger() || N->getOpcode() != ISD::ADD)
    return SDValue();

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  // Handle commutivity.
  if (LHS.getOpcode() != AArch64ISD::CSEL &&
      LHS.getOpcode() != AArch64ISD::CSNEG) {
    std::swap(LHS, RHS);
    if (LHS.getOpcode() != AArch64ISD::CSEL &&
        LHS.getOpcode() != AArch64ISD::CSNEG) {
      return SDValue();
    }
  }

  if (!LHS.hasOneUse())
    return SDValue();

  AArch64CC::CondCode AArch64CC =
      static_cast<AArch64CC::CondCode>(LHS.getConstantOperandVal(2));

  // The CSEL should include a const one operand, and the CSNEG should include
  // One or NegOne operand.
  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(LHS.getOperand(0));
  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
  if (!CTVal || !CFVal)
    return SDValue();

  if (!(LHS.getOpcode() == AArch64ISD::CSEL &&
        (CTVal->isOne() || CFVal->isOne())) &&
      !(LHS.getOpcode() == AArch64ISD::CSNEG &&
        (CTVal->isOne() || CFVal->isAllOnes())))
    return SDValue();

  // Switch CSEL(1, c, cc) to CSEL(c, 1, !cc)
  if (LHS.getOpcode() == AArch64ISD::CSEL && CTVal->isOne() &&
      !CFVal->isOne()) {
    std::swap(CTVal, CFVal);
    AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
  }

  SDLoc DL(N);
  // Switch CSNEG(1, c, cc) to CSNEG(-c, -1, !cc)
  if (LHS.getOpcode() == AArch64ISD::CSNEG && CTVal->isOne() &&
      !CFVal->isAllOnes()) {
    APInt C = -1 * CFVal->getAPIntValue();
    CTVal = cast<ConstantSDNode>(DAG.getConstant(C, DL, VT));
    CFVal = cast<ConstantSDNode>(DAG.getAllOnesConstant(DL, VT));
    AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
  }

  // It might be neutral for larger constants, as the immediate need to be
  // materialized in a register.
  APInt ADDC = CTVal->getAPIntValue();
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.isLegalAddImmediate(ADDC.getSExtValue()))
    return SDValue();

  assert(((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) ||
          (LHS.getOpcode() == AArch64ISD::CSNEG && CFVal->isAllOnes())) &&
         "Unexpected constant value");

  SDValue NewNode = DAG.getNode(ISD::ADD, DL, VT, RHS, SDValue(CTVal, 0));
  SDValue CCVal = DAG.getConstant(AArch64CC, DL, MVT::i32);
  SDValue Cmp = LHS.getOperand(3);

  return DAG.getNode(AArch64ISD::CSINC, DL, VT, NewNode, RHS, CCVal, Cmp);
}

// ADD(UDOT(zero, x, y), A) -->  UDOT(A, x, y)
static SDValue performAddDotCombine(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);
  if (N->getOpcode() != ISD::ADD)
    return SDValue();

  SDValue Dot = N->getOperand(0);
  SDValue A = N->getOperand(1);
  // Handle commutivity
  auto isZeroDot = [](SDValue Dot) {
    return (Dot.getOpcode() == AArch64ISD::UDOT ||
            Dot.getOpcode() == AArch64ISD::SDOT) &&
           isZerosVector(Dot.getOperand(0).getNode());
  };
  if (!isZeroDot(Dot))
    std::swap(Dot, A);
  if (!isZeroDot(Dot))
    return SDValue();

  return DAG.getNode(Dot.getOpcode(), SDLoc(N), VT, A, Dot.getOperand(1),
                     Dot.getOperand(2));
}

static bool isNegatedInteger(SDValue Op) {
  return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0));
}

static SDValue getNegatedInteger(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue Zero = DAG.getConstant(0, DL, VT);
  return DAG.getNode(ISD::SUB, DL, VT, Zero, Op);
}

// Try to fold
//
// (neg (csel X, Y)) -> (csel (neg X), (neg Y))
//
// The folding helps csel to be matched with csneg without generating
// redundant neg instruction, which includes negation of the csel expansion
// of abs node lowered by lowerABS.
static SDValue performNegCSelCombine(SDNode *N, SelectionDAG &DAG) {
  if (!isNegatedInteger(SDValue(N, 0)))
    return SDValue();

  SDValue CSel = N->getOperand(1);
  if (CSel.getOpcode() != AArch64ISD::CSEL || !CSel->hasOneUse())
    return SDValue();

  SDValue N0 = CSel.getOperand(0);
  SDValue N1 = CSel.getOperand(1);

  // If both of them is not negations, it's not worth the folding as it
  // introduces two additional negations while reducing one negation.
  if (!isNegatedInteger(N0) && !isNegatedInteger(N1))
    return SDValue();

  SDValue N0N = getNegatedInteger(N0, DAG);
  SDValue N1N = getNegatedInteger(N1, DAG);

  SDLoc DL(N);
  EVT VT = CSel.getValueType();
  return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0N, N1N, CSel.getOperand(2),
                     CSel.getOperand(3));
}

// The basic add/sub long vector instructions have variants with "2" on the end
// which act on the high-half of their inputs. They are normally matched by
// patterns like:
//
// (add (zeroext (extract_high LHS)),
//      (zeroext (extract_high RHS)))
// -> uaddl2 vD, vN, vM
//
// However, if one of the extracts is something like a duplicate, this
// instruction can still be used profitably. This function puts the DAG into a
// more appropriate form for those patterns to trigger.
static SDValue performAddSubLongCombine(SDNode *N,
                                        TargetLowering::DAGCombinerInfo &DCI,
                                        SelectionDAG &DAG) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  MVT VT = N->getSimpleValueType(0);
  if (!VT.is128BitVector()) {
    if (N->getOpcode() == ISD::ADD)
      return performSetccAddFolding(N, DAG);
    return SDValue();
  }

  // Make sure both branches are extended in the same way.
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
       LHS.getOpcode() != ISD::SIGN_EXTEND) ||
      LHS.getOpcode() != RHS.getOpcode())
    return SDValue();

  unsigned ExtType = LHS.getOpcode();

  // It's not worth doing if at least one of the inputs isn't already an
  // extract, but we don't know which it'll be so we have to try both.
  if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
    RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
    if (!RHS.getNode())
      return SDValue();

    RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
  } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
    LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
    if (!LHS.getNode())
      return SDValue();

    LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
  }

  return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
}

static bool isCMP(SDValue Op) {
  return Op.getOpcode() == AArch64ISD::SUBS &&
         !Op.getNode()->hasAnyUseOfValue(0);
}

// (CSEL 1 0 CC Cond) => CC
// (CSEL 0 1 CC Cond) => !CC
static Optional<AArch64CC::CondCode> getCSETCondCode(SDValue Op) {
  if (Op.getOpcode() != AArch64ISD::CSEL)
    return None;
  auto CC = static_cast<AArch64CC::CondCode>(Op.getConstantOperandVal(2));
  if (CC == AArch64CC::AL || CC == AArch64CC::NV)
    return None;
  SDValue OpLHS = Op.getOperand(0);
  SDValue OpRHS = Op.getOperand(1);
  if (isOneConstant(OpLHS) && isNullConstant(OpRHS))
    return CC;
  if (isNullConstant(OpLHS) && isOneConstant(OpRHS))
    return getInvertedCondCode(CC);

  return None;
}

// (ADC{S} l r (CMP (CSET HS carry) 1)) => (ADC{S} l r carry)
// (SBC{S} l r (CMP 0 (CSET LO carry))) => (SBC{S} l r carry)
static SDValue foldOverflowCheck(SDNode *Op, SelectionDAG &DAG, bool IsAdd) {
  SDValue CmpOp = Op->getOperand(2);
  if (!isCMP(CmpOp))
    return SDValue();

  if (IsAdd) {
    if (!isOneConstant(CmpOp.getOperand(1)))
      return SDValue();
  } else {
    if (!isNullConstant(CmpOp.getOperand(0)))
      return SDValue();
  }

  SDValue CsetOp = CmpOp->getOperand(IsAdd ? 0 : 1);
  auto CC = getCSETCondCode(CsetOp);
  if (CC != (IsAdd ? AArch64CC::HS : AArch64CC::LO))
    return SDValue();

  return DAG.getNode(Op->getOpcode(), SDLoc(Op), Op->getVTList(),
                     Op->getOperand(0), Op->getOperand(1),
                     CsetOp.getOperand(3));
}

// (ADC x 0 cond) => (CINC x HS cond)
static SDValue foldADCToCINC(SDNode *N, SelectionDAG &DAG) {
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  SDValue Cond = N->getOperand(2);

  if (!isNullConstant(RHS))
    return SDValue();

  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  // (CINC x cc cond) <=> (CSINC x x !cc cond)
  SDValue CC = DAG.getConstant(AArch64CC::LO, DL, MVT::i32);
  return DAG.getNode(AArch64ISD::CSINC, DL, VT, LHS, LHS, CC, Cond);
}

// Transform vector add(zext i8 to i32, zext i8 to i32)
//  into sext(add(zext(i8 to i16), zext(i8 to i16)) to i32)
// This allows extra uses of saddl/uaddl at the lower vector widths, and less
// extends.
static SDValue performVectorAddSubExtCombine(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);
  if (!VT.isFixedLengthVector() || VT.getSizeInBits() <= 128 ||
      (N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND) ||
      (N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND) ||
      N->getOperand(0).getOperand(0).getValueType() !=
          N->getOperand(1).getOperand(0).getValueType())
    return SDValue();

  SDValue N0 = N->getOperand(0).getOperand(0);
  SDValue N1 = N->getOperand(1).getOperand(0);
  EVT InVT = N0.getValueType();

  EVT S1 = InVT.getScalarType();
  EVT S2 = VT.getScalarType();
  if ((S2 == MVT::i32 && S1 == MVT::i8) ||
      (S2 == MVT::i64 && (S1 == MVT::i8 || S1 == MVT::i16))) {
    SDLoc DL(N);
    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(),
                                  S2.getHalfSizedIntegerVT(*DAG.getContext()),
                                  VT.getVectorElementCount());
    SDValue NewN0 = DAG.getNode(N->getOperand(0).getOpcode(), DL, HalfVT, N0);
    SDValue NewN1 = DAG.getNode(N->getOperand(1).getOpcode(), DL, HalfVT, N1);
    SDValue NewOp = DAG.getNode(N->getOpcode(), DL, HalfVT, NewN0, NewN1);
    return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewOp);
  }
  return SDValue();
}

static SDValue performBuildVectorCombine(SDNode *N,
                                         TargetLowering::DAGCombinerInfo &DCI,
                                         SelectionDAG &DAG) {
  SDLoc DL(N);

  // A build vector of two extracted elements is equivalent to an
  // extract subvector where the inner vector is any-extended to the
  // extract_vector_elt VT.
  //    (build_vector (extract_elt_iXX_to_i32 vec Idx+0)
  //                  (extract_elt_iXX_to_i32 vec Idx+1))
  // => (extract_subvector (anyext_iXX_to_i32 vec) Idx)

  // For now, only consider the v2i32 case, which arises as a result of
  // legalization.
  if (N->getValueType(0) != MVT::v2i32)
    return SDValue();

  SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1);
  // Reminder, EXTRACT_VECTOR_ELT has the effect of any-extending to its VT.
  if (Elt0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
      Elt1->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
      // Constant index.
      isa<ConstantSDNode>(Elt0->getOperand(1)) &&
      isa<ConstantSDNode>(Elt1->getOperand(1)) &&
      // Both EXTRACT_VECTOR_ELT from same vector...
      Elt0->getOperand(0) == Elt1->getOperand(0) &&
      // ... and contiguous. First element's index +1 == second element's index.
      Elt0->getConstantOperandVal(1) + 1 == Elt1->getConstantOperandVal(1)) {
    SDValue VecToExtend = Elt0->getOperand(0);
    EVT ExtVT = VecToExtend.getValueType().changeVectorElementType(MVT::i32);
    if (!DAG.getTargetLoweringInfo().isTypeLegal(ExtVT))
      return SDValue();

    SDValue SubvectorIdx = DAG.getVectorIdxConstant(Elt0->getConstantOperandVal(1), DL);

    SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, DL, ExtVT, VecToExtend);
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Ext,
                       SubvectorIdx);
  }

  return SDValue();
}

static SDValue performAddSubCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    SelectionDAG &DAG) {
  // Try to change sum of two reductions.
  if (SDValue Val = performAddUADDVCombine(N, DAG))
    return Val;
  if (SDValue Val = performAddDotCombine(N, DAG))
    return Val;
  if (SDValue Val = performAddCSelIntoCSinc(N, DAG))
    return Val;
  if (SDValue Val = performNegCSelCombine(N, DAG))
    return Val;
  if (SDValue Val = performVectorAddSubExtCombine(N, DAG))
    return Val;

  return performAddSubLongCombine(N, DCI, DAG);
}

// Massage DAGs which we can use the high-half "long" operations on into
// something isel will recognize better. E.g.
//
// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
//   (aarch64_neon_umull (extract_high (v2i64 vec)))
//                     (extract_high (v2i64 (dup128 scalar)))))
//
static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
                                       TargetLowering::DAGCombinerInfo &DCI,
                                       SelectionDAG &DAG) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue LHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 0 : 1);
  SDValue RHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 1 : 2);
  assert(LHS.getValueType().is64BitVector() &&
         RHS.getValueType().is64BitVector() &&
         "unexpected shape for long operation");

  // Either node could be a DUP, but it's not worth doing both of them (you'd
  // just as well use the non-high version) so look for a corresponding extract
  // operation on the other "wing".
  if (isEssentiallyExtractHighSubvector(LHS)) {
    RHS = tryExtendDUPToExtractHigh(RHS, DAG);
    if (!RHS.getNode())
      return SDValue();
  } else if (isEssentiallyExtractHighSubvector(RHS)) {
    LHS = tryExtendDUPToExtractHigh(LHS, DAG);
    if (!LHS.getNode())
      return SDValue();
  }

  if (IID == Intrinsic::not_intrinsic)
    return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), LHS, RHS);

  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
                     N->getOperand(0), LHS, RHS);
}

static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
  MVT ElemTy = N->getSimpleValueType(0).getScalarType();
  unsigned ElemBits = ElemTy.getSizeInBits();

  int64_t ShiftAmount;
  if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
    APInt SplatValue, SplatUndef;
    unsigned SplatBitSize;
    bool HasAnyUndefs;
    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
                              HasAnyUndefs, ElemBits) ||
        SplatBitSize != ElemBits)
      return SDValue();

    ShiftAmount = SplatValue.getSExtValue();
  } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
    ShiftAmount = CVN->getSExtValue();
  } else
    return SDValue();

  unsigned Opcode;
  bool IsRightShift;
  switch (IID) {
  default:
    llvm_unreachable("Unknown shift intrinsic");
  case Intrinsic::aarch64_neon_sqshl:
    Opcode = AArch64ISD::SQSHL_I;
    IsRightShift = false;
    break;
  case Intrinsic::aarch64_neon_uqshl:
    Opcode = AArch64ISD::UQSHL_I;
    IsRightShift = false;
    break;
  case Intrinsic::aarch64_neon_srshl:
    Opcode = AArch64ISD::SRSHR_I;
    IsRightShift = true;
    break;
  case Intrinsic::aarch64_neon_urshl:
    Opcode = AArch64ISD::URSHR_I;
    IsRightShift = true;
    break;
  case Intrinsic::aarch64_neon_sqshlu:
    Opcode = AArch64ISD::SQSHLU_I;
    IsRightShift = false;
    break;
  case Intrinsic::aarch64_neon_sshl:
  case Intrinsic::aarch64_neon_ushl:
    // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
    // left shift for positive shift amounts. Below, we only replace the current
    // node with VSHL, if this condition is met.
    Opcode = AArch64ISD::VSHL;
    IsRightShift = false;
    break;
  }

  if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
    SDLoc dl(N);
    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
                       DAG.getConstant(-ShiftAmount, dl, MVT::i32));
  } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
    SDLoc dl(N);
    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
                       DAG.getConstant(ShiftAmount, dl, MVT::i32));
  }

  return SDValue();
}

// The CRC32[BH] instructions ignore the high bits of their data operand. Since
// the intrinsics must be legal and take an i32, this means there's almost
// certainly going to be a zext in the DAG which we can eliminate.
static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
  SDValue AndN = N->getOperand(2);
  if (AndN.getOpcode() != ISD::AND)
    return SDValue();

  ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
  if (!CMask || CMask->getZExtValue() != Mask)
    return SDValue();

  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
                     N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
}

static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
                                           SelectionDAG &DAG) {
  SDLoc dl(N);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
                     DAG.getNode(Opc, dl,
                                 N->getOperand(1).getSimpleValueType(),
                                 N->getOperand(1)),
                     DAG.getConstant(0, dl, MVT::i64));
}

static SDValue LowerSVEIntrinsicIndex(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Op1 = N->getOperand(1);
  SDValue Op2 = N->getOperand(2);
  EVT ScalarTy = Op2.getValueType();
  if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
    ScalarTy = MVT::i32;

  // Lower index_vector(base, step) to mul(step step_vector(1)) + splat(base).
  SDValue StepVector = DAG.getStepVector(DL, N->getValueType(0));
  SDValue Step = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op2);
  SDValue Mul = DAG.getNode(ISD::MUL, DL, N->getValueType(0), StepVector, Step);
  SDValue Base = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op1);
  return DAG.getNode(ISD::ADD, DL, N->getValueType(0), Mul, Base);
}

static SDValue LowerSVEIntrinsicDUP(SDNode *N, SelectionDAG &DAG) {
  SDLoc dl(N);
  SDValue Scalar = N->getOperand(3);
  EVT ScalarTy = Scalar.getValueType();

  if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
    Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);

  SDValue Passthru = N->getOperand(1);
  SDValue Pred = N->getOperand(2);
  return DAG.getNode(AArch64ISD::DUP_MERGE_PASSTHRU, dl, N->getValueType(0),
                     Pred, Scalar, Passthru);
}

static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) {
  SDLoc dl(N);
  LLVMContext &Ctx = *DAG.getContext();
  EVT VT = N->getValueType(0);

  assert(VT.isScalableVector() && "Expected a scalable vector.");

  // Current lowering only supports the SVE-ACLE types.
  if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock)
    return SDValue();

  unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8;
  unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8;
  EVT ByteVT =
      EVT::getVectorVT(Ctx, MVT::i8, ElementCount::getScalable(ByteSize));

  // Convert everything to the domain of EXT (i.e bytes).
  SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1));
  SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2));
  SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3),
                            DAG.getConstant(ElemSize, dl, MVT::i32));

  SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2);
  return DAG.getNode(ISD::BITCAST, dl, VT, EXT);
}

static SDValue tryConvertSVEWideCompare(SDNode *N, ISD::CondCode CC,
                                        TargetLowering::DAGCombinerInfo &DCI,
                                        SelectionDAG &DAG) {
  if (DCI.isBeforeLegalize())
    return SDValue();

  SDValue Comparator = N->getOperand(3);
  if (Comparator.getOpcode() == AArch64ISD::DUP ||
      Comparator.getOpcode() == ISD::SPLAT_VECTOR) {
    unsigned IID = getIntrinsicID(N);
    EVT VT = N->getValueType(0);
    EVT CmpVT = N->getOperand(2).getValueType();
    SDValue Pred = N->getOperand(1);
    SDValue Imm;
    SDLoc DL(N);

    switch (IID) {
    default:
      llvm_unreachable("Called with wrong intrinsic!");
      break;

    // Signed comparisons
    case Intrinsic::aarch64_sve_cmpeq_wide:
    case Intrinsic::aarch64_sve_cmpne_wide:
    case Intrinsic::aarch64_sve_cmpge_wide:
    case Intrinsic::aarch64_sve_cmpgt_wide:
    case Intrinsic::aarch64_sve_cmplt_wide:
    case Intrinsic::aarch64_sve_cmple_wide: {
      if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
        int64_t ImmVal = CN->getSExtValue();
        if (ImmVal >= -16 && ImmVal <= 15)
          Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
        else
          return SDValue();
      }
      break;
    }
    // Unsigned comparisons
    case Intrinsic::aarch64_sve_cmphs_wide:
    case Intrinsic::aarch64_sve_cmphi_wide:
    case Intrinsic::aarch64_sve_cmplo_wide:
    case Intrinsic::aarch64_sve_cmpls_wide:  {
      if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
        uint64_t ImmVal = CN->getZExtValue();
        if (ImmVal <= 127)
          Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
        else
          return SDValue();
      }
      break;
    }
    }

    if (!Imm)
      return SDValue();

    SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm);
    return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, VT, Pred,
                       N->getOperand(2), Splat, DAG.getCondCode(CC));
  }

  return SDValue();
}

static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
                        AArch64CC::CondCode Cond) {
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  SDLoc DL(Op);
  assert(Op.getValueType().isScalableVector() &&
         TLI.isTypeLegal(Op.getValueType()) &&
         "Expected legal scalable vector type!");
  assert(Op.getValueType() == Pg.getValueType() &&
         "Expected same type for PTEST operands");

  // Ensure target specific opcodes are using legal type.
  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
  SDValue TVal = DAG.getConstant(1, DL, OutVT);
  SDValue FVal = DAG.getConstant(0, DL, OutVT);

  // Ensure operands have type nxv16i1.
  if (Op.getValueType() != MVT::nxv16i1) {
    if ((Cond == AArch64CC::ANY_ACTIVE || Cond == AArch64CC::NONE_ACTIVE) &&
        isZeroingInactiveLanes(Op))
      Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Pg);
    else
      Pg = getSVEPredicateBitCast(MVT::nxv16i1, Pg, DAG);
    Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Op);
  }

  // Set condition code (CC) flags.
  SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op);

  // Convert CC to integer based on requested condition.
  // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare.
  SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32);
  SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test);
  return DAG.getZExtOrTrunc(Res, DL, VT);
}

static SDValue combineSVEReductionInt(SDNode *N, unsigned Opc,
                                      SelectionDAG &DAG) {
  SDLoc DL(N);

  SDValue Pred = N->getOperand(1);
  SDValue VecToReduce = N->getOperand(2);

  // NOTE: The integer reduction's result type is not always linked to the
  // operand's element type so we construct it from the intrinsic's result type.
  EVT ReduceVT = getPackedSVEVectorVT(N->getValueType(0));
  SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce);

  // SVE reductions set the whole vector register with the first element
  // containing the reduction result, which we'll now extract.
  SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
                     Zero);
}

static SDValue combineSVEReductionFP(SDNode *N, unsigned Opc,
                                     SelectionDAG &DAG) {
  SDLoc DL(N);

  SDValue Pred = N->getOperand(1);
  SDValue VecToReduce = N->getOperand(2);

  EVT ReduceVT = VecToReduce.getValueType();
  SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce);

  // SVE reductions set the whole vector register with the first element
  // containing the reduction result, which we'll now extract.
  SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
                     Zero);
}

static SDValue combineSVEReductionOrderedFP(SDNode *N, unsigned Opc,
                                            SelectionDAG &DAG) {
  SDLoc DL(N);

  SDValue Pred = N->getOperand(1);
  SDValue InitVal = N->getOperand(2);
  SDValue VecToReduce = N->getOperand(3);
  EVT ReduceVT = VecToReduce.getValueType();

  // Ordered reductions use the first lane of the result vector as the
  // reduction's initial value.
  SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
  InitVal = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ReduceVT,
                        DAG.getUNDEF(ReduceVT), InitVal, Zero);

  SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, InitVal, VecToReduce);

  // SVE reductions set the whole vector register with the first element
  // containing the reduction result, which we'll now extract.
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
                     Zero);
}

static bool isAllInactivePredicate(SDValue N) {
  // Look through cast.
  while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST)
    N = N.getOperand(0);

  return ISD::isConstantSplatVectorAllZeros(N.getNode());
}

static bool isAllActivePredicate(SelectionDAG &DAG, SDValue N) {
  unsigned NumElts = N.getValueType().getVectorMinNumElements();

  // Look through cast.
  while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST) {
    N = N.getOperand(0);
    // When reinterpreting from a type with fewer elements the "new" elements
    // are not active, so bail if they're likely to be used.
    if (N.getValueType().getVectorMinNumElements() < NumElts)
      return false;
  }

  if (ISD::isConstantSplatVectorAllOnes(N.getNode()))
    return true;

  // "ptrue p.<ty>, all" can be considered all active when <ty> is the same size
  // or smaller than the implicit element type represented by N.
  // NOTE: A larger element count implies a smaller element type.
  if (N.getOpcode() == AArch64ISD::PTRUE &&
      N.getConstantOperandVal(0) == AArch64SVEPredPattern::all)
    return N.getValueType().getVectorMinNumElements() >= NumElts;

  // If we're compiling for a specific vector-length, we can check if the
  // pattern's VL equals that of the scalable vector at runtime.
  if (N.getOpcode() == AArch64ISD::PTRUE) {
    const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
    unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits();
    unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits();
    if (MaxSVESize && MinSVESize == MaxSVESize) {
      unsigned VScale = MaxSVESize / AArch64::SVEBitsPerBlock;
      unsigned PatNumElts =
          getNumElementsFromSVEPredPattern(N.getConstantOperandVal(0));
      return PatNumElts == (NumElts * VScale);
    }
  }

  return false;
}

// If a merged operation has no inactive lanes we can relax it to a predicated
// or unpredicated operation, which potentially allows better isel (perhaps
// using immediate forms) or relaxing register reuse requirements.
static SDValue convertMergedOpToPredOp(SDNode *N, unsigned Opc,
                                       SelectionDAG &DAG, bool UnpredOp = false,
                                       bool SwapOperands = false) {
  assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Expected intrinsic!");
  assert(N->getNumOperands() == 4 && "Expected 3 operand intrinsic!");
  SDValue Pg = N->getOperand(1);
  SDValue Op1 = N->getOperand(SwapOperands ? 3 : 2);
  SDValue Op2 = N->getOperand(SwapOperands ? 2 : 3);

  // ISD way to specify an all active predicate.
  if (isAllActivePredicate(DAG, Pg)) {
    if (UnpredOp)
      return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Op1, Op2);

    return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Pg, Op1, Op2);
  }

  // FUTURE: SplatVector(true)
  return SDValue();
}

static SDValue performIntrinsicCombine(SDNode *N,
                                       TargetLowering::DAGCombinerInfo &DCI,
                                       const AArch64Subtarget *Subtarget) {
  SelectionDAG &DAG = DCI.DAG;
  unsigned IID = getIntrinsicID(N);
  switch (IID) {
  default:
    break;
  case Intrinsic::get_active_lane_mask: {
    SDValue Res = SDValue();
    EVT VT = N->getValueType(0);
    if (VT.isFixedLengthVector()) {
      // We can use the SVE whilelo instruction to lower this intrinsic by
      // creating the appropriate sequence of scalable vector operations and
      // then extracting a fixed-width subvector from the scalable vector.

      SDLoc DL(N);
      SDValue ID =
          DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64);

      EVT WhileVT = EVT::getVectorVT(
          *DAG.getContext(), MVT::i1,
          ElementCount::getScalable(VT.getVectorNumElements()));

      // Get promoted scalable vector VT, i.e. promote nxv4i1 -> nxv4i32.
      EVT PromVT = getPromotedVTForPredicate(WhileVT);

      // Get the fixed-width equivalent of PromVT for extraction.
      EVT ExtVT =
          EVT::getVectorVT(*DAG.getContext(), PromVT.getVectorElementType(),
                           VT.getVectorElementCount());

      Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WhileVT, ID,
                        N->getOperand(1), N->getOperand(2));
      Res = DAG.getNode(ISD::SIGN_EXTEND, DL, PromVT, Res);
      Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtVT, Res,
                        DAG.getConstant(0, DL, MVT::i64));
      Res = DAG.getNode(ISD::TRUNCATE, DL, VT, Res);
    }
    return Res;
  }
  case Intrinsic::aarch64_neon_vcvtfxs2fp:
  case Intrinsic::aarch64_neon_vcvtfxu2fp:
    return tryCombineFixedPointConvert(N, DCI, DAG);
  case Intrinsic::aarch64_neon_saddv:
    return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
  case Intrinsic::aarch64_neon_uaddv:
    return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
  case Intrinsic::aarch64_neon_sminv:
    return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
  case Intrinsic::aarch64_neon_uminv:
    return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
  case Intrinsic::aarch64_neon_smaxv:
    return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
  case Intrinsic::aarch64_neon_umaxv:
    return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
  case Intrinsic::aarch64_neon_fmax:
    return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_fmin:
    return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_fmaxnm:
    return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_fminnm:
    return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_smull:
    return DAG.getNode(AArch64ISD::SMULL, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_umull:
    return DAG.getNode(AArch64ISD::UMULL, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_pmull:
  case Intrinsic::aarch64_neon_sqdmull:
    return tryCombineLongOpWithDup(IID, N, DCI, DAG);
  case Intrinsic::aarch64_neon_sqshl:
  case Intrinsic::aarch64_neon_uqshl:
  case Intrinsic::aarch64_neon_sqshlu:
  case Intrinsic::aarch64_neon_srshl:
  case Intrinsic::aarch64_neon_urshl:
  case Intrinsic::aarch64_neon_sshl:
  case Intrinsic::aarch64_neon_ushl:
    return tryCombineShiftImm(IID, N, DAG);
  case Intrinsic::aarch64_crc32b:
  case Intrinsic::aarch64_crc32cb:
    return tryCombineCRC32(0xff, N, DAG);
  case Intrinsic::aarch64_crc32h:
  case Intrinsic::aarch64_crc32ch:
    return tryCombineCRC32(0xffff, N, DAG);
  case Intrinsic::aarch64_sve_saddv:
    // There is no i64 version of SADDV because the sign is irrelevant.
    if (N->getOperand(2)->getValueType(0).getVectorElementType() == MVT::i64)
      return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG);
    else
      return combineSVEReductionInt(N, AArch64ISD::SADDV_PRED, DAG);
  case Intrinsic::aarch64_sve_uaddv:
    return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG);
  case Intrinsic::aarch64_sve_smaxv:
    return combineSVEReductionInt(N, AArch64ISD::SMAXV_PRED, DAG);
  case Intrinsic::aarch64_sve_umaxv:
    return combineSVEReductionInt(N, AArch64ISD::UMAXV_PRED, DAG);
  case Intrinsic::aarch64_sve_sminv:
    return combineSVEReductionInt(N, AArch64ISD::SMINV_PRED, DAG);
  case Intrinsic::aarch64_sve_uminv:
    return combineSVEReductionInt(N, AArch64ISD::UMINV_PRED, DAG);
  case Intrinsic::aarch64_sve_orv:
    return combineSVEReductionInt(N, AArch64ISD::ORV_PRED, DAG);
  case Intrinsic::aarch64_sve_eorv:
    return combineSVEReductionInt(N, AArch64ISD::EORV_PRED, DAG);
  case Intrinsic::aarch64_sve_andv:
    return combineSVEReductionInt(N, AArch64ISD::ANDV_PRED, DAG);
  case Intrinsic::aarch64_sve_index:
    return LowerSVEIntrinsicIndex(N, DAG);
  case Intrinsic::aarch64_sve_dup:
    return LowerSVEIntrinsicDUP(N, DAG);
  case Intrinsic::aarch64_sve_dup_x:
    return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), N->getValueType(0),
                       N->getOperand(1));
  case Intrinsic::aarch64_sve_ext:
    return LowerSVEIntrinsicEXT(N, DAG);
  case Intrinsic::aarch64_sve_mul:
    return convertMergedOpToPredOp(N, AArch64ISD::MUL_PRED, DAG);
  case Intrinsic::aarch64_sve_smulh:
    return convertMergedOpToPredOp(N, AArch64ISD::MULHS_PRED, DAG);
  case Intrinsic::aarch64_sve_umulh:
    return convertMergedOpToPredOp(N, AArch64ISD::MULHU_PRED, DAG);
  case Intrinsic::aarch64_sve_smin:
    return convertMergedOpToPredOp(N, AArch64ISD::SMIN_PRED, DAG);
  case Intrinsic::aarch64_sve_umin:
    return convertMergedOpToPredOp(N, AArch64ISD::UMIN_PRED, DAG);
  case Intrinsic::aarch64_sve_smax:
    return convertMergedOpToPredOp(N, AArch64ISD::SMAX_PRED, DAG);
  case Intrinsic::aarch64_sve_umax:
    return convertMergedOpToPredOp(N, AArch64ISD::UMAX_PRED, DAG);
  case Intrinsic::aarch64_sve_lsl:
    return convertMergedOpToPredOp(N, AArch64ISD::SHL_PRED, DAG);
  case Intrinsic::aarch64_sve_lsr:
    return convertMergedOpToPredOp(N, AArch64ISD::SRL_PRED, DAG);
  case Intrinsic::aarch64_sve_asr:
    return convertMergedOpToPredOp(N, AArch64ISD::SRA_PRED, DAG);
  case Intrinsic::aarch64_sve_fadd:
    return convertMergedOpToPredOp(N, AArch64ISD::FADD_PRED, DAG);
  case Intrinsic::aarch64_sve_fsub:
    return convertMergedOpToPredOp(N, AArch64ISD::FSUB_PRED, DAG);
  case Intrinsic::aarch64_sve_fmul:
    return convertMergedOpToPredOp(N, AArch64ISD::FMUL_PRED, DAG);
  case Intrinsic::aarch64_sve_add:
    return convertMergedOpToPredOp(N, ISD::ADD, DAG, true);
  case Intrinsic::aarch64_sve_sub:
    return convertMergedOpToPredOp(N, ISD::SUB, DAG, true);
  case Intrinsic::aarch64_sve_subr:
    return convertMergedOpToPredOp(N, ISD::SUB, DAG, true, true);
  case Intrinsic::aarch64_sve_and:
    return convertMergedOpToPredOp(N, ISD::AND, DAG, true);
  case Intrinsic::aarch64_sve_bic:
    return convertMergedOpToPredOp(N, AArch64ISD::BIC, DAG, true);
  case Intrinsic::aarch64_sve_eor:
    return convertMergedOpToPredOp(N, ISD::XOR, DAG, true);
  case Intrinsic::aarch64_sve_orr:
    return convertMergedOpToPredOp(N, ISD::OR, DAG, true);
  case Intrinsic::aarch64_sve_sabd:
    return convertMergedOpToPredOp(N, ISD::ABDS, DAG, true);
  case Intrinsic::aarch64_sve_uabd:
    return convertMergedOpToPredOp(N, ISD::ABDU, DAG, true);
  case Intrinsic::aarch64_sve_sqadd:
    return convertMergedOpToPredOp(N, ISD::SADDSAT, DAG, true);
  case Intrinsic::aarch64_sve_sqsub:
    return convertMergedOpToPredOp(N, ISD::SSUBSAT, DAG, true);
  case Intrinsic::aarch64_sve_uqadd:
    return convertMergedOpToPredOp(N, ISD::UADDSAT, DAG, true);
  case Intrinsic::aarch64_sve_uqsub:
    return convertMergedOpToPredOp(N, ISD::USUBSAT, DAG, true);
  case Intrinsic::aarch64_sve_sqadd_x:
    return DAG.getNode(ISD::SADDSAT, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_sve_sqsub_x:
    return DAG.getNode(ISD::SSUBSAT, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_sve_uqadd_x:
    return DAG.getNode(ISD::UADDSAT, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_sve_uqsub_x:
    return DAG.getNode(ISD::USUBSAT, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_sve_asrd:
    return DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2), N->getOperand(3));
  case Intrinsic::aarch64_sve_cmphs:
    if (!N->getOperand(2).getValueType().isFloatingPoint())
      return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
                         N->getValueType(0), N->getOperand(1), N->getOperand(2),
                         N->getOperand(3), DAG.getCondCode(ISD::SETUGE));
    break;
  case Intrinsic::aarch64_sve_cmphi:
    if (!N->getOperand(2).getValueType().isFloatingPoint())
      return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
                         N->getValueType(0), N->getOperand(1), N->getOperand(2),
                         N->getOperand(3), DAG.getCondCode(ISD::SETUGT));
    break;
  case Intrinsic::aarch64_sve_fcmpge:
  case Intrinsic::aarch64_sve_cmpge:
    return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
                       N->getValueType(0), N->getOperand(1), N->getOperand(2),
                       N->getOperand(3), DAG.getCondCode(ISD::SETGE));
    break;
  case Intrinsic::aarch64_sve_fcmpgt:
  case Intrinsic::aarch64_sve_cmpgt:
    return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
                       N->getValueType(0), N->getOperand(1), N->getOperand(2),
                       N->getOperand(3), DAG.getCondCode(ISD::SETGT));
    break;
  case Intrinsic::aarch64_sve_fcmpeq:
  case Intrinsic::aarch64_sve_cmpeq:
    return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
                       N->getValueType(0), N->getOperand(1), N->getOperand(2),
                       N->getOperand(3), DAG.getCondCode(ISD::SETEQ));
    break;
  case Intrinsic::aarch64_sve_fcmpne:
  case Intrinsic::aarch64_sve_cmpne:
    return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
                       N->getValueType(0), N->getOperand(1), N->getOperand(2),
                       N->getOperand(3), DAG.getCondCode(ISD::SETNE));
    break;
  case Intrinsic::aarch64_sve_fcmpuo:
    return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
                       N->getValueType(0), N->getOperand(1), N->getOperand(2),
                       N->getOperand(3), DAG.getCondCode(ISD::SETUO));
    break;
  case Intrinsic::aarch64_sve_fadda:
    return combineSVEReductionOrderedFP(N, AArch64ISD::FADDA_PRED, DAG);
  case Intrinsic::aarch64_sve_faddv:
    return combineSVEReductionFP(N, AArch64ISD::FADDV_PRED, DAG);
  case Intrinsic::aarch64_sve_fmaxnmv:
    return combineSVEReductionFP(N, AArch64ISD::FMAXNMV_PRED, DAG);
  case Intrinsic::aarch64_sve_fmaxv:
    return combineSVEReductionFP(N, AArch64ISD::FMAXV_PRED, DAG);
  case Intrinsic::aarch64_sve_fminnmv:
    return combineSVEReductionFP(N, AArch64ISD::FMINNMV_PRED, DAG);
  case Intrinsic::aarch64_sve_fminv:
    return combineSVEReductionFP(N, AArch64ISD::FMINV_PRED, DAG);
  case Intrinsic::aarch64_sve_sel:
    return DAG.getNode(ISD::VSELECT, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2), N->getOperand(3));
  case Intrinsic::aarch64_sve_cmpeq_wide:
    return tryConvertSVEWideCompare(N, ISD::SETEQ, DCI, DAG);
  case Intrinsic::aarch64_sve_cmpne_wide:
    return tryConvertSVEWideCompare(N, ISD::SETNE, DCI, DAG);
  case Intrinsic::aarch64_sve_cmpge_wide:
    return tryConvertSVEWideCompare(N, ISD::SETGE, DCI, DAG);
  case Intrinsic::aarch64_sve_cmpgt_wide:
    return tryConvertSVEWideCompare(N, ISD::SETGT, DCI, DAG);
  case Intrinsic::aarch64_sve_cmplt_wide:
    return tryConvertSVEWideCompare(N, ISD::SETLT, DCI, DAG);
  case Intrinsic::aarch64_sve_cmple_wide:
    return tryConvertSVEWideCompare(N, ISD::SETLE, DCI, DAG);
  case Intrinsic::aarch64_sve_cmphs_wide:
    return tryConvertSVEWideCompare(N, ISD::SETUGE, DCI, DAG);
  case Intrinsic::aarch64_sve_cmphi_wide:
    return tryConvertSVEWideCompare(N, ISD::SETUGT, DCI, DAG);
  case Intrinsic::aarch64_sve_cmplo_wide:
    return tryConvertSVEWideCompare(N, ISD::SETULT, DCI, DAG);
  case Intrinsic::aarch64_sve_cmpls_wide:
    return tryConvertSVEWideCompare(N, ISD::SETULE, DCI, DAG);
  case Intrinsic::aarch64_sve_ptest_any:
    return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
                    AArch64CC::ANY_ACTIVE);
  case Intrinsic::aarch64_sve_ptest_first:
    return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
                    AArch64CC::FIRST_ACTIVE);
  case Intrinsic::aarch64_sve_ptest_last:
    return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
                    AArch64CC::LAST_ACTIVE);
  }
  return SDValue();
}

static bool isCheapToExtend(const SDValue &N) {
  unsigned OC = N->getOpcode();
  return OC == ISD::LOAD || OC == ISD::MLOAD ||
         ISD::isConstantSplatVectorAllZeros(N.getNode());
}

static SDValue
performSignExtendSetCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                              SelectionDAG &DAG) {
  // If we have (sext (setcc A B)) and A and B are cheap to extend,
  // we can move the sext into the arguments and have the same result. For
  // example, if A and B are both loads, we can make those extending loads and
  // avoid an extra instruction. This pattern appears often in VLS code
  // generation where the inputs to the setcc have a different size to the
  // instruction that wants to use the result of the setcc.
  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
         N->getOperand(0)->getOpcode() == ISD::SETCC);
  const SDValue SetCC = N->getOperand(0);

  const SDValue CCOp0 = SetCC.getOperand(0);
  const SDValue CCOp1 = SetCC.getOperand(1);
  if (!CCOp0->getValueType(0).isInteger() ||
      !CCOp1->getValueType(0).isInteger())
    return SDValue();

  ISD::CondCode Code =
      cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get();

  ISD::NodeType ExtType =
      isSignedIntSetCC(Code) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;

  if (isCheapToExtend(SetCC.getOperand(0)) &&
      isCheapToExtend(SetCC.getOperand(1))) {
    const SDValue Ext1 =
        DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp0);
    const SDValue Ext2 =
        DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp1);

    return DAG.getSetCC(
        SDLoc(SetCC), N->getValueType(0), Ext1, Ext2,
        cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get());
  }

  return SDValue();
}

static SDValue performExtendCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    SelectionDAG &DAG) {
  // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
  // we can convert that DUP into another extract_high (of a bigger DUP), which
  // helps the backend to decide that an sabdl2 would be useful, saving a real
  // extract_high operation.
  if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
      (N->getOperand(0).getOpcode() == ISD::ABDU ||
       N->getOperand(0).getOpcode() == ISD::ABDS)) {
    SDNode *ABDNode = N->getOperand(0).getNode();
    SDValue NewABD =
        tryCombineLongOpWithDup(Intrinsic::not_intrinsic, ABDNode, DCI, DAG);
    if (!NewABD.getNode())
      return SDValue();

    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), NewABD);
  }

  if (N->getValueType(0).isFixedLengthVector() &&
      N->getOpcode() == ISD::SIGN_EXTEND &&
      N->getOperand(0)->getOpcode() == ISD::SETCC)
    return performSignExtendSetCCCombine(N, DCI, DAG);

  return SDValue();
}

static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
                               SDValue SplatVal, unsigned NumVecElts) {
  assert(!St.isTruncatingStore() && "cannot split truncating vector store");
  Align OrigAlignment = St.getAlign();
  unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;

  // Create scalar stores. This is at least as good as the code sequence for a
  // split unaligned store which is a dup.s, ext.b, and two stores.
  // Most of the time the three stores should be replaced by store pair
  // instructions (stp).
  SDLoc DL(&St);
  SDValue BasePtr = St.getBasePtr();
  uint64_t BaseOffset = 0;

  const MachinePointerInfo &PtrInfo = St.getPointerInfo();
  SDValue NewST1 =
      DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
                   OrigAlignment, St.getMemOperand()->getFlags());

  // As this in ISel, we will not merge this add which may degrade results.
  if (BasePtr->getOpcode() == ISD::ADD &&
      isa<ConstantSDNode>(BasePtr->getOperand(1))) {
    BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
    BasePtr = BasePtr->getOperand(0);
  }

  unsigned Offset = EltOffset;
  while (--NumVecElts) {
    Align Alignment = commonAlignment(OrigAlignment, Offset);
    SDValue OffsetPtr =
        DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
                    DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
    NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
                          PtrInfo.getWithOffset(Offset), Alignment,
                          St.getMemOperand()->getFlags());
    Offset += EltOffset;
  }
  return NewST1;
}

// Returns an SVE type that ContentTy can be trivially sign or zero extended
// into.
static MVT getSVEContainerType(EVT ContentTy) {
  assert(ContentTy.isSimple() && "No SVE containers for extended types");

  switch (ContentTy.getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("No known SVE container for this MVT type");
  case MVT::nxv2i8:
  case MVT::nxv2i16:
  case MVT::nxv2i32:
  case MVT::nxv2i64:
  case MVT::nxv2f32:
  case MVT::nxv2f64:
    return MVT::nxv2i64;
  case MVT::nxv4i8:
  case MVT::nxv4i16:
  case MVT::nxv4i32:
  case MVT::nxv4f32:
    return MVT::nxv4i32;
  case MVT::nxv8i8:
  case MVT::nxv8i16:
  case MVT::nxv8f16:
  case MVT::nxv8bf16:
    return MVT::nxv8i16;
  case MVT::nxv16i8:
    return MVT::nxv16i8;
  }
}

static SDValue performLD1Combine(SDNode *N, SelectionDAG &DAG, unsigned Opc) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  if (VT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
    return SDValue();

  EVT ContainerVT = VT;
  if (ContainerVT.isInteger())
    ContainerVT = getSVEContainerType(ContainerVT);

  SDVTList VTs = DAG.getVTList(ContainerVT, MVT::Other);
  SDValue Ops[] = { N->getOperand(0), // Chain
                    N->getOperand(2), // Pg
                    N->getOperand(3), // Base
                    DAG.getValueType(VT) };

  SDValue Load = DAG.getNode(Opc, DL, VTs, Ops);
  SDValue LoadChain = SDValue(Load.getNode(), 1);

  if (ContainerVT.isInteger() && (VT != ContainerVT))
    Load = DAG.getNode(ISD::TRUNCATE, DL, VT, Load.getValue(0));

  return DAG.getMergeValues({ Load, LoadChain }, DL);
}

static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  EVT PtrTy = N->getOperand(3).getValueType();

  EVT LoadVT = VT;
  if (VT.isFloatingPoint())
    LoadVT = VT.changeTypeToInteger();

  auto *MINode = cast<MemIntrinsicSDNode>(N);
  SDValue PassThru = DAG.getConstant(0, DL, LoadVT);
  SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(),
                                MINode->getOperand(3), DAG.getUNDEF(PtrTy),
                                MINode->getOperand(2), PassThru,
                                MINode->getMemoryVT(), MINode->getMemOperand(),
                                ISD::UNINDEXED, ISD::NON_EXTLOAD, false);

   if (VT.isFloatingPoint()) {
     SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) };
     return DAG.getMergeValues(Ops, DL);
   }

  return L;
}

template <unsigned Opcode>
static SDValue performLD1ReplicateCombine(SDNode *N, SelectionDAG &DAG) {
  static_assert(Opcode == AArch64ISD::LD1RQ_MERGE_ZERO ||
                    Opcode == AArch64ISD::LD1RO_MERGE_ZERO,
                "Unsupported opcode.");
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  EVT LoadVT = VT;
  if (VT.isFloatingPoint())
    LoadVT = VT.changeTypeToInteger();

  SDValue Ops[] = {N->getOperand(0), N->getOperand(2), N->getOperand(3)};
  SDValue Load = DAG.getNode(Opcode, DL, {LoadVT, MVT::Other}, Ops);
  SDValue LoadChain = SDValue(Load.getNode(), 1);

  if (VT.isFloatingPoint())
    Load = DAG.getNode(ISD::BITCAST, DL, VT, Load.getValue(0));

  return DAG.getMergeValues({Load, LoadChain}, DL);
}

static SDValue performST1Combine(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Data = N->getOperand(2);
  EVT DataVT = Data.getValueType();
  EVT HwSrcVt = getSVEContainerType(DataVT);
  SDValue InputVT = DAG.getValueType(DataVT);

  if (DataVT.isFloatingPoint())
    InputVT = DAG.getValueType(HwSrcVt);

  SDValue SrcNew;
  if (Data.getValueType().isFloatingPoint())
    SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Data);
  else
    SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Data);

  SDValue Ops[] = { N->getOperand(0), // Chain
                    SrcNew,
                    N->getOperand(4), // Base
                    N->getOperand(3), // Pg
                    InputVT
                  };

  return DAG.getNode(AArch64ISD::ST1_PRED, DL, N->getValueType(0), Ops);
}

static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);

  SDValue Data = N->getOperand(2);
  EVT DataVT = Data.getValueType();
  EVT PtrTy = N->getOperand(4).getValueType();

  if (DataVT.isFloatingPoint())
    Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data);

  auto *MINode = cast<MemIntrinsicSDNode>(N);
  return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4),
                            DAG.getUNDEF(PtrTy), MINode->getOperand(3),
                            MINode->getMemoryVT(), MINode->getMemOperand(),
                            ISD::UNINDEXED, false, false);
}

/// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
/// load store optimizer pass will merge them to store pair stores.  This should
/// be better than a movi to create the vector zero followed by a vector store
/// if the zero constant is not re-used, since one instructions and one register
/// live range will be removed.
///
/// For example, the final generated code should be:
///
///   stp xzr, xzr, [x0]
///
/// instead of:
///
///   movi v0.2d, #0
///   str q0, [x0]
///
static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
  SDValue StVal = St.getValue();
  EVT VT = StVal.getValueType();

  // Avoid scalarizing zero splat stores for scalable vectors.
  if (VT.isScalableVector())
    return SDValue();

  // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
  // 2, 3 or 4 i32 elements.
  int NumVecElts = VT.getVectorNumElements();
  if (!(((NumVecElts == 2 || NumVecElts == 3) &&
         VT.getVectorElementType().getSizeInBits() == 64) ||
        ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
         VT.getVectorElementType().getSizeInBits() == 32)))
    return SDValue();

  if (StVal.getOpcode() != ISD::BUILD_VECTOR)
    return SDValue();

  // If the zero constant has more than one use then the vector store could be
  // better since the constant mov will be amortized and stp q instructions
  // should be able to be formed.
  if (!StVal.hasOneUse())
    return SDValue();

  // If the store is truncating then it's going down to i16 or smaller, which
  // means it can be implemented in a single store anyway.
  if (St.isTruncatingStore())
    return SDValue();

  // If the immediate offset of the address operand is too large for the stp
  // instruction, then bail out.
  if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
    int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
    if (Offset < -512 || Offset > 504)
      return SDValue();
  }

  for (int I = 0; I < NumVecElts; ++I) {
    SDValue EltVal = StVal.getOperand(I);
    if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
      return SDValue();
  }

  // Use a CopyFromReg WZR/XZR here to prevent
  // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
  SDLoc DL(&St);
  unsigned ZeroReg;
  EVT ZeroVT;
  if (VT.getVectorElementType().getSizeInBits() == 32) {
    ZeroReg = AArch64::WZR;
    ZeroVT = MVT::i32;
  } else {
    ZeroReg = AArch64::XZR;
    ZeroVT = MVT::i64;
  }
  SDValue SplatVal =
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
  return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}

/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
/// value. The load store optimizer pass will merge them to store pair stores.
/// This has better performance than a splat of the scalar followed by a split
/// vector store. Even if the stores are not merged it is four stores vs a dup,
/// followed by an ext.b and two stores.
static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
  SDValue StVal = St.getValue();
  EVT VT = StVal.getValueType();

  // Don't replace floating point stores, they possibly won't be transformed to
  // stp because of the store pair suppress pass.
  if (VT.isFloatingPoint())
    return SDValue();

  // We can express a splat as store pair(s) for 2 or 4 elements.
  unsigned NumVecElts = VT.getVectorNumElements();
  if (NumVecElts != 4 && NumVecElts != 2)
    return SDValue();

  // If the store is truncating then it's going down to i16 or smaller, which
  // means it can be implemented in a single store anyway.
  if (St.isTruncatingStore())
    return SDValue();

  // Check that this is a splat.
  // Make sure that each of the relevant vector element locations are inserted
  // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
  std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
  SDValue SplatVal;
  for (unsigned I = 0; I < NumVecElts; ++I) {
    // Check for insert vector elements.
    if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
      return SDValue();

    // Check that same value is inserted at each vector element.
    if (I == 0)
      SplatVal = StVal.getOperand(1);
    else if (StVal.getOperand(1) != SplatVal)
      return SDValue();

    // Check insert element index.
    ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
    if (!CIndex)
      return SDValue();
    uint64_t IndexVal = CIndex->getZExtValue();
    if (IndexVal >= NumVecElts)
      return SDValue();
    IndexNotInserted.reset(IndexVal);

    StVal = StVal.getOperand(0);
  }
  // Check that all vector element locations were inserted to.
  if (IndexNotInserted.any())
      return SDValue();

  return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}

static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                           SelectionDAG &DAG,
                           const AArch64Subtarget *Subtarget) {

  StoreSDNode *S = cast<StoreSDNode>(N);
  if (S->isVolatile() || S->isIndexed())
    return SDValue();

  SDValue StVal = S->getValue();
  EVT VT = StVal.getValueType();

  if (!VT.isFixedLengthVector())
    return SDValue();

  // If we get a splat of zeros, convert this vector store to a store of
  // scalars. They will be merged into store pairs of xzr thereby removing one
  // instruction and one register.
  if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
    return ReplacedZeroSplat;

  // FIXME: The logic for deciding if an unaligned store should be split should
  // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
  // a call to that function here.

  if (!Subtarget->isMisaligned128StoreSlow())
    return SDValue();

  // Don't split at -Oz.
  if (DAG.getMachineFunction().getFunction().hasMinSize())
    return SDValue();

  // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
  // those up regresses performance on micro-benchmarks and olden/bh.
  if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
    return SDValue();

  // Split unaligned 16B stores. They are terrible for performance.
  // Don't split stores with alignment of 1 or 2. Code that uses clang vector
  // extensions can use this to mark that it does not want splitting to happen
  // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
  // eliminating alignment hazards is only 1 in 8 for alignment of 2.
  if (VT.getSizeInBits() != 128 || S->getAlign() >= Align(16) ||
      S->getAlign() <= Align(2))
    return SDValue();

  // If we get a splat of a scalar convert this vector store to a store of
  // scalars. They will be merged into store pairs thereby removing two
  // instructions.
  if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
    return ReplacedSplat;

  SDLoc DL(S);

  // Split VT into two.
  EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
  unsigned NumElts = HalfVT.getVectorNumElements();
  SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
                                   DAG.getConstant(0, DL, MVT::i64));
  SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
                                   DAG.getConstant(NumElts, DL, MVT::i64));
  SDValue BasePtr = S->getBasePtr();
  SDValue NewST1 =
      DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
                   S->getAlign(), S->getMemOperand()->getFlags());
  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
                                  DAG.getConstant(8, DL, MVT::i64));
  return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
                      S->getPointerInfo(), S->getAlign(),
                      S->getMemOperand()->getFlags());
}

static SDValue performSpliceCombine(SDNode *N, SelectionDAG &DAG) {
  assert(N->getOpcode() == AArch64ISD::SPLICE && "Unexepected Opcode!");

  // splice(pg, op1, undef) -> op1
  if (N->getOperand(2).isUndef())
    return N->getOperand(1);

  return SDValue();
}

static SDValue performUnpackCombine(SDNode *N, SelectionDAG &DAG,
                                    const AArch64Subtarget *Subtarget) {
  assert((N->getOpcode() == AArch64ISD::UUNPKHI ||
          N->getOpcode() == AArch64ISD::UUNPKLO) &&
         "Unexpected Opcode!");

  // uunpklo/hi undef -> undef
  if (N->getOperand(0).isUndef())
    return DAG.getUNDEF(N->getValueType(0));

  // If this is a masked load followed by an UUNPKLO, fold this into a masked
  // extending load.  We can do this even if this is already a masked
  // {z,}extload.
  if (N->getOperand(0).getOpcode() == ISD::MLOAD &&
      N->getOpcode() == AArch64ISD::UUNPKLO) {
    MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N->getOperand(0));
    SDValue Mask = MLD->getMask();
    SDLoc DL(N);

    if (MLD->isUnindexed() && MLD->getExtensionType() != ISD::SEXTLOAD &&
        SDValue(MLD, 0).hasOneUse() && Mask->getOpcode() == AArch64ISD::PTRUE &&
        (MLD->getPassThru()->isUndef() ||
         isZerosVector(MLD->getPassThru().getNode()))) {
      unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits();
      unsigned PgPattern = Mask->getConstantOperandVal(0);
      EVT VT = N->getValueType(0);

      // Ensure we can double the size of the predicate pattern
      unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern);
      if (NumElts &&
          NumElts * VT.getVectorElementType().getSizeInBits() <= MinSVESize) {
        Mask =
            getPTrue(DAG, DL, VT.changeVectorElementType(MVT::i1), PgPattern);
        SDValue PassThru = DAG.getConstant(0, DL, VT);
        SDValue NewLoad = DAG.getMaskedLoad(
            VT, DL, MLD->getChain(), MLD->getBasePtr(), MLD->getOffset(), Mask,
            PassThru, MLD->getMemoryVT(), MLD->getMemOperand(),
            MLD->getAddressingMode(), ISD::ZEXTLOAD);

        DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), NewLoad.getValue(1));

        return NewLoad;
      }
    }
  }

  return SDValue();
}

static SDValue performUzpCombine(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);
  EVT ResVT = N->getValueType(0);

  // uzp1(x, undef) -> concat(truncate(x), undef)
  if (Op1.getOpcode() == ISD::UNDEF) {
    EVT BCVT = MVT::Other, HalfVT = MVT::Other;
    switch (ResVT.getSimpleVT().SimpleTy) {
    default:
      break;
    case MVT::v16i8:
      BCVT = MVT::v8i16;
      HalfVT = MVT::v8i8;
      break;
    case MVT::v8i16:
      BCVT = MVT::v4i32;
      HalfVT = MVT::v4i16;
      break;
    case MVT::v4i32:
      BCVT = MVT::v2i64;
      HalfVT = MVT::v2i32;
      break;
    }
    if (BCVT != MVT::Other) {
      SDValue BC = DAG.getBitcast(BCVT, Op0);
      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, BC);
      return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Trunc,
                         DAG.getUNDEF(HalfVT));
    }
  }

  // uzp1(unpklo(uzp1(x, y)), z) => uzp1(x, z)
  if (Op0.getOpcode() == AArch64ISD::UUNPKLO) {
    if (Op0.getOperand(0).getOpcode() == AArch64ISD::UZP1) {
      SDValue X = Op0.getOperand(0).getOperand(0);
      return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, X, Op1);
    }
  }

  // uzp1(x, unpkhi(uzp1(y, z))) => uzp1(x, z)
  if (Op1.getOpcode() == AArch64ISD::UUNPKHI) {
    if (Op1.getOperand(0).getOpcode() == AArch64ISD::UZP1) {
      SDValue Z = Op1.getOperand(0).getOperand(1);
      return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Z);
    }
  }

  return SDValue();
}

static SDValue performGLD1Combine(SDNode *N, SelectionDAG &DAG) {
  unsigned Opc = N->getOpcode();

  assert(((Opc >= AArch64ISD::GLD1_MERGE_ZERO && // unsigned gather loads
           Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) ||
          (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && // signed gather loads
           Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) &&
         "Invalid opcode.");

  const bool Scaled = Opc == AArch64ISD::GLD1_SCALED_MERGE_ZERO ||
                      Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
  const bool Signed = Opc == AArch64ISD::GLD1S_MERGE_ZERO ||
                      Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
  const bool Extended = Opc == AArch64ISD::GLD1_SXTW_MERGE_ZERO ||
                        Opc == AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO ||
                        Opc == AArch64ISD::GLD1_UXTW_MERGE_ZERO ||
                        Opc == AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO;

  SDLoc DL(N);
  SDValue Chain = N->getOperand(0);
  SDValue Pg = N->getOperand(1);
  SDValue Base = N->getOperand(2);
  SDValue Offset = N->getOperand(3);
  SDValue Ty = N->getOperand(4);

  EVT ResVT = N->getValueType(0);

  const auto OffsetOpc = Offset.getOpcode();
  const bool OffsetIsZExt =
      OffsetOpc == AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU;
  const bool OffsetIsSExt =
      OffsetOpc == AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU;

  // Fold sign/zero extensions of vector offsets into GLD1 nodes where possible.
  if (!Extended && (OffsetIsSExt || OffsetIsZExt)) {
    SDValue ExtPg = Offset.getOperand(0);
    VTSDNode *ExtFrom = cast<VTSDNode>(Offset.getOperand(2).getNode());
    EVT ExtFromEVT = ExtFrom->getVT().getVectorElementType();

    // If the predicate for the sign- or zero-extended offset is the
    // same as the predicate used for this load and the sign-/zero-extension
    // was from a 32-bits...
    if (ExtPg == Pg && ExtFromEVT == MVT::i32) {
      SDValue UnextendedOffset = Offset.getOperand(1);

      unsigned NewOpc = getGatherVecOpcode(Scaled, OffsetIsSExt, true);
      if (Signed)
        NewOpc = getSignExtendedGatherOpcode(NewOpc);

      return DAG.getNode(NewOpc, DL, {ResVT, MVT::Other},
                         {Chain, Pg, Base, UnextendedOffset, Ty});
    }
  }

  return SDValue();
}

/// Optimize a vector shift instruction and its operand if shifted out
/// bits are not used.
static SDValue performVectorShiftCombine(SDNode *N,
                                         const AArch64TargetLowering &TLI,
                                         TargetLowering::DAGCombinerInfo &DCI) {
  assert(N->getOpcode() == AArch64ISD::VASHR ||
         N->getOpcode() == AArch64ISD::VLSHR);

  SDValue Op = N->getOperand(0);
  unsigned OpScalarSize = Op.getScalarValueSizeInBits();

  unsigned ShiftImm = N->getConstantOperandVal(1);
  assert(OpScalarSize > ShiftImm && "Invalid shift imm");

  APInt ShiftedOutBits = APInt::getLowBitsSet(OpScalarSize, ShiftImm);
  APInt DemandedMask = ~ShiftedOutBits;

  if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
    return SDValue(N, 0);

  return SDValue();
}

static SDValue performSunpkloCombine(SDNode *N, SelectionDAG &DAG) {
  // sunpklo(sext(pred)) -> sext(extract_low_half(pred))
  // This transform works in partnership with performSetCCPunpkCombine to
  // remove unnecessary transfer of predicates into standard registers and back
  if (N->getOperand(0).getOpcode() == ISD::SIGN_EXTEND &&
      N->getOperand(0)->getOperand(0)->getValueType(0).getScalarType() ==
          MVT::i1) {
    SDValue CC = N->getOperand(0)->getOperand(0);
    auto VT = CC->getValueType(0).getHalfNumVectorElementsVT(*DAG.getContext());
    SDValue Unpk = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, CC,
                               DAG.getVectorIdxConstant(0, SDLoc(N)));
    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), N->getValueType(0), Unpk);
  }

  return SDValue();
}

/// Target-specific DAG combine function for post-increment LD1 (lane) and
/// post-increment LD1R.
static SDValue performPostLD1Combine(SDNode *N,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     bool IsLaneOp) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  if (!VT.is128BitVector() && !VT.is64BitVector())
    return SDValue();

  unsigned LoadIdx = IsLaneOp ? 1 : 0;
  SDNode *LD = N->getOperand(LoadIdx).getNode();
  // If it is not LOAD, can not do such combine.
  if (LD->getOpcode() != ISD::LOAD)
    return SDValue();

  // The vector lane must be a constant in the LD1LANE opcode.
  SDValue Lane;
  if (IsLaneOp) {
    Lane = N->getOperand(2);
    auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
    if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
      return SDValue();
  }

  LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
  EVT MemVT = LoadSDN->getMemoryVT();
  // Check if memory operand is the same type as the vector element.
  if (MemVT != VT.getVectorElementType())
    return SDValue();

  // Check if there are other uses. If so, do not combine as it will introduce
  // an extra load.
  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
       ++UI) {
    if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
      continue;
    if (*UI != N)
      return SDValue();
  }

  SDValue Addr = LD->getOperand(1);
  SDValue Vector = N->getOperand(0);
  // Search for a use of the address operand that is an increment.
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
       Addr.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User->getOpcode() != ISD::ADD
        || UI.getUse().getResNo() != Addr.getResNo())
      continue;

    // If the increment is a constant, it must match the memory ref size.
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
      uint32_t IncVal = CInc->getZExtValue();
      unsigned NumBytes = VT.getScalarSizeInBits() / 8;
      if (IncVal != NumBytes)
        continue;
      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
    }

    // To avoid cycle construction make sure that neither the load nor the add
    // are predecessors to each other or the Vector.
    SmallPtrSet<const SDNode *, 32> Visited;
    SmallVector<const SDNode *, 16> Worklist;
    Visited.insert(Addr.getNode());
    Worklist.push_back(User);
    Worklist.push_back(LD);
    Worklist.push_back(Vector.getNode());
    if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
        SDNode::hasPredecessorHelper(User, Visited, Worklist))
      continue;

    SmallVector<SDValue, 8> Ops;
    Ops.push_back(LD->getOperand(0));  // Chain
    if (IsLaneOp) {
      Ops.push_back(Vector);           // The vector to be inserted
      Ops.push_back(Lane);             // The lane to be inserted in the vector
    }
    Ops.push_back(Addr);
    Ops.push_back(Inc);

    EVT Tys[3] = { VT, MVT::i64, MVT::Other };
    SDVTList SDTys = DAG.getVTList(Tys);
    unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
                                           MemVT,
                                           LoadSDN->getMemOperand());

    // Update the uses.
    SDValue NewResults[] = {
        SDValue(LD, 0),            // The result of load
        SDValue(UpdN.getNode(), 2) // Chain
    };
    DCI.CombineTo(LD, NewResults);
    DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
    DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register

    break;
  }
  return SDValue();
}

/// Simplify ``Addr`` given that the top byte of it is ignored by HW during
/// address translation.
static bool performTBISimplification(SDValue Addr,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     SelectionDAG &DAG) {
  APInt DemandedMask = APInt::getLowBitsSet(64, 56);
  KnownBits Known;
  TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
                                        !DCI.isBeforeLegalizeOps());
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
    DCI.CommitTargetLoweringOpt(TLO);
    return true;
  }
  return false;
}

static SDValue foldTruncStoreOfExt(SelectionDAG &DAG, SDNode *N) {
  assert((N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) &&
         "Expected STORE dag node in input!");

  if (auto Store = dyn_cast<StoreSDNode>(N)) {
    if (!Store->isTruncatingStore() || Store->isIndexed())
      return SDValue();
    SDValue Ext = Store->getValue();
    auto ExtOpCode = Ext.getOpcode();
    if (ExtOpCode != ISD::ZERO_EXTEND && ExtOpCode != ISD::SIGN_EXTEND &&
        ExtOpCode != ISD::ANY_EXTEND)
      return SDValue();
    SDValue Orig = Ext->getOperand(0);
    if (Store->getMemoryVT() != Orig.getValueType())
      return SDValue();
    return DAG.getStore(Store->getChain(), SDLoc(Store), Orig,
                        Store->getBasePtr(), Store->getMemOperand());
  }

  return SDValue();
}

static SDValue performSTORECombine(SDNode *N,
                                   TargetLowering::DAGCombinerInfo &DCI,
                                   SelectionDAG &DAG,
                                   const AArch64Subtarget *Subtarget) {
  StoreSDNode *ST = cast<StoreSDNode>(N);
  SDValue Chain = ST->getChain();
  SDValue Value = ST->getValue();
  SDValue Ptr = ST->getBasePtr();

  // If this is an FP_ROUND followed by a store, fold this into a truncating
  // store. We can do this even if this is already a truncstore.
  // We purposefully don't care about legality of the nodes here as we know
  // they can be split down into something legal.
  if (DCI.isBeforeLegalizeOps() && Value.getOpcode() == ISD::FP_ROUND &&
      Value.getNode()->hasOneUse() && ST->isUnindexed() &&
      Subtarget->useSVEForFixedLengthVectors() &&
      Value.getValueType().isFixedLengthVector() &&
      Value.getValueType().getFixedSizeInBits() >=
          Subtarget->getMinSVEVectorSizeInBits())
    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
                             ST->getMemoryVT(), ST->getMemOperand());

  if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
    return Split;

  if (Subtarget->supportsAddressTopByteIgnored() &&
      performTBISimplification(N->getOperand(2), DCI, DAG))
    return SDValue(N, 0);

  if (SDValue Store = foldTruncStoreOfExt(DAG, N))
    return Store;

  return SDValue();
}

static SDValue performMSTORECombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    SelectionDAG &DAG,
                                    const AArch64Subtarget *Subtarget) {
  MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
  SDValue Value = MST->getValue();
  SDValue Mask = MST->getMask();
  SDLoc DL(N);

  // If this is a UZP1 followed by a masked store, fold this into a masked
  // truncating store.  We can do this even if this is already a masked
  // truncstore.
  if (Value.getOpcode() == AArch64ISD::UZP1 && Value->hasOneUse() &&
      MST->isUnindexed() && Mask->getOpcode() == AArch64ISD::PTRUE &&
      Value.getValueType().isInteger()) {
    Value = Value.getOperand(0);
    if (Value.getOpcode() == ISD::BITCAST) {
      EVT HalfVT =
          Value.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
      EVT InVT = Value.getOperand(0).getValueType();

      if (HalfVT.widenIntegerVectorElementType(*DAG.getContext()) == InVT) {
        unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits();
        unsigned PgPattern = Mask->getConstantOperandVal(0);

        // Ensure we can double the size of the predicate pattern
        unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern);
        if (NumElts && NumElts * InVT.getVectorElementType().getSizeInBits() <=
                           MinSVESize) {
          Mask = getPTrue(DAG, DL, InVT.changeVectorElementType(MVT::i1),
                          PgPattern);
          return DAG.getMaskedStore(MST->getChain(), DL, Value.getOperand(0),
                                    MST->getBasePtr(), MST->getOffset(), Mask,
                                    MST->getMemoryVT(), MST->getMemOperand(),
                                    MST->getAddressingMode(),
                                    /*IsTruncating=*/true);
        }
      }
    }
  }

  return SDValue();
}

/// \return true if part of the index was folded into the Base.
static bool foldIndexIntoBase(SDValue &BasePtr, SDValue &Index, SDValue Scale,
                              SDLoc DL, SelectionDAG &DAG) {
  // This function assumes a vector of i64 indices.
  EVT IndexVT = Index.getValueType();
  if (!IndexVT.isVector() || IndexVT.getVectorElementType() != MVT::i64)
    return false;

  // Simplify:
  //   BasePtr = Ptr
  //   Index = X + splat(Offset)
  // ->
  //   BasePtr = Ptr + Offset * scale.
  //   Index = X
  if (Index.getOpcode() == ISD::ADD) {
    if (auto Offset = DAG.getSplatValue(Index.getOperand(1))) {
      Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale);
      BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset);
      Index = Index.getOperand(0);
      return true;
    }
  }

  // Simplify:
  //   BasePtr = Ptr
  //   Index = (X + splat(Offset)) << splat(Shift)
  // ->
  //   BasePtr = Ptr + (Offset << Shift) * scale)
  //   Index = X << splat(shift)
  if (Index.getOpcode() == ISD::SHL &&
      Index.getOperand(0).getOpcode() == ISD::ADD) {
    SDValue Add = Index.getOperand(0);
    SDValue ShiftOp = Index.getOperand(1);
    SDValue OffsetOp = Add.getOperand(1);
    if (auto Shift = DAG.getSplatValue(ShiftOp))
      if (auto Offset = DAG.getSplatValue(OffsetOp)) {
        Offset = DAG.getNode(ISD::SHL, DL, MVT::i64, Offset, Shift);
        Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale);
        BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset);
        Index = DAG.getNode(ISD::SHL, DL, Index.getValueType(),
                            Add.getOperand(0), ShiftOp);
        return true;
      }
  }

  return false;
}

// Analyse the specified address returning true if a more optimal addressing
// mode is available. When returning true all parameters are updated to reflect
// their recommended values.
static bool findMoreOptimalIndexType(const MaskedGatherScatterSDNode *N,
                                     SDValue &BasePtr, SDValue &Index,
                                     SelectionDAG &DAG) {
  // Try to iteratively fold parts of the index into the base pointer to
  // simplify the index as much as possible.
  bool Changed = false;
  while (foldIndexIntoBase(BasePtr, Index, N->getScale(), SDLoc(N), DAG))
    Changed = true;

  // Only consider element types that are pointer sized as smaller types can
  // be easily promoted.
  EVT IndexVT = Index.getValueType();
  if (IndexVT.getVectorElementType() != MVT::i64 || IndexVT == MVT::nxv2i64)
    return Changed;

  // Match:
  //   Index = step(const)
  int64_t Stride = 0;
  if (Index.getOpcode() == ISD::STEP_VECTOR)
    Stride = cast<ConstantSDNode>(Index.getOperand(0))->getSExtValue();

  // Match:
  //   Index = step(const) << shift(const)
  else if (Index.getOpcode() == ISD::SHL &&
           Index.getOperand(0).getOpcode() == ISD::STEP_VECTOR) {
    SDValue RHS = Index.getOperand(1);
    if (auto *Shift =
            dyn_cast_or_null<ConstantSDNode>(DAG.getSplatValue(RHS))) {
      int64_t Step = (int64_t)Index.getOperand(0).getConstantOperandVal(1);
      Stride = Step << Shift->getZExtValue();
    }
  }

  // Return early because no supported pattern is found.
  if (Stride == 0)
    return Changed;

  if (Stride < std::numeric_limits<int32_t>::min() ||
      Stride > std::numeric_limits<int32_t>::max())
    return Changed;

  const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
  unsigned MaxVScale =
      Subtarget.getMaxSVEVectorSizeInBits() / AArch64::SVEBitsPerBlock;
  int64_t LastElementOffset =
      IndexVT.getVectorMinNumElements() * Stride * MaxVScale;

  if (LastElementOffset < std::numeric_limits<int32_t>::min() ||
      LastElementOffset > std::numeric_limits<int32_t>::max())
    return Changed;

  EVT NewIndexVT = IndexVT.changeVectorElementType(MVT::i32);
  // Stride does not scale explicitly by 'Scale', because it happens in
  // the gather/scatter addressing mode.
  Index = DAG.getNode(ISD::STEP_VECTOR, SDLoc(N), NewIndexVT,
                      DAG.getTargetConstant(Stride, SDLoc(N), MVT::i32));
  return true;
}

static SDValue performMaskedGatherScatterCombine(
    SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) {
  MaskedGatherScatterSDNode *MGS = cast<MaskedGatherScatterSDNode>(N);
  assert(MGS && "Can only combine gather load or scatter store nodes");

  if (!DCI.isBeforeLegalize())
    return SDValue();

  SDLoc DL(MGS);
  SDValue Chain = MGS->getChain();
  SDValue Scale = MGS->getScale();
  SDValue Index = MGS->getIndex();
  SDValue Mask = MGS->getMask();
  SDValue BasePtr = MGS->getBasePtr();
  ISD::MemIndexType IndexType = MGS->getIndexType();

  if (!findMoreOptimalIndexType(MGS, BasePtr, Index, DAG))
    return SDValue();

  // Here we catch such cases early and change MGATHER's IndexType to allow
  // the use of an Index that's more legalisation friendly.
  if (auto *MGT = dyn_cast<MaskedGatherSDNode>(MGS)) {
    SDValue PassThru = MGT->getPassThru();
    SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
    return DAG.getMaskedGather(
        DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
        Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
  }
  auto *MSC = cast<MaskedScatterSDNode>(MGS);
  SDValue Data = MSC->getValue();
  SDValue Ops[] = {Chain, Data, Mask, BasePtr, Index, Scale};
  return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL,
                              Ops, MSC->getMemOperand(), IndexType,
                              MSC->isTruncatingStore());
}

/// Target-specific DAG combine function for NEON load/store intrinsics
/// to merge base address updates.
static SDValue performNEONPostLDSTCombine(SDNode *N,
                                          TargetLowering::DAGCombinerInfo &DCI,
                                          SelectionDAG &DAG) {
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
    return SDValue();

  unsigned AddrOpIdx = N->getNumOperands() - 1;
  SDValue Addr = N->getOperand(AddrOpIdx);

  // Search for a use of the address operand that is an increment.
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User->getOpcode() != ISD::ADD ||
        UI.getUse().getResNo() != Addr.getResNo())
      continue;

    // Check that the add is independent of the load/store.  Otherwise, folding
    // it would create a cycle.
    SmallPtrSet<const SDNode *, 32> Visited;
    SmallVector<const SDNode *, 16> Worklist;
    Visited.insert(Addr.getNode());
    Worklist.push_back(N);
    Worklist.push_back(User);
    if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
        SDNode::hasPredecessorHelper(User, Visited, Worklist))
      continue;

    // Find the new opcode for the updating load/store.
    bool IsStore = false;
    bool IsLaneOp = false;
    bool IsDupOp = false;
    unsigned NewOpc = 0;
    unsigned NumVecs = 0;
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
    switch (IntNo) {
    default: llvm_unreachable("unexpected intrinsic for Neon base update");
    case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
      NumVecs = 2; break;
    case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
      NumVecs = 3; break;
    case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
      NumVecs = 4; break;
    case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
      NumVecs = 2; IsStore = true; break;
    case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
      NumVecs = 3; IsStore = true; break;
    case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
      NumVecs = 4; IsStore = true; break;
    case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
      NumVecs = 2; break;
    case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
      NumVecs = 3; break;
    case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
      NumVecs = 4; break;
    case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
      NumVecs = 2; IsStore = true; break;
    case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
      NumVecs = 3; IsStore = true; break;
    case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
      NumVecs = 4; IsStore = true; break;
    case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
      NumVecs = 2; IsDupOp = true; break;
    case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
      NumVecs = 3; IsDupOp = true; break;
    case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
      NumVecs = 4; IsDupOp = true; break;
    case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
      NumVecs = 2; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
      NumVecs = 3; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
      NumVecs = 4; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
      NumVecs = 2; IsStore = true; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
      NumVecs = 3; IsStore = true; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
      NumVecs = 4; IsStore = true; IsLaneOp = true; break;
    }

    EVT VecTy;
    if (IsStore)
      VecTy = N->getOperand(2).getValueType();
    else
      VecTy = N->getValueType(0);

    // If the increment is a constant, it must match the memory ref size.
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
      uint32_t IncVal = CInc->getZExtValue();
      unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
      if (IsLaneOp || IsDupOp)
        NumBytes /= VecTy.getVectorNumElements();
      if (IncVal != NumBytes)
        continue;
      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
    }
    SmallVector<SDValue, 8> Ops;
    Ops.push_back(N->getOperand(0)); // Incoming chain
    // Load lane and store have vector list as input.
    if (IsLaneOp || IsStore)
      for (unsigned i = 2; i < AddrOpIdx; ++i)
        Ops.push_back(N->getOperand(i));
    Ops.push_back(Addr); // Base register
    Ops.push_back(Inc);

    // Return Types.
    EVT Tys[6];
    unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
    unsigned n;
    for (n = 0; n < NumResultVecs; ++n)
      Tys[n] = VecTy;
    Tys[n++] = MVT::i64;  // Type of write back register
    Tys[n] = MVT::Other;  // Type of the chain
    SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));

    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
                                           MemInt->getMemoryVT(),
                                           MemInt->getMemOperand());

    // Update the uses.
    std::vector<SDValue> NewResults;
    for (unsigned i = 0; i < NumResultVecs; ++i) {
      NewResults.push_back(SDValue(UpdN.getNode(), i));
    }
    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
    DCI.CombineTo(N, NewResults);
    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));

    break;
  }
  return SDValue();
}

// Checks to see if the value is the prescribed width and returns information
// about its extension mode.
static
bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
  ExtType = ISD::NON_EXTLOAD;
  switch(V.getNode()->getOpcode()) {
  default:
    return false;
  case ISD::LOAD: {
    LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
    if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
       || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
      ExtType = LoadNode->getExtensionType();
      return true;
    }
    return false;
  }
  case ISD::AssertSext: {
    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
    if ((TypeNode->getVT() == MVT::i8 && width == 8)
       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
      ExtType = ISD::SEXTLOAD;
      return true;
    }
    return false;
  }
  case ISD::AssertZext: {
    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
    if ((TypeNode->getVT() == MVT::i8 && width == 8)
       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
      ExtType = ISD::ZEXTLOAD;
      return true;
    }
    return false;
  }
  case ISD::Constant:
  case ISD::TargetConstant: {
    return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
           1LL << (width - 1);
  }
  }

  return true;
}

// This function does a whole lot of voodoo to determine if the tests are
// equivalent without and with a mask. Essentially what happens is that given a
// DAG resembling:
//
//  +-------------+ +-------------+ +-------------+ +-------------+
//  |    Input    | | AddConstant | | CompConstant| |     CC      |
//  +-------------+ +-------------+ +-------------+ +-------------+
//           |           |           |               |
//           V           V           |    +----------+
//          +-------------+  +----+  |    |
//          |     ADD     |  |0xff|  |    |
//          +-------------+  +----+  |    |
//                  |           |    |    |
//                  V           V    |    |
//                 +-------------+   |    |
//                 |     AND     |   |    |
//                 +-------------+   |    |
//                      |            |    |
//                      +-----+      |    |
//                            |      |    |
//                            V      V    V
//                           +-------------+
//                           |     CMP     |
//                           +-------------+
//
// The AND node may be safely removed for some combinations of inputs. In
// particular we need to take into account the extension type of the Input,
// the exact values of AddConstant, CompConstant, and CC, along with the nominal
// width of the input (this can work for any width inputs, the above graph is
// specific to 8 bits.
//
// The specific equations were worked out by generating output tables for each
// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
// problem was simplified by working with 4 bit inputs, which means we only
// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
// patterns present in both extensions (0,7). For every distinct set of
// AddConstant and CompConstants bit patterns we can consider the masked and
// unmasked versions to be equivalent if the result of this function is true for
// all 16 distinct bit patterns of for the current extension type of Input (w0).
//
//   sub      w8, w0, w1
//   and      w10, w8, #0x0f
//   cmp      w8, w2
//   cset     w9, AArch64CC
//   cmp      w10, w2
//   cset     w11, AArch64CC
//   cmp      w9, w11
//   cset     w0, eq
//   ret
//
// Since the above function shows when the outputs are equivalent it defines
// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
// would be expensive to run during compiles. The equations below were written
// in a test harness that confirmed they gave equivalent outputs to the above
// for all inputs function, so they can be used determine if the removal is
// legal instead.
//
// isEquivalentMaskless() is the code for testing if the AND can be removed
// factored out of the DAG recognition as the DAG can take several forms.

static bool isEquivalentMaskless(unsigned CC, unsigned width,
                                 ISD::LoadExtType ExtType, int AddConstant,
                                 int CompConstant) {
  // By being careful about our equations and only writing the in term
  // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
  // make them generally applicable to all bit widths.
  int MaxUInt = (1 << width);

  // For the purposes of these comparisons sign extending the type is
  // equivalent to zero extending the add and displacing it by half the integer
  // width. Provided we are careful and make sure our equations are valid over
  // the whole range we can just adjust the input and avoid writing equations
  // for sign extended inputs.
  if (ExtType == ISD::SEXTLOAD)
    AddConstant -= (1 << (width-1));

  switch(CC) {
  case AArch64CC::LE:
  case AArch64CC::GT:
    if ((AddConstant == 0) ||
        (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
        (AddConstant >= 0 && CompConstant < 0) ||
        (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
      return true;
    break;
  case AArch64CC::LT:
  case AArch64CC::GE:
    if ((AddConstant == 0) ||
        (AddConstant >= 0 && CompConstant <= 0) ||
        (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
      return true;
    break;
  case AArch64CC::HI:
  case AArch64CC::LS:
    if ((AddConstant >= 0 && CompConstant < 0) ||
       (AddConstant <= 0 && CompConstant >= -1 &&
        CompConstant < AddConstant + MaxUInt))
      return true;
   break;
  case AArch64CC::PL:
  case AArch64CC::MI:
    if ((AddConstant == 0) ||
        (AddConstant > 0 && CompConstant <= 0) ||
        (AddConstant < 0 && CompConstant <= AddConstant))
      return true;
    break;
  case AArch64CC::LO:
  case AArch64CC::HS:
    if ((AddConstant >= 0 && CompConstant <= 0) ||
        (AddConstant <= 0 && CompConstant >= 0 &&
         CompConstant <= AddConstant + MaxUInt))
      return true;
    break;
  case AArch64CC::EQ:
  case AArch64CC::NE:
    if ((AddConstant > 0 && CompConstant < 0) ||
        (AddConstant < 0 && CompConstant >= 0 &&
         CompConstant < AddConstant + MaxUInt) ||
        (AddConstant >= 0 && CompConstant >= 0 &&
         CompConstant >= AddConstant) ||
        (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
      return true;
    break;
  case AArch64CC::VS:
  case AArch64CC::VC:
  case AArch64CC::AL:
  case AArch64CC::NV:
    return true;
  case AArch64CC::Invalid:
    break;
  }

  return false;
}

static
SDValue performCONDCombine(SDNode *N,
                           TargetLowering::DAGCombinerInfo &DCI,
                           SelectionDAG &DAG, unsigned CCIndex,
                           unsigned CmpIndex) {
  unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
  SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
  unsigned CondOpcode = SubsNode->getOpcode();

  if (CondOpcode != AArch64ISD::SUBS)
    return SDValue();

  // There is a SUBS feeding this condition. Is it fed by a mask we can
  // use?

  SDNode *AndNode = SubsNode->getOperand(0).getNode();
  unsigned MaskBits = 0;

  if (AndNode->getOpcode() != ISD::AND)
    return SDValue();

  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
    uint32_t CNV = CN->getZExtValue();
    if (CNV == 255)
      MaskBits = 8;
    else if (CNV == 65535)
      MaskBits = 16;
  }

  if (!MaskBits)
    return SDValue();

  SDValue AddValue = AndNode->getOperand(0);

  if (AddValue.getOpcode() != ISD::ADD)
    return SDValue();

  // The basic dag structure is correct, grab the inputs and validate them.

  SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
  SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
  SDValue SubsInputValue = SubsNode->getOperand(1);

  // The mask is present and the provenance of all the values is a smaller type,
  // lets see if the mask is superfluous.

  if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
      !isa<ConstantSDNode>(SubsInputValue.getNode()))
    return SDValue();

  ISD::LoadExtType ExtType;

  if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
      !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
      !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
    return SDValue();

  if(!isEquivalentMaskless(CC, MaskBits, ExtType,
                cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
                cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
    return SDValue();

  // The AND is not necessary, remove it.

  SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
                               SubsNode->getValueType(1));
  SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };

  SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
  DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());

  return SDValue(N, 0);
}

// Optimize compare with zero and branch.
static SDValue performBRCONDCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
  // will not be produced, as they are conditional branch instructions that do
  // not set flags.
  if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
    return SDValue();

  if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
    N = NV.getNode();
  SDValue Chain = N->getOperand(0);
  SDValue Dest = N->getOperand(1);
  SDValue CCVal = N->getOperand(2);
  SDValue Cmp = N->getOperand(3);

  assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
  unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
    return SDValue();

  unsigned CmpOpc = Cmp.getOpcode();
  if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
    return SDValue();

  // Only attempt folding if there is only one use of the flag and no use of the
  // value.
  if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
    return SDValue();

  SDValue LHS = Cmp.getOperand(0);
  SDValue RHS = Cmp.getOperand(1);

  assert(LHS.getValueType() == RHS.getValueType() &&
         "Expected the value type to be the same for both operands!");
  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
    return SDValue();

  if (isNullConstant(LHS))
    std::swap(LHS, RHS);

  if (!isNullConstant(RHS))
    return SDValue();

  if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
      LHS.getOpcode() == ISD::SRL)
    return SDValue();

  // Fold the compare into the branch instruction.
  SDValue BR;
  if (CC == AArch64CC::EQ)
    BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
  else
    BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);

  // Do not add new nodes to DAG combiner worklist.
  DCI.CombineTo(N, BR, false);

  return SDValue();
}

static SDValue foldCSELofCTTZ(SDNode *N, SelectionDAG &DAG) {
  unsigned CC = N->getConstantOperandVal(2);
  SDValue SUBS = N->getOperand(3);
  SDValue Zero, CTTZ;

  if (CC == AArch64CC::EQ && SUBS.getOpcode() == AArch64ISD::SUBS) {
    Zero = N->getOperand(0);
    CTTZ = N->getOperand(1);
  } else if (CC == AArch64CC::NE && SUBS.getOpcode() == AArch64ISD::SUBS) {
    Zero = N->getOperand(1);
    CTTZ = N->getOperand(0);
  } else
    return SDValue();

  if ((CTTZ.getOpcode() != ISD::CTTZ && CTTZ.getOpcode() != ISD::TRUNCATE) ||
      (CTTZ.getOpcode() == ISD::TRUNCATE &&
       CTTZ.getOperand(0).getOpcode() != ISD::CTTZ))
    return SDValue();

  assert((CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) &&
         "Illegal type in CTTZ folding");

  if (!isNullConstant(Zero) || !isNullConstant(SUBS.getOperand(1)))
    return SDValue();

  SDValue X = CTTZ.getOpcode() == ISD::TRUNCATE
                  ? CTTZ.getOperand(0).getOperand(0)
                  : CTTZ.getOperand(0);

  if (X != SUBS.getOperand(0))
    return SDValue();

  unsigned BitWidth = CTTZ.getOpcode() == ISD::TRUNCATE
                          ? CTTZ.getOperand(0).getValueSizeInBits()
                          : CTTZ.getValueSizeInBits();
  SDValue BitWidthMinusOne =
      DAG.getConstant(BitWidth - 1, SDLoc(N), CTTZ.getValueType());
  return DAG.getNode(ISD::AND, SDLoc(N), CTTZ.getValueType(), CTTZ,
                     BitWidthMinusOne);
}

// Optimize CSEL instructions
static SDValue performCSELCombine(SDNode *N,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  SelectionDAG &DAG) {
  // CSEL x, x, cc -> x
  if (N->getOperand(0) == N->getOperand(1))
    return N->getOperand(0);

  // CSEL 0, cttz(X), eq(X, 0) -> AND cttz bitwidth-1
  // CSEL cttz(X), 0, ne(X, 0) -> AND cttz bitwidth-1
  if (SDValue Folded = foldCSELofCTTZ(N, DAG))
		return Folded;

  return performCONDCombine(N, DCI, DAG, 2, 3);
}

// Try to re-use an already extended operand of a vector SetCC feeding a
// extended select. Doing so avoids requiring another full extension of the
// SET_CC result when lowering the select.
static SDValue tryToWidenSetCCOperands(SDNode *Op, SelectionDAG &DAG) {
  EVT Op0MVT = Op->getOperand(0).getValueType();
  if (!Op0MVT.isVector() || Op->use_empty())
    return SDValue();

  // Make sure that all uses of Op are VSELECTs with result matching types where
  // the result type has a larger element type than the SetCC operand.
  SDNode *FirstUse = *Op->use_begin();
  if (FirstUse->getOpcode() != ISD::VSELECT)
    return SDValue();
  EVT UseMVT = FirstUse->getValueType(0);
  if (UseMVT.getScalarSizeInBits() <= Op0MVT.getScalarSizeInBits())
    return SDValue();
  if (any_of(Op->uses(), [&UseMVT](const SDNode *N) {
        return N->getOpcode() != ISD::VSELECT || N->getValueType(0) != UseMVT;
      }))
    return SDValue();

  APInt V;
  if (!ISD::isConstantSplatVector(Op->getOperand(1).getNode(), V))
    return SDValue();

  SDLoc DL(Op);
  SDValue Op0ExtV;
  SDValue Op1ExtV;
  ISD::CondCode CC = cast<CondCodeSDNode>(Op->getOperand(2))->get();
  // Check if the first operand of the SET_CC is already extended. If it is,
  // split the SET_CC and re-use the extended version of the operand.
  SDNode *Op0SExt = DAG.getNodeIfExists(ISD::SIGN_EXTEND, DAG.getVTList(UseMVT),
                                        Op->getOperand(0));
  SDNode *Op0ZExt = DAG.getNodeIfExists(ISD::ZERO_EXTEND, DAG.getVTList(UseMVT),
                                        Op->getOperand(0));
  if (Op0SExt && (isSignedIntSetCC(CC) || isIntEqualitySetCC(CC))) {
    Op0ExtV = SDValue(Op0SExt, 0);
    Op1ExtV = DAG.getNode(ISD::SIGN_EXTEND, DL, UseMVT, Op->getOperand(1));
  } else if (Op0ZExt && (isUnsignedIntSetCC(CC) || isIntEqualitySetCC(CC))) {
    Op0ExtV = SDValue(Op0ZExt, 0);
    Op1ExtV = DAG.getNode(ISD::ZERO_EXTEND, DL, UseMVT, Op->getOperand(1));
  } else
    return SDValue();

  return DAG.getNode(ISD::SETCC, DL, UseMVT.changeVectorElementType(MVT::i1),
                     Op0ExtV, Op1ExtV, Op->getOperand(2));
}

static SDValue performSETCCCombine(SDNode *N,
                                   TargetLowering::DAGCombinerInfo &DCI,
                                   SelectionDAG &DAG) {
  assert(N->getOpcode() == ISD::SETCC && "Unexpected opcode!");
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  if (SDValue V = tryToWidenSetCCOperands(N, DAG))
    return V;

  // setcc (csel 0, 1, cond, X), 1, ne ==> csel 0, 1, !cond, X
  if (Cond == ISD::SETNE && isOneConstant(RHS) &&
      LHS->getOpcode() == AArch64ISD::CSEL &&
      isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) &&
      LHS->hasOneUse()) {
    // Invert CSEL's condition.
    auto *OpCC = cast<ConstantSDNode>(LHS.getOperand(2));
    auto OldCond = static_cast<AArch64CC::CondCode>(OpCC->getZExtValue());
    auto NewCond = getInvertedCondCode(OldCond);

    // csel 0, 1, !cond, X
    SDValue CSEL =
        DAG.getNode(AArch64ISD::CSEL, DL, LHS.getValueType(), LHS.getOperand(0),
                    LHS.getOperand(1), DAG.getConstant(NewCond, DL, MVT::i32),
                    LHS.getOperand(3));
    return DAG.getZExtOrTrunc(CSEL, DL, VT);
  }

  // setcc (srl x, imm), 0, ne ==> setcc (and x, (-1 << imm)), 0, ne
  if (Cond == ISD::SETNE && isNullConstant(RHS) &&
      LHS->getOpcode() == ISD::SRL && isa<ConstantSDNode>(LHS->getOperand(1)) &&
      LHS->hasOneUse()) {
    EVT TstVT = LHS->getValueType(0);
    if (TstVT.isScalarInteger() && TstVT.getFixedSizeInBits() <= 64) {
      // this pattern will get better opt in emitComparison
      uint64_t TstImm = -1ULL << LHS->getConstantOperandVal(1);
      SDValue TST = DAG.getNode(ISD::AND, DL, TstVT, LHS->getOperand(0),
                                DAG.getConstant(TstImm, DL, TstVT));
      return DAG.getNode(ISD::SETCC, DL, VT, TST, RHS, N->getOperand(2));
    }
  }

  // setcc (iN (bitcast (vNi1 X))), 0, (eq|ne)
  //   ==> setcc (iN (zext (i1 (vecreduce_or (vNi1 X))))), 0, (eq|ne)
  if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
      (Cond == ISD::SETEQ || Cond == ISD::SETNE) && isNullConstant(RHS) &&
      LHS->getOpcode() == ISD::BITCAST) {
    EVT ToVT = LHS->getValueType(0);
    EVT FromVT = LHS->getOperand(0).getValueType();
    if (FromVT.isFixedLengthVector() &&
        FromVT.getVectorElementType() == MVT::i1) {
      LHS = DAG.getNode(ISD::VECREDUCE_OR, DL, MVT::i1, LHS->getOperand(0));
      LHS = DAG.getNode(ISD::ZERO_EXTEND, DL, ToVT, LHS);
      return DAG.getSetCC(DL, VT, LHS, RHS, Cond);
    }
  }

  return SDValue();
}

// Replace a flag-setting operator (eg ANDS) with the generic version
// (eg AND) if the flag is unused.
static SDValue performFlagSettingCombine(SDNode *N,
                                         TargetLowering::DAGCombinerInfo &DCI,
                                         unsigned GenericOpcode) {
  SDLoc DL(N);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  EVT VT = N->getValueType(0);

  // If the flag result isn't used, convert back to a generic opcode.
  if (!N->hasAnyUseOfValue(1)) {
    SDValue Res = DCI.DAG.getNode(GenericOpcode, DL, VT, N->ops());
    return DCI.DAG.getMergeValues({Res, DCI.DAG.getConstant(0, DL, MVT::i32)},
                                  DL);
  }

  // Combine identical generic nodes into this node, re-using the result.
  if (SDNode *Generic = DCI.DAG.getNodeIfExists(
          GenericOpcode, DCI.DAG.getVTList(VT), {LHS, RHS}))
    DCI.CombineTo(Generic, SDValue(N, 0));

  return SDValue();
}

static SDValue performSetCCPunpkCombine(SDNode *N, SelectionDAG &DAG) {
  // setcc_merge_zero pred
  //   (sign_extend (extract_subvector (setcc_merge_zero ... pred ...))), 0, ne
  //   => extract_subvector (inner setcc_merge_zero)
  SDValue Pred = N->getOperand(0);
  SDValue LHS = N->getOperand(1);
  SDValue RHS = N->getOperand(2);
  ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(3))->get();

  if (Cond != ISD::SETNE || !isZerosVector(RHS.getNode()) ||
      LHS->getOpcode() != ISD::SIGN_EXTEND)
    return SDValue();

  SDValue Extract = LHS->getOperand(0);
  if (Extract->getOpcode() != ISD::EXTRACT_SUBVECTOR ||
      Extract->getValueType(0) != N->getValueType(0) ||
      Extract->getConstantOperandVal(1) != 0)
    return SDValue();

  SDValue InnerSetCC = Extract->getOperand(0);
  if (InnerSetCC->getOpcode() != AArch64ISD::SETCC_MERGE_ZERO)
    return SDValue();

  // By this point we've effectively got
  // zero_inactive_lanes_and_trunc_i1(sext_i1(A)). If we can prove A's inactive
  // lanes are already zero then the trunc(sext()) sequence is redundant and we
  // can operate on A directly.
  SDValue InnerPred = InnerSetCC.getOperand(0);
  if (Pred.getOpcode() == AArch64ISD::PTRUE &&
      InnerPred.getOpcode() == AArch64ISD::PTRUE &&
      Pred.getConstantOperandVal(0) == InnerPred.getConstantOperandVal(0) &&
      Pred->getConstantOperandVal(0) >= AArch64SVEPredPattern::vl1 &&
      Pred->getConstantOperandVal(0) <= AArch64SVEPredPattern::vl256)
    return Extract;

  return SDValue();
}

static SDValue
performSetccMergeZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
  assert(N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO &&
         "Unexpected opcode!");

  SelectionDAG &DAG = DCI.DAG;
  SDValue Pred = N->getOperand(0);
  SDValue LHS = N->getOperand(1);
  SDValue RHS = N->getOperand(2);
  ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(3))->get();

  if (SDValue V = performSetCCPunpkCombine(N, DAG))
    return V;

  if (Cond == ISD::SETNE && isZerosVector(RHS.getNode()) &&
      LHS->getOpcode() == ISD::SIGN_EXTEND &&
      LHS->getOperand(0)->getValueType(0) == N->getValueType(0)) {
    //    setcc_merge_zero(
    //       pred, extend(setcc_merge_zero(pred, ...)), != splat(0))
    // => setcc_merge_zero(pred, ...)
    if (LHS->getOperand(0)->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO &&
        LHS->getOperand(0)->getOperand(0) == Pred)
      return LHS->getOperand(0);

    //    setcc_merge_zero(
    //        all_active, extend(nxvNi1 ...), != splat(0))
    // -> nxvNi1 ...
    if (isAllActivePredicate(DAG, Pred))
      return LHS->getOperand(0);

    //    setcc_merge_zero(
    //        pred, extend(nxvNi1 ...), != splat(0))
    // -> nxvNi1 and(pred, ...)
    if (DCI.isAfterLegalizeDAG())
      // Do this after legalization to allow more folds on setcc_merge_zero
      // to be recognized.
      return DAG.getNode(ISD::AND, SDLoc(N), N->getValueType(0),
                         LHS->getOperand(0), Pred);
  }

  return SDValue();
}

// Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
// as well as whether the test should be inverted.  This code is required to
// catch these cases (as opposed to standard dag combines) because
// AArch64ISD::TBZ is matched during legalization.
static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
                                 SelectionDAG &DAG) {

  if (!Op->hasOneUse())
    return Op;

  // We don't handle undef/constant-fold cases below, as they should have
  // already been taken care of (e.g. and of 0, test of undefined shifted bits,
  // etc.)

  // (tbz (trunc x), b) -> (tbz x, b)
  // This case is just here to enable more of the below cases to be caught.
  if (Op->getOpcode() == ISD::TRUNCATE &&
      Bit < Op->getValueType(0).getSizeInBits()) {
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
  }

  // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
  if (Op->getOpcode() == ISD::ANY_EXTEND &&
      Bit < Op->getOperand(0).getValueSizeInBits()) {
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
  }

  if (Op->getNumOperands() != 2)
    return Op;

  auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
  if (!C)
    return Op;

  switch (Op->getOpcode()) {
  default:
    return Op;

  // (tbz (and x, m), b) -> (tbz x, b)
  case ISD::AND:
    if ((C->getZExtValue() >> Bit) & 1)
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
    return Op;

  // (tbz (shl x, c), b) -> (tbz x, b-c)
  case ISD::SHL:
    if (C->getZExtValue() <= Bit &&
        (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
      Bit = Bit - C->getZExtValue();
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
    }
    return Op;

  // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
  case ISD::SRA:
    Bit = Bit + C->getZExtValue();
    if (Bit >= Op->getValueType(0).getSizeInBits())
      Bit = Op->getValueType(0).getSizeInBits() - 1;
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);

  // (tbz (srl x, c), b) -> (tbz x, b+c)
  case ISD::SRL:
    if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
      Bit = Bit + C->getZExtValue();
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
    }
    return Op;

  // (tbz (xor x, -1), b) -> (tbnz x, b)
  case ISD::XOR:
    if ((C->getZExtValue() >> Bit) & 1)
      Invert = !Invert;
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
  }
}

// Optimize test single bit zero/non-zero and branch.
static SDValue performTBZCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 SelectionDAG &DAG) {
  unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
  bool Invert = false;
  SDValue TestSrc = N->getOperand(1);
  SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);

  if (TestSrc == NewTestSrc)
    return SDValue();

  unsigned NewOpc = N->getOpcode();
  if (Invert) {
    if (NewOpc == AArch64ISD::TBZ)
      NewOpc = AArch64ISD::TBNZ;
    else {
      assert(NewOpc == AArch64ISD::TBNZ);
      NewOpc = AArch64ISD::TBZ;
    }
  }

  SDLoc DL(N);
  return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
                     DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
}

// Swap vselect operands where it may allow a predicated operation to achieve
// the `sel`.
//
//     (vselect (setcc ( condcode) (_) (_)) (a)          (op (a) (b)))
//  => (vselect (setcc (!condcode) (_) (_)) (op (a) (b)) (a))
static SDValue trySwapVSelectOperands(SDNode *N, SelectionDAG &DAG) {
  auto SelectA = N->getOperand(1);
  auto SelectB = N->getOperand(2);
  auto NTy = N->getValueType(0);

  if (!NTy.isScalableVector())
    return SDValue();
  SDValue SetCC = N->getOperand(0);
  if (SetCC.getOpcode() != ISD::SETCC || !SetCC.hasOneUse())
    return SDValue();

  switch (SelectB.getOpcode()) {
  default:
    return SDValue();
  case ISD::FMUL:
  case ISD::FSUB:
  case ISD::FADD:
    break;
  }
  if (SelectA != SelectB.getOperand(0))
    return SDValue();

  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
  ISD::CondCode InverseCC =
      ISD::getSetCCInverse(CC, SetCC.getOperand(0).getValueType());
  auto InverseSetCC =
      DAG.getSetCC(SDLoc(SetCC), SetCC.getValueType(), SetCC.getOperand(0),
                   SetCC.getOperand(1), InverseCC);

  return DAG.getNode(ISD::VSELECT, SDLoc(N), NTy,
                     {InverseSetCC, SelectB, SelectA});
}

// vselect (v1i1 setcc) ->
//     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
// such VSELECT.
static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
  if (auto SwapResult = trySwapVSelectOperands(N, DAG))
    return SwapResult;

  SDValue N0 = N->getOperand(0);
  EVT CCVT = N0.getValueType();

  if (isAllActivePredicate(DAG, N0))
    return N->getOperand(1);

  if (isAllInactivePredicate(N0))
    return N->getOperand(2);

  // Check for sign pattern (VSELECT setgt, iN lhs, -1, 1, -1) and transform
  // into (OR (ASR lhs, N-1), 1), which requires less instructions for the
  // supported types.
  SDValue SetCC = N->getOperand(0);
  if (SetCC.getOpcode() == ISD::SETCC &&
      SetCC.getOperand(2) == DAG.getCondCode(ISD::SETGT)) {
    SDValue CmpLHS = SetCC.getOperand(0);
    EVT VT = CmpLHS.getValueType();
    SDNode *CmpRHS = SetCC.getOperand(1).getNode();
    SDNode *SplatLHS = N->getOperand(1).getNode();
    SDNode *SplatRHS = N->getOperand(2).getNode();
    APInt SplatLHSVal;
    if (CmpLHS.getValueType() == N->getOperand(1).getValueType() &&
        VT.isSimple() &&
        is_contained(
            makeArrayRef({MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
                          MVT::v2i32, MVT::v4i32, MVT::v2i64}),
            VT.getSimpleVT().SimpleTy) &&
        ISD::isConstantSplatVector(SplatLHS, SplatLHSVal) &&
        SplatLHSVal.isOne() && ISD::isConstantSplatVectorAllOnes(CmpRHS) &&
        ISD::isConstantSplatVectorAllOnes(SplatRHS)) {
      unsigned NumElts = VT.getVectorNumElements();
      SmallVector<SDValue, 8> Ops(
          NumElts, DAG.getConstant(VT.getScalarSizeInBits() - 1, SDLoc(N),
                                   VT.getScalarType()));
      SDValue Val = DAG.getBuildVector(VT, SDLoc(N), Ops);

      auto Shift = DAG.getNode(ISD::SRA, SDLoc(N), VT, CmpLHS, Val);
      auto Or = DAG.getNode(ISD::OR, SDLoc(N), VT, Shift, N->getOperand(1));
      return Or;
    }
  }

  if (N0.getOpcode() != ISD::SETCC ||
      CCVT.getVectorElementCount() != ElementCount::getFixed(1) ||
      CCVT.getVectorElementType() != MVT::i1)
    return SDValue();

  EVT ResVT = N->getValueType(0);
  EVT CmpVT = N0.getOperand(0).getValueType();
  // Only combine when the result type is of the same size as the compared
  // operands.
  if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
    return SDValue();

  SDValue IfTrue = N->getOperand(1);
  SDValue IfFalse = N->getOperand(2);
  SetCC = DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
                       N0.getOperand(0), N0.getOperand(1),
                       cast<CondCodeSDNode>(N0.getOperand(2))->get());
  return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
                     IfTrue, IfFalse);
}

/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
/// the compare-mask instructions rather than going via NZCV, even if LHS and
/// RHS are really scalar. This replaces any scalar setcc in the above pattern
/// with a vector one followed by a DUP shuffle on the result.
static SDValue performSelectCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  SDValue N0 = N->getOperand(0);
  EVT ResVT = N->getValueType(0);

  if (N0.getOpcode() != ISD::SETCC)
    return SDValue();

  if (ResVT.isScalableVector())
    return SDValue();

  // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
  // scalar SetCCResultType. We also don't expect vectors, because we assume
  // that selects fed by vector SETCCs are canonicalized to VSELECT.
  assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
         "Scalar-SETCC feeding SELECT has unexpected result type!");

  // If NumMaskElts == 0, the comparison is larger than select result. The
  // largest real NEON comparison is 64-bits per lane, which means the result is
  // at most 32-bits and an illegal vector. Just bail out for now.
  EVT SrcVT = N0.getOperand(0).getValueType();

  // Don't try to do this optimization when the setcc itself has i1 operands.
  // There are no legal vectors of i1, so this would be pointless.
  if (SrcVT == MVT::i1)
    return SDValue();

  int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
  if (!ResVT.isVector() || NumMaskElts == 0)
    return SDValue();

  SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
  EVT CCVT = SrcVT.changeVectorElementTypeToInteger();

  // Also bail out if the vector CCVT isn't the same size as ResVT.
  // This can happen if the SETCC operand size doesn't divide the ResVT size
  // (e.g., f64 vs v3f32).
  if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
    return SDValue();

  // Make sure we didn't create illegal types, if we're not supposed to.
  assert(DCI.isBeforeLegalize() ||
         DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));

  // First perform a vector comparison, where lane 0 is the one we're interested
  // in.
  SDLoc DL(N0);
  SDValue LHS =
      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
  SDValue RHS =
      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
  SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));

  // Now duplicate the comparison mask we want across all other lanes.
  SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
  SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
  Mask = DAG.getNode(ISD::BITCAST, DL,
                     ResVT.changeVectorElementTypeToInteger(), Mask);

  return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
}

static SDValue performDUPCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  EVT VT = N->getValueType(0);
  // If "v2i32 DUP(x)" and "v4i32 DUP(x)" both exist, use an extract from the
  // 128bit vector version.
  if (VT.is64BitVector() && DCI.isAfterLegalizeDAG()) {
    EVT LVT = VT.getDoubleNumVectorElementsVT(*DCI.DAG.getContext());
    if (SDNode *LN = DCI.DAG.getNodeIfExists(
            N->getOpcode(), DCI.DAG.getVTList(LVT), {N->getOperand(0)})) {
      SDLoc DL(N);
      return DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SDValue(LN, 0),
                             DCI.DAG.getConstant(0, DL, MVT::i64));
    }
  }

  return performPostLD1Combine(N, DCI, false);
}

/// Get rid of unnecessary NVCASTs (that don't change the type).
static SDValue performNVCASTCombine(SDNode *N) {
  if (N->getValueType(0) == N->getOperand(0).getValueType())
    return N->getOperand(0);

  return SDValue();
}

// If all users of the globaladdr are of the form (globaladdr + constant), find
// the smallest constant, fold it into the globaladdr's offset and rewrite the
// globaladdr as (globaladdr + constant) - constant.
static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
                                           const AArch64Subtarget *Subtarget,
                                           const TargetMachine &TM) {
  auto *GN = cast<GlobalAddressSDNode>(N);
  if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
      AArch64II::MO_NO_FLAG)
    return SDValue();

  uint64_t MinOffset = -1ull;
  for (SDNode *N : GN->uses()) {
    if (N->getOpcode() != ISD::ADD)
      return SDValue();
    auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
    if (!C)
      C = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (!C)
      return SDValue();
    MinOffset = std::min(MinOffset, C->getZExtValue());
  }
  uint64_t Offset = MinOffset + GN->getOffset();

  // Require that the new offset is larger than the existing one. Otherwise, we
  // can end up oscillating between two possible DAGs, for example,
  // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
  if (Offset <= uint64_t(GN->getOffset()))
    return SDValue();

  // Check whether folding this offset is legal. It must not go out of bounds of
  // the referenced object to avoid violating the code model, and must be
  // smaller than 2^20 because this is the largest offset expressible in all
  // object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF
  // stores an immediate signed 21 bit offset.)
  //
  // This check also prevents us from folding negative offsets, which will end
  // up being treated in the same way as large positive ones. They could also
  // cause code model violations, and aren't really common enough to matter.
  if (Offset >= (1 << 20))
    return SDValue();

  const GlobalValue *GV = GN->getGlobal();
  Type *T = GV->getValueType();
  if (!T->isSized() ||
      Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
    return SDValue();

  SDLoc DL(GN);
  SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
  return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
                     DAG.getConstant(MinOffset, DL, MVT::i64));
}

// Turns the vector of indices into a vector of byte offstes by scaling Offset
// by (BitWidth / 8).
static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset,
                                          SDLoc DL, unsigned BitWidth) {
  assert(Offset.getValueType().isScalableVector() &&
         "This method is only for scalable vectors of offsets");

  SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64);
  SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift);

  return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift);
}

/// Check if the value of \p OffsetInBytes can be used as an immediate for
/// the gather load/prefetch and scatter store instructions with vector base and
/// immediate offset addressing mode:
///
///      [<Zn>.[S|D]{, #<imm>}]
///
/// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31.
inline static bool isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes,
                                                  unsigned ScalarSizeInBytes) {
  // The immediate is not a multiple of the scalar size.
  if (OffsetInBytes % ScalarSizeInBytes)
    return false;

  // The immediate is out of range.
  if (OffsetInBytes / ScalarSizeInBytes > 31)
    return false;

  return true;
}

/// Check if the value of \p Offset represents a valid immediate for the SVE
/// gather load/prefetch and scatter store instructiona with vector base and
/// immediate offset addressing mode:
///
///      [<Zn>.[S|D]{, #<imm>}]
///
/// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31.
static bool isValidImmForSVEVecImmAddrMode(SDValue Offset,
                                           unsigned ScalarSizeInBytes) {
  ConstantSDNode *OffsetConst = dyn_cast<ConstantSDNode>(Offset.getNode());
  return OffsetConst && isValidImmForSVEVecImmAddrMode(
                            OffsetConst->getZExtValue(), ScalarSizeInBytes);
}

static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG,
                                          unsigned Opcode,
                                          bool OnlyPackedOffsets = true) {
  const SDValue Src = N->getOperand(2);
  const EVT SrcVT = Src->getValueType(0);
  assert(SrcVT.isScalableVector() &&
         "Scatter stores are only possible for SVE vectors");

  SDLoc DL(N);
  MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT();

  // Make sure that source data will fit into an SVE register
  if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
    return SDValue();

  // For FPs, ACLE only supports _packed_ single and double precision types.
  if (SrcElVT.isFloatingPoint())
    if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64))
      return SDValue();

  // Depending on the addressing mode, this is either a pointer or a vector of
  // pointers (that fits into one register)
  SDValue Base = N->getOperand(4);
  // Depending on the addressing mode, this is either a single offset or a
  // vector of offsets  (that fits into one register)
  SDValue Offset = N->getOperand(5);

  // For "scalar + vector of indices", just scale the indices. This only
  // applies to non-temporal scatters because there's no instruction that takes
  // indicies.
  if (Opcode == AArch64ISD::SSTNT1_INDEX_PRED) {
    Offset =
        getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits());
    Opcode = AArch64ISD::SSTNT1_PRED;
  }

  // In the case of non-temporal gather loads there's only one SVE instruction
  // per data-size: "scalar + vector", i.e.
  //    * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
  // Since we do have intrinsics that allow the arguments to be in a different
  // order, we may need to swap them to match the spec.
  if (Opcode == AArch64ISD::SSTNT1_PRED && Offset.getValueType().isVector())
    std::swap(Base, Offset);

  // SST1_IMM requires that the offset is an immediate that is:
  //    * a multiple of #SizeInBytes,
  //    * in the range [0, 31 x #SizeInBytes],
  // where #SizeInBytes is the size in bytes of the stored items. For
  // immediates outside that range and non-immediate scalar offsets use SST1 or
  // SST1_UXTW instead.
  if (Opcode == AArch64ISD::SST1_IMM_PRED) {
    if (!isValidImmForSVEVecImmAddrMode(Offset,
                                        SrcVT.getScalarSizeInBits() / 8)) {
      if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy)
        Opcode = AArch64ISD::SST1_UXTW_PRED;
      else
        Opcode = AArch64ISD::SST1_PRED;

      std::swap(Base, Offset);
    }
  }

  auto &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.isTypeLegal(Base.getValueType()))
    return SDValue();

  // Some scatter store variants allow unpacked offsets, but only as nxv2i32
  // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
  // nxv2i64. Legalize accordingly.
  if (!OnlyPackedOffsets &&
      Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
    Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);

  if (!TLI.isTypeLegal(Offset.getValueType()))
    return SDValue();

  // Source value type that is representable in hardware
  EVT HwSrcVt = getSVEContainerType(SrcVT);

  // Keep the original type of the input data to store - this is needed to be
  // able to select the correct instruction, e.g. ST1B, ST1H, ST1W and ST1D. For
  // FP values we want the integer equivalent, so just use HwSrcVt.
  SDValue InputVT = DAG.getValueType(SrcVT);
  if (SrcVT.isFloatingPoint())
    InputVT = DAG.getValueType(HwSrcVt);

  SDVTList VTs = DAG.getVTList(MVT::Other);
  SDValue SrcNew;

  if (Src.getValueType().isFloatingPoint())
    SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src);
  else
    SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src);

  SDValue Ops[] = {N->getOperand(0), // Chain
                   SrcNew,
                   N->getOperand(3), // Pg
                   Base,
                   Offset,
                   InputVT};

  return DAG.getNode(Opcode, DL, VTs, Ops);
}

static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG,
                                        unsigned Opcode,
                                        bool OnlyPackedOffsets = true) {
  const EVT RetVT = N->getValueType(0);
  assert(RetVT.isScalableVector() &&
         "Gather loads are only possible for SVE vectors");

  SDLoc DL(N);

  // Make sure that the loaded data will fit into an SVE register
  if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
    return SDValue();

  // Depending on the addressing mode, this is either a pointer or a vector of
  // pointers (that fits into one register)
  SDValue Base = N->getOperand(3);
  // Depending on the addressing mode, this is either a single offset or a
  // vector of offsets  (that fits into one register)
  SDValue Offset = N->getOperand(4);

  // For "scalar + vector of indices", just scale the indices. This only
  // applies to non-temporal gathers because there's no instruction that takes
  // indicies.
  if (Opcode == AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) {
    Offset = getScaledOffsetForBitWidth(DAG, Offset, DL,
                                        RetVT.getScalarSizeInBits());
    Opcode = AArch64ISD::GLDNT1_MERGE_ZERO;
  }

  // In the case of non-temporal gather loads there's only one SVE instruction
  // per data-size: "scalar + vector", i.e.
  //    * ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
  // Since we do have intrinsics that allow the arguments to be in a different
  // order, we may need to swap them to match the spec.
  if (Opcode == AArch64ISD::GLDNT1_MERGE_ZERO &&
      Offset.getValueType().isVector())
    std::swap(Base, Offset);

  // GLD{FF}1_IMM requires that the offset is an immediate that is:
  //    * a multiple of #SizeInBytes,
  //    * in the range [0, 31 x #SizeInBytes],
  // where #SizeInBytes is the size in bytes of the loaded items. For
  // immediates outside that range and non-immediate scalar offsets use
  // GLD1_MERGE_ZERO or GLD1_UXTW_MERGE_ZERO instead.
  if (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO ||
      Opcode == AArch64ISD::GLDFF1_IMM_MERGE_ZERO) {
    if (!isValidImmForSVEVecImmAddrMode(Offset,
                                        RetVT.getScalarSizeInBits() / 8)) {
      if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy)
        Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO)
                     ? AArch64ISD::GLD1_UXTW_MERGE_ZERO
                     : AArch64ISD::GLDFF1_UXTW_MERGE_ZERO;
      else
        Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO)
                     ? AArch64ISD::GLD1_MERGE_ZERO
                     : AArch64ISD::GLDFF1_MERGE_ZERO;

      std::swap(Base, Offset);
    }
  }

  auto &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.isTypeLegal(Base.getValueType()))
    return SDValue();

  // Some gather load variants allow unpacked offsets, but only as nxv2i32
  // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
  // nxv2i64. Legalize accordingly.
  if (!OnlyPackedOffsets &&
      Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
    Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);

  // Return value type that is representable in hardware
  EVT HwRetVt = getSVEContainerType(RetVT);

  // Keep the original output value type around - this is needed to be able to
  // select the correct instruction, e.g. LD1B, LD1H, LD1W and LD1D. For FP
  // values we want the integer equivalent, so just use HwRetVT.
  SDValue OutVT = DAG.getValueType(RetVT);
  if (RetVT.isFloatingPoint())
    OutVT = DAG.getValueType(HwRetVt);

  SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other);
  SDValue Ops[] = {N->getOperand(0), // Chain
                   N->getOperand(2), // Pg
                   Base, Offset, OutVT};

  SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops);
  SDValue LoadChain = SDValue(Load.getNode(), 1);

  if (RetVT.isInteger() && (RetVT != HwRetVt))
    Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0));

  // If the original return value was FP, bitcast accordingly. Doing it here
  // means that we can avoid adding TableGen patterns for FPs.
  if (RetVT.isFloatingPoint())
    Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0));

  return DAG.getMergeValues({Load, LoadChain}, DL);
}

static SDValue
performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                              SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Src = N->getOperand(0);
  unsigned Opc = Src->getOpcode();

  // Sign extend of an unsigned unpack -> signed unpack
  if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) {

    unsigned SOpc = Opc == AArch64ISD::UUNPKHI ? AArch64ISD::SUNPKHI
                                               : AArch64ISD::SUNPKLO;

    // Push the sign extend to the operand of the unpack
    // This is necessary where, for example, the operand of the unpack
    // is another unpack:
    // 4i32 sign_extend_inreg (4i32 uunpklo(8i16 uunpklo (16i8 opnd)), from 4i8)
    // ->
    // 4i32 sunpklo (8i16 sign_extend_inreg(8i16 uunpklo (16i8 opnd), from 8i8)
    // ->
    // 4i32 sunpklo(8i16 sunpklo(16i8 opnd))
    SDValue ExtOp = Src->getOperand(0);
    auto VT = cast<VTSDNode>(N->getOperand(1))->getVT();
    EVT EltTy = VT.getVectorElementType();
    (void)EltTy;

    assert((EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) &&
           "Sign extending from an invalid type");

    EVT ExtVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext());

    SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ExtOp.getValueType(),
                              ExtOp, DAG.getValueType(ExtVT));

    return DAG.getNode(SOpc, DL, N->getValueType(0), Ext);
  }

  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  if (!EnableCombineMGatherIntrinsics)
    return SDValue();

  // SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates
  // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes.
  unsigned NewOpc;
  unsigned MemVTOpNum = 4;
  switch (Opc) {
  case AArch64ISD::LD1_MERGE_ZERO:
    NewOpc = AArch64ISD::LD1S_MERGE_ZERO;
    MemVTOpNum = 3;
    break;
  case AArch64ISD::LDNF1_MERGE_ZERO:
    NewOpc = AArch64ISD::LDNF1S_MERGE_ZERO;
    MemVTOpNum = 3;
    break;
  case AArch64ISD::LDFF1_MERGE_ZERO:
    NewOpc = AArch64ISD::LDFF1S_MERGE_ZERO;
    MemVTOpNum = 3;
    break;
  case AArch64ISD::GLD1_MERGE_ZERO:
    NewOpc = AArch64ISD::GLD1S_MERGE_ZERO;
    break;
  case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
    NewOpc = AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
    break;
  case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
    NewOpc = AArch64ISD::GLD1S_SXTW_MERGE_ZERO;
    break;
  case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
    NewOpc = AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO;
    break;
  case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
    NewOpc = AArch64ISD::GLD1S_UXTW_MERGE_ZERO;
    break;
  case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
    NewOpc = AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO;
    break;
  case AArch64ISD::GLD1_IMM_MERGE_ZERO:
    NewOpc = AArch64ISD::GLD1S_IMM_MERGE_ZERO;
    break;
  case AArch64ISD::GLDFF1_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDFF1S_MERGE_ZERO;
    break;
  case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO;
    break;
  case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO;
    break;
  case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO;
    break;
  case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO;
    break;
  case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO;
    break;
  case AArch64ISD::GLDFF1_IMM_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDFF1S_IMM_MERGE_ZERO;
    break;
  case AArch64ISD::GLDNT1_MERGE_ZERO:
    NewOpc = AArch64ISD::GLDNT1S_MERGE_ZERO;
    break;
  default:
    return SDValue();
  }

  EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT();
  EVT SrcMemVT = cast<VTSDNode>(Src->getOperand(MemVTOpNum))->getVT();

  if ((SignExtSrcVT != SrcMemVT) || !Src.hasOneUse())
    return SDValue();

  EVT DstVT = N->getValueType(0);
  SDVTList VTs = DAG.getVTList(DstVT, MVT::Other);

  SmallVector<SDValue, 5> Ops;
  for (unsigned I = 0; I < Src->getNumOperands(); ++I)
    Ops.push_back(Src->getOperand(I));

  SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops);
  DCI.CombineTo(N, ExtLoad);
  DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1));

  // Return N so it doesn't get rechecked
  return SDValue(N, 0);
}

/// Legalize the gather prefetch (scalar + vector addressing mode) when the
/// offset vector is an unpacked 32-bit scalable vector. The other cases (Offset
/// != nxv2i32) do not need legalization.
static SDValue legalizeSVEGatherPrefetchOffsVec(SDNode *N, SelectionDAG &DAG) {
  const unsigned OffsetPos = 4;
  SDValue Offset = N->getOperand(OffsetPos);

  // Not an unpacked vector, bail out.
  if (Offset.getValueType().getSimpleVT().SimpleTy != MVT::nxv2i32)
    return SDValue();

  // Extend the unpacked offset vector to 64-bit lanes.
  SDLoc DL(N);
  Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset);
  SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end());
  // Replace the offset operand with the 64-bit one.
  Ops[OffsetPos] = Offset;

  return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops);
}

/// Combines a node carrying the intrinsic
/// `aarch64_sve_prf<T>_gather_scalar_offset` into a node that uses
/// `aarch64_sve_prfb_gather_uxtw_index` when the scalar offset passed to
/// `aarch64_sve_prf<T>_gather_scalar_offset` is not a valid immediate for the
/// sve gather prefetch instruction with vector plus immediate addressing mode.
static SDValue combineSVEPrefetchVecBaseImmOff(SDNode *N, SelectionDAG &DAG,
                                               unsigned ScalarSizeInBytes) {
  const unsigned ImmPos = 4, OffsetPos = 3;
  // No need to combine the node if the immediate is valid...
  if (isValidImmForSVEVecImmAddrMode(N->getOperand(ImmPos), ScalarSizeInBytes))
    return SDValue();

  // ...otherwise swap the offset base with the offset...
  SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end());
  std::swap(Ops[ImmPos], Ops[OffsetPos]);
  // ...and remap the intrinsic `aarch64_sve_prf<T>_gather_scalar_offset` to
  // `aarch64_sve_prfb_gather_uxtw_index`.
  SDLoc DL(N);
  Ops[1] = DAG.getConstant(Intrinsic::aarch64_sve_prfb_gather_uxtw_index, DL,
                           MVT::i64);

  return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops);
}

// Return true if the vector operation can guarantee only the first lane of its
// result contains data, with all bits in other lanes set to zero.
static bool isLanes1toNKnownZero(SDValue Op) {
  switch (Op.getOpcode()) {
  default:
    return false;
  case AArch64ISD::ANDV_PRED:
  case AArch64ISD::EORV_PRED:
  case AArch64ISD::FADDA_PRED:
  case AArch64ISD::FADDV_PRED:
  case AArch64ISD::FMAXNMV_PRED:
  case AArch64ISD::FMAXV_PRED:
  case AArch64ISD::FMINNMV_PRED:
  case AArch64ISD::FMINV_PRED:
  case AArch64ISD::ORV_PRED:
  case AArch64ISD::SADDV_PRED:
  case AArch64ISD::SMAXV_PRED:
  case AArch64ISD::SMINV_PRED:
  case AArch64ISD::UADDV_PRED:
  case AArch64ISD::UMAXV_PRED:
  case AArch64ISD::UMINV_PRED:
    return true;
  }
}

static SDValue removeRedundantInsertVectorElt(SDNode *N) {
  assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Unexpected node!");
  SDValue InsertVec = N->getOperand(0);
  SDValue InsertElt = N->getOperand(1);
  SDValue InsertIdx = N->getOperand(2);

  // We only care about inserts into the first element...
  if (!isNullConstant(InsertIdx))
    return SDValue();
  // ...of a zero'd vector...
  if (!ISD::isConstantSplatVectorAllZeros(InsertVec.getNode()))
    return SDValue();
  // ...where the inserted data was previously extracted...
  if (InsertElt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
    return SDValue();

  SDValue ExtractVec = InsertElt.getOperand(0);
  SDValue ExtractIdx = InsertElt.getOperand(1);

  // ...from the first element of a vector.
  if (!isNullConstant(ExtractIdx))
    return SDValue();

  // If we get here we are effectively trying to zero lanes 1-N of a vector.

  // Ensure there's no type conversion going on.
  if (N->getValueType(0) != ExtractVec.getValueType())
    return SDValue();

  if (!isLanes1toNKnownZero(ExtractVec))
    return SDValue();

  // The explicit zeroing is redundant.
  return ExtractVec;
}

static SDValue
performInsertVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
  if (SDValue Res = removeRedundantInsertVectorElt(N))
    return Res;

  return performPostLD1Combine(N, DCI, true);
}

static SDValue performSVESpliceCombine(SDNode *N, SelectionDAG &DAG) {
  EVT Ty = N->getValueType(0);
  if (Ty.isInteger())
    return SDValue();

  EVT IntTy = Ty.changeVectorElementTypeToInteger();
  EVT ExtIntTy = getPackedSVEVectorVT(IntTy.getVectorElementCount());
  if (ExtIntTy.getVectorElementType().getScalarSizeInBits() <
      IntTy.getVectorElementType().getScalarSizeInBits())
    return SDValue();

  SDLoc DL(N);
  SDValue LHS = DAG.getAnyExtOrTrunc(DAG.getBitcast(IntTy, N->getOperand(0)),
                                     DL, ExtIntTy);
  SDValue RHS = DAG.getAnyExtOrTrunc(DAG.getBitcast(IntTy, N->getOperand(1)),
                                     DL, ExtIntTy);
  SDValue Idx = N->getOperand(2);
  SDValue Splice = DAG.getNode(ISD::VECTOR_SPLICE, DL, ExtIntTy, LHS, RHS, Idx);
  SDValue Trunc = DAG.getAnyExtOrTrunc(Splice, DL, IntTy);
  return DAG.getBitcast(Ty, Trunc);
}

static SDValue performFPExtendCombine(SDNode *N, SelectionDAG &DAG,
                                      TargetLowering::DAGCombinerInfo &DCI,
                                      const AArch64Subtarget *Subtarget) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
  if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::FP_ROUND)
    return SDValue();

  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
  // We purposefully don't care about legality of the nodes here as we know
  // they can be split down into something legal.
  if (DCI.isBeforeLegalizeOps() && ISD::isNormalLoad(N0.getNode()) &&
      N0.hasOneUse() && Subtarget->useSVEForFixedLengthVectors() &&
      VT.isFixedLengthVector() &&
      VT.getFixedSizeInBits() >= Subtarget->getMinSVEVectorSizeInBits()) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
                                     LN0->getChain(), LN0->getBasePtr(),
                                     N0.getValueType(), LN0->getMemOperand());
    DCI.CombineTo(N, ExtLoad);
    DCI.CombineTo(N0.getNode(),
                  DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(),
                              ExtLoad, DAG.getIntPtrConstant(1, SDLoc(N0))),
                  ExtLoad.getValue(1));
    return SDValue(N, 0); // Return N so it doesn't get rechecked!
  }

  return SDValue();
}

static SDValue performBSPExpandForSVE(SDNode *N, SelectionDAG &DAG,
                                      const AArch64Subtarget *Subtarget,
                                      bool fixedSVEVectorVT) {
  EVT VT = N->getValueType(0);

  // Don't expand for SVE2
  if (!VT.isScalableVector() || Subtarget->hasSVE2() || Subtarget->hasSME())
    return SDValue();

  // Don't expand for NEON
  if (VT.isFixedLengthVector() && !fixedSVEVectorVT)
    return SDValue();

  SDLoc DL(N);

  SDValue Mask = N->getOperand(0);
  SDValue In1 = N->getOperand(1);
  SDValue In2 = N->getOperand(2);

  SDValue InvMask = DAG.getNOT(DL, Mask, VT);
  SDValue Sel = DAG.getNode(ISD::AND, DL, VT, Mask, In1);
  SDValue SelInv = DAG.getNode(ISD::AND, DL, VT, InvMask, In2);
  return DAG.getNode(ISD::OR, DL, VT, Sel, SelInv);
}

static SDValue performDupLane128Combine(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);

  SDValue Insert = N->getOperand(0);
  if (Insert.getOpcode() != ISD::INSERT_SUBVECTOR)
    return SDValue();

  if (!Insert.getOperand(0).isUndef())
    return SDValue();

  uint64_t IdxInsert = Insert.getConstantOperandVal(2);
  uint64_t IdxDupLane = N->getConstantOperandVal(1);
  if (IdxInsert != IdxDupLane)
    return SDValue();

  SDValue Bitcast = Insert.getOperand(1);
  if (Bitcast.getOpcode() != ISD::BITCAST)
    return SDValue();

  SDValue Subvec = Bitcast.getOperand(0);
  EVT SubvecVT = Subvec.getValueType();
  if (!SubvecVT.is128BitVector())
    return SDValue();
  EVT NewSubvecVT =
      getPackedSVEVectorVT(Subvec.getValueType().getVectorElementType());

  SDLoc DL(N);
  SDValue NewInsert =
      DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewSubvecVT,
                  DAG.getUNDEF(NewSubvecVT), Subvec, Insert->getOperand(2));
  SDValue NewDuplane128 = DAG.getNode(AArch64ISD::DUPLANE128, DL, NewSubvecVT,
                                      NewInsert, N->getOperand(1));
  return DAG.getNode(ISD::BITCAST, DL, VT, NewDuplane128);
}

SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
                                                 DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  switch (N->getOpcode()) {
  default:
    LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
    break;
  case ISD::ADD:
  case ISD::SUB:
    return performAddSubCombine(N, DCI, DAG);
  case ISD::BUILD_VECTOR:
    return performBuildVectorCombine(N, DCI, DAG);
  case AArch64ISD::ANDS:
    return performFlagSettingCombine(N, DCI, ISD::AND);
  case AArch64ISD::ADC:
    if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true))
      return R;
    return foldADCToCINC(N, DAG);
  case AArch64ISD::SBC:
    return foldOverflowCheck(N, DAG, /* IsAdd */ false);
  case AArch64ISD::ADCS:
    if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true))
      return R;
    return performFlagSettingCombine(N, DCI, AArch64ISD::ADC);
  case AArch64ISD::SBCS:
    if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ false))
      return R;
    return performFlagSettingCombine(N, DCI, AArch64ISD::SBC);
  case ISD::XOR:
    return performXorCombine(N, DAG, DCI, Subtarget);
  case ISD::MUL:
    return performMulCombine(N, DAG, DCI, Subtarget);
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    return performIntToFpCombine(N, DAG, Subtarget);
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::FP_TO_SINT_SAT:
  case ISD::FP_TO_UINT_SAT:
    return performFpToIntCombine(N, DAG, DCI, Subtarget);
  case ISD::FDIV:
    return performFDivCombine(N, DAG, DCI, Subtarget);
  case ISD::OR:
    return performORCombine(N, DCI, Subtarget);
  case ISD::AND:
    return performANDCombine(N, DCI);
  case ISD::INTRINSIC_WO_CHAIN:
    return performIntrinsicCombine(N, DCI, Subtarget);
  case ISD::ANY_EXTEND:
  case ISD::ZERO_EXTEND:
  case ISD::SIGN_EXTEND:
    return performExtendCombine(N, DCI, DAG);
  case ISD::SIGN_EXTEND_INREG:
    return performSignExtendInRegCombine(N, DCI, DAG);
  case ISD::CONCAT_VECTORS:
    return performConcatVectorsCombine(N, DCI, DAG);
  case ISD::EXTRACT_SUBVECTOR:
    return performExtractSubvectorCombine(N, DCI, DAG);
  case ISD::INSERT_SUBVECTOR:
    return performInsertSubvectorCombine(N, DCI, DAG);
  case ISD::SELECT:
    return performSelectCombine(N, DCI);
  case ISD::VSELECT:
    return performVSelectCombine(N, DCI.DAG);
  case ISD::SETCC:
    return performSETCCCombine(N, DCI, DAG);
  case ISD::LOAD:
    if (performTBISimplification(N->getOperand(1), DCI, DAG))
      return SDValue(N, 0);
    break;
  case ISD::STORE:
    return performSTORECombine(N, DCI, DAG, Subtarget);
  case ISD::MSTORE:
    return performMSTORECombine(N, DCI, DAG, Subtarget);
  case ISD::MGATHER:
  case ISD::MSCATTER:
    return performMaskedGatherScatterCombine(N, DCI, DAG);
  case ISD::VECTOR_SPLICE:
    return performSVESpliceCombine(N, DAG);
  case ISD::FP_EXTEND:
    return performFPExtendCombine(N, DAG, DCI, Subtarget);
  case AArch64ISD::BRCOND:
    return performBRCONDCombine(N, DCI, DAG);
  case AArch64ISD::TBNZ:
  case AArch64ISD::TBZ:
    return performTBZCombine(N, DCI, DAG);
  case AArch64ISD::CSEL:
    return performCSELCombine(N, DCI, DAG);
  case AArch64ISD::DUP:
    return performDUPCombine(N, DCI);
  case AArch64ISD::DUPLANE128:
    return performDupLane128Combine(N, DAG);
  case AArch64ISD::NVCAST:
    return performNVCASTCombine(N);
  case AArch64ISD::SPLICE:
    return performSpliceCombine(N, DAG);
  case AArch64ISD::UUNPKLO:
  case AArch64ISD::UUNPKHI:
    return performUnpackCombine(N, DAG, Subtarget);
  case AArch64ISD::UZP1:
    return performUzpCombine(N, DAG);
  case AArch64ISD::SETCC_MERGE_ZERO:
    return performSetccMergeZeroCombine(N, DCI);
  case AArch64ISD::GLD1_MERGE_ZERO:
  case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
  case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
  case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1_IMM_MERGE_ZERO:
  case AArch64ISD::GLD1S_MERGE_ZERO:
  case AArch64ISD::GLD1S_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1S_UXTW_MERGE_ZERO:
  case AArch64ISD::GLD1S_SXTW_MERGE_ZERO:
  case AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO:
  case AArch64ISD::GLD1S_IMM_MERGE_ZERO:
    return performGLD1Combine(N, DAG);
  case AArch64ISD::VASHR:
  case AArch64ISD::VLSHR:
    return performVectorShiftCombine(N, *this, DCI);
  case AArch64ISD::SUNPKLO:
    return performSunpkloCombine(N, DAG);
  case AArch64ISD::BSP:
    return performBSPExpandForSVE(
        N, DAG, Subtarget, useSVEForFixedLengthVectorVT(N->getValueType(0)));
  case ISD::INSERT_VECTOR_ELT:
    return performInsertVectorEltCombine(N, DCI);
  case ISD::EXTRACT_VECTOR_ELT:
    return performExtractVectorEltCombine(N, DCI, Subtarget);
  case ISD::VECREDUCE_ADD:
    return performVecReduceAddCombine(N, DCI.DAG, Subtarget);
  case AArch64ISD::UADDV:
    return performUADDVCombine(N, DAG);
  case AArch64ISD::SMULL:
  case AArch64ISD::UMULL:
    return tryCombineLongOpWithDup(Intrinsic::not_intrinsic, N, DCI, DAG);
  case ISD::INTRINSIC_VOID:
  case ISD::INTRINSIC_W_CHAIN:
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
    case Intrinsic::aarch64_sve_prfb_gather_scalar_offset:
      return combineSVEPrefetchVecBaseImmOff(N, DAG, 1 /*=ScalarSizeInBytes*/);
    case Intrinsic::aarch64_sve_prfh_gather_scalar_offset:
      return combineSVEPrefetchVecBaseImmOff(N, DAG, 2 /*=ScalarSizeInBytes*/);
    case Intrinsic::aarch64_sve_prfw_gather_scalar_offset:
      return combineSVEPrefetchVecBaseImmOff(N, DAG, 4 /*=ScalarSizeInBytes*/);
    case Intrinsic::aarch64_sve_prfd_gather_scalar_offset:
      return combineSVEPrefetchVecBaseImmOff(N, DAG, 8 /*=ScalarSizeInBytes*/);
    case Intrinsic::aarch64_sve_prfb_gather_uxtw_index:
    case Intrinsic::aarch64_sve_prfb_gather_sxtw_index:
    case Intrinsic::aarch64_sve_prfh_gather_uxtw_index:
    case Intrinsic::aarch64_sve_prfh_gather_sxtw_index:
    case Intrinsic::aarch64_sve_prfw_gather_uxtw_index:
    case Intrinsic::aarch64_sve_prfw_gather_sxtw_index:
    case Intrinsic::aarch64_sve_prfd_gather_uxtw_index:
    case Intrinsic::aarch64_sve_prfd_gather_sxtw_index:
      return legalizeSVEGatherPrefetchOffsVec(N, DAG);
    case Intrinsic::aarch64_neon_ld2:
    case Intrinsic::aarch64_neon_ld3:
    case Intrinsic::aarch64_neon_ld4:
    case Intrinsic::aarch64_neon_ld1x2:
    case Intrinsic::aarch64_neon_ld1x3:
    case Intrinsic::aarch64_neon_ld1x4:
    case Intrinsic::aarch64_neon_ld2lane:
    case Intrinsic::aarch64_neon_ld3lane:
    case Intrinsic::aarch64_neon_ld4lane:
    case Intrinsic::aarch64_neon_ld2r:
    case Intrinsic::aarch64_neon_ld3r:
    case Intrinsic::aarch64_neon_ld4r:
    case Intrinsic::aarch64_neon_st2:
    case Intrinsic::aarch64_neon_st3:
    case Intrinsic::aarch64_neon_st4:
    case Intrinsic::aarch64_neon_st1x2:
    case Intrinsic::aarch64_neon_st1x3:
    case Intrinsic::aarch64_neon_st1x4:
    case Intrinsic::aarch64_neon_st2lane:
    case Intrinsic::aarch64_neon_st3lane:
    case Intrinsic::aarch64_neon_st4lane:
      return performNEONPostLDSTCombine(N, DCI, DAG);
    case Intrinsic::aarch64_sve_ldnt1:
      return performLDNT1Combine(N, DAG);
    case Intrinsic::aarch64_sve_ld1rq:
      return performLD1ReplicateCombine<AArch64ISD::LD1RQ_MERGE_ZERO>(N, DAG);
    case Intrinsic::aarch64_sve_ld1ro:
      return performLD1ReplicateCombine<AArch64ISD::LD1RO_MERGE_ZERO>(N, DAG);
    case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldnt1_gather:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldnt1_gather_index:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLDNT1_INDEX_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldnt1_gather_uxtw:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ld1:
      return performLD1Combine(N, DAG, AArch64ISD::LD1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldnf1:
      return performLD1Combine(N, DAG, AArch64ISD::LDNF1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldff1:
      return performLD1Combine(N, DAG, AArch64ISD::LDFF1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_st1:
      return performST1Combine(N, DAG);
    case Intrinsic::aarch64_sve_stnt1:
      return performSTNT1Combine(N, DAG);
    case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
    case Intrinsic::aarch64_sve_stnt1_scatter_uxtw:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
    case Intrinsic::aarch64_sve_stnt1_scatter:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
    case Intrinsic::aarch64_sve_stnt1_scatter_index:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX_PRED);
    case Intrinsic::aarch64_sve_ld1_gather:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ld1_gather_index:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLD1_SCALED_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ld1_gather_sxtw:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_uxtw:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_scalar_offset:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_IMM_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldff1_gather:
      return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldff1_gather_index:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLDFF1_SCALED_MERGE_ZERO);
    case Intrinsic::aarch64_sve_ldff1_gather_sxtw:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLDFF1_SXTW_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ldff1_gather_uxtw:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLDFF1_UXTW_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset:
      return performGatherLoadCombine(N, DAG,
                                      AArch64ISD::GLDFF1_IMM_MERGE_ZERO);
    case Intrinsic::aarch64_sve_st1_scatter:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_PRED);
    case Intrinsic::aarch64_sve_st1_scatter_index:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SCALED_PRED);
    case Intrinsic::aarch64_sve_st1_scatter_sxtw:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_PRED,
                                        /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_uxtw:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_PRED,
                                        /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
      return performScatterStoreCombine(N, DAG,
                                        AArch64ISD::SST1_SXTW_SCALED_PRED,
                                        /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
      return performScatterStoreCombine(N, DAG,
                                        AArch64ISD::SST1_UXTW_SCALED_PRED,
                                        /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_scalar_offset:
      return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_IMM_PRED);
    case Intrinsic::aarch64_sve_tuple_get: {
      SDLoc DL(N);
      SDValue Chain = N->getOperand(0);
      SDValue Src1 = N->getOperand(2);
      SDValue Idx = N->getOperand(3);

      uint64_t IdxConst = cast<ConstantSDNode>(Idx)->getZExtValue();
      EVT ResVT = N->getValueType(0);
      uint64_t NumLanes = ResVT.getVectorElementCount().getKnownMinValue();
      SDValue ExtIdx = DAG.getVectorIdxConstant(IdxConst * NumLanes, DL);
      SDValue Val =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResVT, Src1, ExtIdx);
      return DAG.getMergeValues({Val, Chain}, DL);
    }
    case Intrinsic::aarch64_sve_tuple_set: {
      SDLoc DL(N);
      SDValue Chain = N->getOperand(0);
      SDValue Tuple = N->getOperand(2);
      SDValue Idx = N->getOperand(3);
      SDValue Vec = N->getOperand(4);

      EVT TupleVT = Tuple.getValueType();
      uint64_t TupleLanes = TupleVT.getVectorElementCount().getKnownMinValue();

      uint64_t IdxConst = cast<ConstantSDNode>(Idx)->getZExtValue();
      uint64_t NumLanes =
          Vec.getValueType().getVectorElementCount().getKnownMinValue();

      if ((TupleLanes % NumLanes) != 0)
        report_fatal_error("invalid tuple vector!");

      uint64_t NumVecs = TupleLanes / NumLanes;

      SmallVector<SDValue, 4> Opnds;
      for (unsigned I = 0; I < NumVecs; ++I) {
        if (I == IdxConst)
          Opnds.push_back(Vec);
        else {
          SDValue ExtIdx = DAG.getVectorIdxConstant(I * NumLanes, DL);
          Opnds.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
                                      Vec.getValueType(), Tuple, ExtIdx));
        }
      }
      SDValue Concat =
          DAG.getNode(ISD::CONCAT_VECTORS, DL, Tuple.getValueType(), Opnds);
      return DAG.getMergeValues({Concat, Chain}, DL);
    }
    case Intrinsic::aarch64_sve_tuple_create2:
    case Intrinsic::aarch64_sve_tuple_create3:
    case Intrinsic::aarch64_sve_tuple_create4: {
      SDLoc DL(N);
      SDValue Chain = N->getOperand(0);

      SmallVector<SDValue, 4> Opnds;
      for (unsigned I = 2; I < N->getNumOperands(); ++I)
        Opnds.push_back(N->getOperand(I));

      EVT VT = Opnds[0].getValueType();
      EVT EltVT = VT.getVectorElementType();
      EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
                                    VT.getVectorElementCount() *
                                        (N->getNumOperands() - 2));
      SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, DestVT, Opnds);
      return DAG.getMergeValues({Concat, Chain}, DL);
    }
    case Intrinsic::aarch64_sve_ld2:
    case Intrinsic::aarch64_sve_ld3:
    case Intrinsic::aarch64_sve_ld4: {
      SDLoc DL(N);
      SDValue Chain = N->getOperand(0);
      SDValue Mask = N->getOperand(2);
      SDValue BasePtr = N->getOperand(3);
      SDValue LoadOps[] = {Chain, Mask, BasePtr};
      unsigned IntrinsicID =
          cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
      SDValue Result =
          LowerSVEStructLoad(IntrinsicID, LoadOps, N->getValueType(0), DAG, DL);
      return DAG.getMergeValues({Result, Chain}, DL);
    }
    case Intrinsic::aarch64_rndr:
    case Intrinsic::aarch64_rndrrs: {
      unsigned IntrinsicID =
          cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
      auto Register =
          (IntrinsicID == Intrinsic::aarch64_rndr ? AArch64SysReg::RNDR
                                                  : AArch64SysReg::RNDRRS);
      SDLoc DL(N);
      SDValue A = DAG.getNode(
          AArch64ISD::MRS, DL, DAG.getVTList(MVT::i64, MVT::Glue, MVT::Other),
          N->getOperand(0), DAG.getConstant(Register, DL, MVT::i64));
      SDValue B = DAG.getNode(
          AArch64ISD::CSINC, DL, MVT::i32, DAG.getConstant(0, DL, MVT::i32),
          DAG.getConstant(0, DL, MVT::i32),
          DAG.getConstant(AArch64CC::NE, DL, MVT::i32), A.getValue(1));
      return DAG.getMergeValues(
          {A, DAG.getZExtOrTrunc(B, DL, MVT::i1), A.getValue(2)}, DL);
    }
    default:
      break;
    }
    break;
  case ISD::GlobalAddress:
    return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
  }
  return SDValue();
}

// Check if the return value is used as only a return value, as otherwise
// we can't perform a tail-call. In particular, we need to check for
// target ISD nodes that are returns and any other "odd" constructs
// that the generic analysis code won't necessarily catch.
bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
                                               SDValue &Chain) const {
  if (N->getNumValues() != 1)
    return false;
  if (!N->hasNUsesOfValue(1, 0))
    return false;

  SDValue TCChain = Chain;
  SDNode *Copy = *N->use_begin();
  if (Copy->getOpcode() == ISD::CopyToReg) {
    // If the copy has a glue operand, we conservatively assume it isn't safe to
    // perform a tail call.
    if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
        MVT::Glue)
      return false;
    TCChain = Copy->getOperand(0);
  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
    return false;

  bool HasRet = false;
  for (SDNode *Node : Copy->uses()) {
    if (Node->getOpcode() != AArch64ISD::RET_FLAG)
      return false;
    HasRet = true;
  }

  if (!HasRet)
    return false;

  Chain = TCChain;
  return true;
}

// Return whether the an instruction can potentially be optimized to a tail
// call. This will cause the optimizers to attempt to move, or duplicate,
// return instructions to help enable tail call optimizations for this
// instruction.
bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  return CI->isTailCall();
}

bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
                                                   SDValue &Offset,
                                                   ISD::MemIndexedMode &AM,
                                                   bool &IsInc,
                                                   SelectionDAG &DAG) const {
  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
    return false;

  Base = Op->getOperand(0);
  // All of the indexed addressing mode instructions take a signed
  // 9 bit immediate offset.
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
    int64_t RHSC = RHS->getSExtValue();
    if (Op->getOpcode() == ISD::SUB)
      RHSC = -(uint64_t)RHSC;
    if (!isInt<9>(RHSC))
      return false;
    IsInc = (Op->getOpcode() == ISD::ADD);
    Offset = Op->getOperand(1);
    return true;
  }
  return false;
}

bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                                      SDValue &Offset,
                                                      ISD::MemIndexedMode &AM,
                                                      SelectionDAG &DAG) const {
  EVT VT;
  SDValue Ptr;
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT = LD->getMemoryVT();
    Ptr = LD->getBasePtr();
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT = ST->getMemoryVT();
    Ptr = ST->getBasePtr();
  } else
    return false;

  bool IsInc;
  if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
    return false;
  AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
  return true;
}

bool AArch64TargetLowering::getPostIndexedAddressParts(
    SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
    ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
  EVT VT;
  SDValue Ptr;
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT = LD->getMemoryVT();
    Ptr = LD->getBasePtr();
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT = ST->getMemoryVT();
    Ptr = ST->getBasePtr();
  } else
    return false;

  bool IsInc;
  if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
    return false;
  // Post-indexing updates the base, so it's not a valid transform
  // if that's not the same as the load's pointer.
  if (Ptr != Base)
    return false;
  AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
  return true;
}

void AArch64TargetLowering::ReplaceBITCASTResults(
    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
  SDLoc DL(N);
  SDValue Op = N->getOperand(0);
  EVT VT = N->getValueType(0);
  EVT SrcVT = Op.getValueType();

  if (VT.isScalableVector() && !isTypeLegal(VT) && isTypeLegal(SrcVT)) {
    assert(!VT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
           "Expected fp->int bitcast!");

    // Bitcasting between unpacked vector types of different element counts is
    // not a NOP because the live elements are laid out differently.
    //                01234567
    // e.g. nxv2i32 = XX??XX??
    //      nxv4f16 = X?X?X?X?
    if (VT.getVectorElementCount() != SrcVT.getVectorElementCount())
      return;

    SDValue CastResult = getSVESafeBitCast(getSVEContainerType(VT), Op, DAG);
    Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, CastResult));
    return;
  }

  if (VT != MVT::i16 || (SrcVT != MVT::f16 && SrcVT != MVT::bf16))
    return;

  Op = SDValue(
      DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
                         DAG.getUNDEF(MVT::i32), Op,
                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
      0);
  Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
  Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
}

static void ReplaceAddWithADDP(SDNode *N, SmallVectorImpl<SDValue> &Results,
                               SelectionDAG &DAG,
                               const AArch64Subtarget *Subtarget) {
  EVT VT = N->getValueType(0);
  if (!VT.is256BitVector() ||
      (VT.getScalarType().isFloatingPoint() &&
       !N->getFlags().hasAllowReassociation()) ||
      (VT.getScalarType() == MVT::f16 && !Subtarget->hasFullFP16()))
    return;

  SDValue X = N->getOperand(0);
  auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(1));
  if (!Shuf) {
    Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0));
    X = N->getOperand(1);
    if (!Shuf)
      return;
  }

  if (Shuf->getOperand(0) != X || !Shuf->getOperand(1)->isUndef())
    return;

  // Check the mask is 1,0,3,2,5,4,...
  ArrayRef<int> Mask = Shuf->getMask();
  for (int I = 0, E = Mask.size(); I < E; I++)
    if (Mask[I] != (I % 2 == 0 ? I + 1 : I - 1))
      return;

  SDLoc DL(N);
  auto LoHi = DAG.SplitVector(X, DL);
  assert(LoHi.first.getValueType() == LoHi.second.getValueType());
  SDValue Addp = DAG.getNode(AArch64ISD::ADDP, N, LoHi.first.getValueType(),
                             LoHi.first, LoHi.second);

  // Shuffle the elements back into order.
  SmallVector<int> NMask;
  for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I < E; I++) {
    NMask.push_back(I);
    NMask.push_back(I);
  }
  Results.push_back(
      DAG.getVectorShuffle(VT, DL,
                           DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Addp,
                                       DAG.getUNDEF(LoHi.first.getValueType())),
                           DAG.getUNDEF(VT), NMask));
}

static void ReplaceReductionResults(SDNode *N,
                                    SmallVectorImpl<SDValue> &Results,
                                    SelectionDAG &DAG, unsigned InterOp,
                                    unsigned AcrossOp) {
  EVT LoVT, HiVT;
  SDValue Lo, Hi;
  SDLoc dl(N);
  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
  std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
  SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
  SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
  Results.push_back(SplitVal);
}

static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
  SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
                           DAG.getNode(ISD::SRL, DL, MVT::i128, N,
                                       DAG.getConstant(64, DL, MVT::i64)));
  return std::make_pair(Lo, Hi);
}

void AArch64TargetLowering::ReplaceExtractSubVectorResults(
    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
  SDValue In = N->getOperand(0);
  EVT InVT = In.getValueType();

  // Common code will handle these just fine.
  if (!InVT.isScalableVector() || !InVT.isInteger())
    return;

  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // The following checks bail if this is not a halving operation.

  ElementCount ResEC = VT.getVectorElementCount();

  if (InVT.getVectorElementCount() != (ResEC * 2))
    return;

  auto *CIndex = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (!CIndex)
    return;

  unsigned Index = CIndex->getZExtValue();
  if ((Index != 0) && (Index != ResEC.getKnownMinValue()))
    return;

  unsigned Opcode = (Index == 0) ? AArch64ISD::UUNPKLO : AArch64ISD::UUNPKHI;
  EVT ExtendedHalfVT = VT.widenIntegerVectorElementType(*DAG.getContext());

  SDValue Half = DAG.getNode(Opcode, DL, ExtendedHalfVT, N->getOperand(0));
  Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Half));
}

// Create an even/odd pair of X registers holding integer value V.
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
  SDLoc dl(V.getNode());
  SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
  SDValue VHi = DAG.getAnyExtOrTrunc(
      DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
      dl, MVT::i64);
  if (DAG.getDataLayout().isBigEndian())
    std::swap (VLo, VHi);
  SDValue RegClass =
      DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
  SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
  SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
  const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
  return SDValue(
      DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}

static void ReplaceCMP_SWAP_128Results(SDNode *N,
                                       SmallVectorImpl<SDValue> &Results,
                                       SelectionDAG &DAG,
                                       const AArch64Subtarget *Subtarget) {
  assert(N->getValueType(0) == MVT::i128 &&
         "AtomicCmpSwap on types less than 128 should be legal");

  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
  if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) {
    // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
    // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
    SDValue Ops[] = {
        createGPRPairNode(DAG, N->getOperand(2)), // Compare value
        createGPRPairNode(DAG, N->getOperand(3)), // Store value
        N->getOperand(1), // Ptr
        N->getOperand(0), // Chain in
    };

    unsigned Opcode;
    switch (MemOp->getMergedOrdering()) {
    case AtomicOrdering::Monotonic:
      Opcode = AArch64::CASPX;
      break;
    case AtomicOrdering::Acquire:
      Opcode = AArch64::CASPAX;
      break;
    case AtomicOrdering::Release:
      Opcode = AArch64::CASPLX;
      break;
    case AtomicOrdering::AcquireRelease:
    case AtomicOrdering::SequentiallyConsistent:
      Opcode = AArch64::CASPALX;
      break;
    default:
      llvm_unreachable("Unexpected ordering!");
    }

    MachineSDNode *CmpSwap = DAG.getMachineNode(
        Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
    DAG.setNodeMemRefs(CmpSwap, {MemOp});

    unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
    if (DAG.getDataLayout().isBigEndian())
      std::swap(SubReg1, SubReg2);
    SDValue Lo = DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
                                            SDValue(CmpSwap, 0));
    SDValue Hi = DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
                                            SDValue(CmpSwap, 0));
    Results.push_back(
        DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi));
    Results.push_back(SDValue(CmpSwap, 1)); // Chain out
    return;
  }

  unsigned Opcode;
  switch (MemOp->getMergedOrdering()) {
  case AtomicOrdering::Monotonic:
    Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
    break;
  case AtomicOrdering::Acquire:
    Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
    break;
  case AtomicOrdering::Release:
    Opcode = AArch64::CMP_SWAP_128_RELEASE;
    break;
  case AtomicOrdering::AcquireRelease:
  case AtomicOrdering::SequentiallyConsistent:
    Opcode = AArch64::CMP_SWAP_128;
    break;
  default:
    llvm_unreachable("Unexpected ordering!");
  }

  auto Desired = splitInt128(N->getOperand(2), DAG);
  auto New = splitInt128(N->getOperand(3), DAG);
  SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
                   New.first,        New.second,    N->getOperand(0)};
  SDNode *CmpSwap = DAG.getMachineNode(
      Opcode, SDLoc(N), DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other),
      Ops);
  DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});

  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
                                SDValue(CmpSwap, 0), SDValue(CmpSwap, 1)));
  Results.push_back(SDValue(CmpSwap, 3));
}

void AArch64TargetLowering::ReplaceNodeResults(
    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
  switch (N->getOpcode()) {
  default:
    llvm_unreachable("Don't know how to custom expand this");
  case ISD::BITCAST:
    ReplaceBITCASTResults(N, Results, DAG);
    return;
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
    Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
    return;
  case ISD::ADD:
  case ISD::FADD:
    ReplaceAddWithADDP(N, Results, DAG, Subtarget);
    return;

  case ISD::CTPOP:
  case ISD::PARITY:
    if (SDValue Result = LowerCTPOP_PARITY(SDValue(N, 0), DAG))
      Results.push_back(Result);
    return;
  case AArch64ISD::SADDV:
    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
    return;
  case AArch64ISD::UADDV:
    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
    return;
  case AArch64ISD::SMINV:
    ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
    return;
  case AArch64ISD::UMINV:
    ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
    return;
  case AArch64ISD::SMAXV:
    ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
    return;
  case AArch64ISD::UMAXV:
    ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
    return;
  case ISD::FP_TO_UINT:
  case ISD::FP_TO_SINT:
  case ISD::STRICT_FP_TO_SINT:
  case ISD::STRICT_FP_TO_UINT:
    assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
    // Let normal code take care of it by not adding anything to Results.
    return;
  case ISD::ATOMIC_CMP_SWAP:
    ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
    return;
  case ISD::ATOMIC_LOAD:
  case ISD::LOAD: {
    assert(SDValue(N, 0).getValueType() == MVT::i128 &&
           "unexpected load's value type");
    MemSDNode *LoadNode = cast<MemSDNode>(N);
    if ((!LoadNode->isVolatile() && !LoadNode->isAtomic()) ||
        LoadNode->getMemoryVT() != MVT::i128) {
      // Non-volatile or atomic loads are optimized later in AArch64's load/store
      // optimizer.
      return;
    }

    SDValue Result = DAG.getMemIntrinsicNode(
        AArch64ISD::LDP, SDLoc(N),
        DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}),
        {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(),
        LoadNode->getMemOperand());

    SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
                               Result.getValue(0), Result.getValue(1));
    Results.append({Pair, Result.getValue(2) /* Chain */});
    return;
  }
  case ISD::EXTRACT_SUBVECTOR:
    ReplaceExtractSubVectorResults(N, Results, DAG);
    return;
  case ISD::INSERT_SUBVECTOR:
  case ISD::CONCAT_VECTORS:
    // Custom lowering has been requested for INSERT_SUBVECTOR and
    // CONCAT_VECTORS -- but delegate to common code for result type
    // legalisation
    return;
  case ISD::INTRINSIC_WO_CHAIN: {
    EVT VT = N->getValueType(0);
    assert((VT == MVT::i8 || VT == MVT::i16) &&
           "custom lowering for unexpected type");

    ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0));
    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
    switch (IntID) {
    default:
      return;
    case Intrinsic::aarch64_sve_clasta_n: {
      SDLoc DL(N);
      auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
      auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32,
                           N->getOperand(1), Op2, N->getOperand(3));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    case Intrinsic::aarch64_sve_clastb_n: {
      SDLoc DL(N);
      auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
      auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32,
                           N->getOperand(1), Op2, N->getOperand(3));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    case Intrinsic::aarch64_sve_lasta: {
      SDLoc DL(N);
      auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32,
                           N->getOperand(1), N->getOperand(2));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    case Intrinsic::aarch64_sve_lastb: {
      SDLoc DL(N);
      auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32,
                           N->getOperand(1), N->getOperand(2));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    }
  }
  }
}

bool AArch64TargetLowering::useLoadStackGuardNode() const {
  if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
    return TargetLowering::useLoadStackGuardNode();
  return true;
}

unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
  // reciprocal if there are three or more FDIVs.
  return 3;
}

TargetLoweringBase::LegalizeTypeAction
AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
  // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
  // v4i16, v2i32 instead of to promote.
  if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
      VT == MVT::v1f32)
    return TypeWidenVector;

  return TargetLoweringBase::getPreferredVectorAction(VT);
}

// In v8.4a, ldp and stp instructions are guaranteed to be single-copy atomic
// provided the address is 16-byte aligned.
bool AArch64TargetLowering::isOpSuitableForLDPSTP(const Instruction *I) const {
  if (!Subtarget->hasLSE2())
    return false;

  if (auto LI = dyn_cast<LoadInst>(I))
    return LI->getType()->getPrimitiveSizeInBits() == 128 &&
           LI->getAlign() >= Align(16);

  if (auto SI = dyn_cast<StoreInst>(I))
    return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 &&
           SI->getAlign() >= Align(16);

  return false;
}

bool AArch64TargetLowering::shouldInsertFencesForAtomic(
    const Instruction *I) const {
  return isOpSuitableForLDPSTP(I);
}

// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
TargetLoweringBase::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
  unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
  if (Size != 128 || isOpSuitableForLDPSTP(SI))
    return AtomicExpansionKind::None;
  return AtomicExpansionKind::Expand;
}

// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
  unsigned Size = LI->getType()->getPrimitiveSizeInBits();

  if (Size != 128 || isOpSuitableForLDPSTP(LI))
    return AtomicExpansionKind::None;

  // At -O0, fast-regalloc cannot cope with the live vregs necessary to
  // implement atomicrmw without spilling. If the target address is also on the
  // stack and close enough to the spill slot, this can lead to a situation
  // where the monitor always gets cleared and the atomic operation can never
  // succeed. So at -O0 lower this operation to a CAS loop.
  if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
    return AtomicExpansionKind::CmpXChg;

  return AtomicExpansionKind::LLSC;
}

// For the real atomic operations, we have ldxr/stxr up to 128 bits,
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
  if (AI->isFloatingPointOperation())
    return AtomicExpansionKind::CmpXChg;

  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
  if (Size > 128) return AtomicExpansionKind::None;

  // Nand is not supported in LSE.
  // Leave 128 bits to LLSC or CmpXChg.
  if (AI->getOperation() != AtomicRMWInst::Nand && Size < 128) {
    if (Subtarget->hasLSE())
      return AtomicExpansionKind::None;
    if (Subtarget->outlineAtomics()) {
      // [U]Min/[U]Max RWM atomics are used in __sync_fetch_ libcalls so far.
      // Don't outline them unless
      // (1) high level <atomic> support approved:
      //   http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0493r1.pdf
      // (2) low level libgcc and compiler-rt support implemented by:
      //   min/max outline atomics helpers
      if (AI->getOperation() != AtomicRMWInst::Min &&
          AI->getOperation() != AtomicRMWInst::Max &&
          AI->getOperation() != AtomicRMWInst::UMin &&
          AI->getOperation() != AtomicRMWInst::UMax) {
        return AtomicExpansionKind::None;
      }
    }
  }

  // At -O0, fast-regalloc cannot cope with the live vregs necessary to
  // implement atomicrmw without spilling. If the target address is also on the
  // stack and close enough to the spill slot, this can lead to a situation
  // where the monitor always gets cleared and the atomic operation can never
  // succeed. So at -O0 lower this operation to a CAS loop.
  if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
    return AtomicExpansionKind::CmpXChg;

  return AtomicExpansionKind::LLSC;
}

TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
    AtomicCmpXchgInst *AI) const {
  // If subtarget has LSE, leave cmpxchg intact for codegen.
  if (Subtarget->hasLSE() || Subtarget->outlineAtomics())
    return AtomicExpansionKind::None;
  // At -O0, fast-regalloc cannot cope with the live vregs necessary to
  // implement cmpxchg without spilling. If the address being exchanged is also
  // on the stack and close enough to the spill slot, this can lead to a
  // situation where the monitor always gets cleared and the atomic operation
  // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
  if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
    return AtomicExpansionKind::None;

  // 128-bit atomic cmpxchg is weird; AtomicExpand doesn't know how to expand
  // it.
  unsigned Size = AI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
  if (Size > 64)
    return AtomicExpansionKind::None;

  return AtomicExpansionKind::LLSC;
}

Value *AArch64TargetLowering::emitLoadLinked(IRBuilderBase &Builder,
                                             Type *ValueTy, Value *Addr,
                                             AtomicOrdering Ord) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  bool IsAcquire = isAcquireOrStronger(Ord);

  // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
  // intrinsic must return {i64, i64} and we have to recombine them into a
  // single i128 here.
  if (ValueTy->getPrimitiveSizeInBits() == 128) {
    Intrinsic::ID Int =
        IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
    Function *Ldxr = Intrinsic::getDeclaration(M, Int);

    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
    Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");

    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
    Lo = Builder.CreateZExt(Lo, ValueTy, "lo64");
    Hi = Builder.CreateZExt(Hi, ValueTy, "hi64");
    return Builder.CreateOr(
        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 64)), "val64");
  }

  Type *Tys[] = { Addr->getType() };
  Intrinsic::ID Int =
      IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
  Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);

  const DataLayout &DL = M->getDataLayout();
  IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(ValueTy));
  CallInst *CI = Builder.CreateCall(Ldxr, Addr);
  CI->addParamAttr(
      0, Attribute::get(Builder.getContext(), Attribute::ElementType, ValueTy));
  Value *Trunc = Builder.CreateTrunc(CI, IntEltTy);

  return Builder.CreateBitCast(Trunc, ValueTy);
}

void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
    IRBuilderBase &Builder) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
}

Value *AArch64TargetLowering::emitStoreConditional(IRBuilderBase &Builder,
                                                   Value *Val, Value *Addr,
                                                   AtomicOrdering Ord) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  bool IsRelease = isReleaseOrStronger(Ord);

  // Since the intrinsics must have legal type, the i128 intrinsics take two
  // parameters: "i64, i64". We must marshal Val into the appropriate form
  // before the call.
  if (Val->getType()->getPrimitiveSizeInBits() == 128) {
    Intrinsic::ID Int =
        IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
    Function *Stxr = Intrinsic::getDeclaration(M, Int);
    Type *Int64Ty = Type::getInt64Ty(M->getContext());

    Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
    return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
  }

  Intrinsic::ID Int =
      IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
  Type *Tys[] = { Addr->getType() };
  Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);

  const DataLayout &DL = M->getDataLayout();
  IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
  Val = Builder.CreateBitCast(Val, IntValTy);

  CallInst *CI = Builder.CreateCall(
      Stxr, {Builder.CreateZExtOrBitCast(
                 Val, Stxr->getFunctionType()->getParamType(0)),
             Addr});
  CI->addParamAttr(1, Attribute::get(Builder.getContext(),
                                     Attribute::ElementType, Val->getType()));
  return CI;
}

bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
    Type *Ty, CallingConv::ID CallConv, bool isVarArg,
    const DataLayout &DL) const {
  if (!Ty->isArrayTy()) {
    const TypeSize &TySize = Ty->getPrimitiveSizeInBits();
    return TySize.isScalable() && TySize.getKnownMinSize() > 128;
  }

  // All non aggregate members of the type must have the same type
  SmallVector<EVT> ValueVTs;
  ComputeValueVTs(*this, DL, Ty, ValueVTs);
  return is_splat(ValueVTs);
}

bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
                                                            EVT) const {
  return false;
}

static Value *UseTlsOffset(IRBuilderBase &IRB, unsigned Offset) {
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  Function *ThreadPointerFunc =
      Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
  return IRB.CreatePointerCast(
      IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
                             Offset),
      IRB.getInt8PtrTy()->getPointerTo(0));
}

Value *AArch64TargetLowering::getIRStackGuard(IRBuilderBase &IRB) const {
  // Android provides a fixed TLS slot for the stack cookie. See the definition
  // of TLS_SLOT_STACK_GUARD in
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
  if (Subtarget->isTargetAndroid())
    return UseTlsOffset(IRB, 0x28);

  // Fuchsia is similar.
  // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
  if (Subtarget->isTargetFuchsia())
    return UseTlsOffset(IRB, -0x10);

  return TargetLowering::getIRStackGuard(IRB);
}

void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
  // MSVC CRT provides functionalities for stack protection.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
    // MSVC CRT has a global variable holding security cookie.
    M.getOrInsertGlobal("__security_cookie",
                        Type::getInt8PtrTy(M.getContext()));

    // MSVC CRT has a function to validate security cookie.
    FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
        "__security_check_cookie", Type::getVoidTy(M.getContext()),
        Type::getInt8PtrTy(M.getContext()));
    if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
      F->setCallingConv(CallingConv::Win64);
      F->addParamAttr(0, Attribute::AttrKind::InReg);
    }
    return;
  }
  TargetLowering::insertSSPDeclarations(M);
}

Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
  // MSVC CRT has a global variable holding security cookie.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
    return M.getGlobalVariable("__security_cookie");
  return TargetLowering::getSDagStackGuard(M);
}

Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
  // MSVC CRT has a function to validate security cookie.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
    return M.getFunction("__security_check_cookie");
  return TargetLowering::getSSPStackGuardCheck(M);
}

Value *
AArch64TargetLowering::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
  // Android provides a fixed TLS slot for the SafeStack pointer. See the
  // definition of TLS_SLOT_SAFESTACK in
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
  if (Subtarget->isTargetAndroid())
    return UseTlsOffset(IRB, 0x48);

  // Fuchsia is similar.
  // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
  if (Subtarget->isTargetFuchsia())
    return UseTlsOffset(IRB, -0x8);

  return TargetLowering::getSafeStackPointerLocation(IRB);
}

bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
    const Instruction &AndI) const {
  // Only sink 'and' mask to cmp use block if it is masking a single bit, since
  // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
  // may be beneficial to sink in other cases, but we would have to check that
  // the cmp would not get folded into the br to form a cbz for these to be
  // beneficial.
  ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
  if (!Mask)
    return false;
  return Mask->getValue().isPowerOf2();
}

bool AArch64TargetLowering::
    shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
        SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
        unsigned OldShiftOpcode, unsigned NewShiftOpcode,
        SelectionDAG &DAG) const {
  // Does baseline recommend not to perform the fold by default?
  if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
          X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
    return false;
  // Else, if this is a vector shift, prefer 'shl'.
  return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
}

bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
                                              SDNode *N) const {
  if (DAG.getMachineFunction().getFunction().hasMinSize() &&
      !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin())
    return false;
  return true;
}

void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
  // Update IsSplitCSR in AArch64unctionInfo.
  AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
  AFI->setIsSplitCSR(true);
}

void AArch64TargetLowering::insertCopiesSplitCSR(
    MachineBasicBlock *Entry,
    const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
  if (!IStart)
    return;

  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
  MachineBasicBlock::iterator MBBI = Entry->begin();
  for (const MCPhysReg *I = IStart; *I; ++I) {
    const TargetRegisterClass *RC = nullptr;
    if (AArch64::GPR64RegClass.contains(*I))
      RC = &AArch64::GPR64RegClass;
    else if (AArch64::FPR64RegClass.contains(*I))
      RC = &AArch64::FPR64RegClass;
    else
      llvm_unreachable("Unexpected register class in CSRsViaCopy!");

    Register NewVR = MRI->createVirtualRegister(RC);
    // Create copy from CSR to a virtual register.
    // FIXME: this currently does not emit CFI pseudo-instructions, it works
    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
    // nounwind. If we want to generalize this later, we may need to emit
    // CFI pseudo-instructions.
    assert(Entry->getParent()->getFunction().hasFnAttribute(
               Attribute::NoUnwind) &&
           "Function should be nounwind in insertCopiesSplitCSR!");
    Entry->addLiveIn(*I);
    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
        .addReg(*I);

    // Insert the copy-back instructions right before the terminator.
    for (auto *Exit : Exits)
      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
              TII->get(TargetOpcode::COPY), *I)
          .addReg(NewVR);
  }
}

bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
  // Integer division on AArch64 is expensive. However, when aggressively
  // optimizing for code size, we prefer to use a div instruction, as it is
  // usually smaller than the alternative sequence.
  // The exception to this is vector division. Since AArch64 doesn't have vector
  // integer division, leaving the division as-is is a loss even in terms of
  // size, because it will have to be scalarized, while the alternative code
  // sequence can be performed in vector form.
  bool OptSize = Attr.hasFnAttr(Attribute::MinSize);
  return OptSize && !VT.isVector();
}

bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
  // We want inc-of-add for scalars and sub-of-not for vectors.
  return VT.isScalarInteger();
}

bool AArch64TargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
                                                 EVT VT) const {
  // v8f16 without fp16 need to be extended to v8f32, which is more difficult to
  // legalize.
  if (FPVT == MVT::v8f16 && !Subtarget->hasFullFP16())
    return false;
  return TargetLowering::shouldConvertFpToSat(Op, FPVT, VT);
}

bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
  return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
}

unsigned
AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
  if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
    return getPointerTy(DL).getSizeInBits();

  return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
}

void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
  MachineFrameInfo &MFI = MF.getFrameInfo();
  // If we have any vulnerable SVE stack objects then the stack protector
  // needs to be placed at the top of the SVE stack area, as the SVE locals
  // are placed above the other locals, so we allocate it as if it were a
  // scalable vector.
  // FIXME: It may be worthwhile having a specific interface for this rather
  // than doing it here in finalizeLowering.
  if (MFI.hasStackProtectorIndex()) {
    for (unsigned int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
      if (MFI.getStackID(i) == TargetStackID::ScalableVector &&
          MFI.getObjectSSPLayout(i) != MachineFrameInfo::SSPLK_None) {
        MFI.setStackID(MFI.getStackProtectorIndex(),
                       TargetStackID::ScalableVector);
        MFI.setObjectAlignment(MFI.getStackProtectorIndex(), Align(16));
        break;
      }
    }
  }
  MFI.computeMaxCallFrameSize(MF);
  TargetLoweringBase::finalizeLowering(MF);
}

// Unlike X86, we let frame lowering assign offsets to all catch objects.
bool AArch64TargetLowering::needsFixedCatchObjects() const {
  return false;
}

bool AArch64TargetLowering::shouldLocalize(
    const MachineInstr &MI, const TargetTransformInfo *TTI) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::G_GLOBAL_VALUE: {
    // On Darwin, TLS global vars get selected into function calls, which
    // we don't want localized, as they can get moved into the middle of a
    // another call sequence.
    const GlobalValue &GV = *MI.getOperand(1).getGlobal();
    if (GV.isThreadLocal() && Subtarget->isTargetMachO())
      return false;
    break;
  }
  // If we legalized G_GLOBAL_VALUE into ADRP + G_ADD_LOW, mark both as being
  // localizable.
  case AArch64::ADRP:
  case AArch64::G_ADD_LOW:
    return true;
  default:
    break;
  }
  return TargetLoweringBase::shouldLocalize(MI, TTI);
}

bool AArch64TargetLowering::fallBackToDAGISel(const Instruction &Inst) const {
  if (isa<ScalableVectorType>(Inst.getType()))
    return true;

  for (unsigned i = 0; i < Inst.getNumOperands(); ++i)
    if (isa<ScalableVectorType>(Inst.getOperand(i)->getType()))
      return true;

  if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
    if (isa<ScalableVectorType>(AI->getAllocatedType()))
      return true;
  }

  return false;
}

// Return the largest legal scalable vector type that matches VT's element type.
static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT) {
  assert(VT.isFixedLengthVector() &&
         DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
         "Expected legal fixed length vector!");
  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("unexpected element type for SVE container");
  case MVT::i8:
    return EVT(MVT::nxv16i8);
  case MVT::i16:
    return EVT(MVT::nxv8i16);
  case MVT::i32:
    return EVT(MVT::nxv4i32);
  case MVT::i64:
    return EVT(MVT::nxv2i64);
  case MVT::f16:
    return EVT(MVT::nxv8f16);
  case MVT::f32:
    return EVT(MVT::nxv4f32);
  case MVT::f64:
    return EVT(MVT::nxv2f64);
  }
}

// Return a PTRUE with active lanes corresponding to the extent of VT.
static SDValue getPredicateForFixedLengthVector(SelectionDAG &DAG, SDLoc &DL,
                                                EVT VT) {
  assert(VT.isFixedLengthVector() &&
         DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
         "Expected legal fixed length vector!");

  Optional<unsigned> PgPattern =
      getSVEPredPatternFromNumElements(VT.getVectorNumElements());
  assert(PgPattern && "Unexpected element count for SVE predicate");

  // For vectors that are exactly getMaxSVEVectorSizeInBits big, we can use
  // AArch64SVEPredPattern::all, which can enable the use of unpredicated
  // variants of instructions when available.
  const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
  unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits();
  unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits();
  if (MaxSVESize && MinSVESize == MaxSVESize &&
      MaxSVESize == VT.getSizeInBits())
    PgPattern = AArch64SVEPredPattern::all;

  MVT MaskVT;
  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("unexpected element type for SVE predicate");
  case MVT::i8:
    MaskVT = MVT::nxv16i1;
    break;
  case MVT::i16:
  case MVT::f16:
    MaskVT = MVT::nxv8i1;
    break;
  case MVT::i32:
  case MVT::f32:
    MaskVT = MVT::nxv4i1;
    break;
  case MVT::i64:
  case MVT::f64:
    MaskVT = MVT::nxv2i1;
    break;
  }

  return getPTrue(DAG, DL, MaskVT, *PgPattern);
}

static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL,
                                             EVT VT) {
  assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
         "Expected legal scalable vector!");
  auto PredTy = VT.changeVectorElementType(MVT::i1);
  return getPTrue(DAG, DL, PredTy, AArch64SVEPredPattern::all);
}

static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) {
  if (VT.isFixedLengthVector())
    return getPredicateForFixedLengthVector(DAG, DL, VT);

  return getPredicateForScalableVector(DAG, DL, VT);
}

// Grow V to consume an entire SVE register.
static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) {
  assert(VT.isScalableVector() &&
         "Expected to convert into a scalable vector!");
  assert(V.getValueType().isFixedLengthVector() &&
         "Expected a fixed length vector operand!");
  SDLoc DL(V);
  SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
}

// Shrink V so it's just big enough to maintain a VT's worth of data.
static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) {
  assert(VT.isFixedLengthVector() &&
         "Expected to convert into a fixed length vector!");
  assert(V.getValueType().isScalableVector() &&
         "Expected a scalable vector operand!");
  SDLoc DL(V);
  SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
}

// Convert all fixed length vector loads larger than NEON to masked_loads.
SDValue AArch64TargetLowering::LowerFixedLengthVectorLoadToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  auto Load = cast<LoadSDNode>(Op);

  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
  EVT LoadVT = ContainerVT;
  EVT MemVT = Load->getMemoryVT();

  auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT);

  if (VT.isFloatingPoint() && Load->getExtensionType() == ISD::EXTLOAD) {
    LoadVT = ContainerVT.changeTypeToInteger();
    MemVT = MemVT.changeTypeToInteger();
  }

  SDValue NewLoad = DAG.getMaskedLoad(
      LoadVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), Pg,
      DAG.getUNDEF(LoadVT), MemVT, Load->getMemOperand(),
      Load->getAddressingMode(), Load->getExtensionType());

  SDValue Result = NewLoad;
  if (VT.isFloatingPoint() && Load->getExtensionType() == ISD::EXTLOAD) {
    EVT ExtendVT = ContainerVT.changeVectorElementType(
        Load->getMemoryVT().getVectorElementType());

    Result = getSVESafeBitCast(ExtendVT, Result, DAG);
    Result = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT,
                         Pg, Result, DAG.getUNDEF(ContainerVT));
  }

  Result = convertFromScalableVector(DAG, VT, Result);
  SDValue MergedValues[2] = {Result, NewLoad.getValue(1)};
  return DAG.getMergeValues(MergedValues, DL);
}

static SDValue convertFixedMaskToScalableVector(SDValue Mask,
                                                SelectionDAG &DAG) {
  SDLoc DL(Mask);
  EVT InVT = Mask.getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);

  auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT);

  if (ISD::isBuildVectorAllOnes(Mask.getNode()))
    return Pg;

  auto Op1 = convertToScalableVector(DAG, ContainerVT, Mask);
  auto Op2 = DAG.getConstant(0, DL, ContainerVT);

  return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, Pg.getValueType(),
                     {Pg, Op1, Op2, DAG.getCondCode(ISD::SETNE)});
}

// Convert all fixed length vector loads larger than NEON to masked_loads.
SDValue AArch64TargetLowering::LowerFixedLengthVectorMLoadToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  auto Load = cast<MaskedLoadSDNode>(Op);

  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);

  SDValue Mask = convertFixedMaskToScalableVector(Load->getMask(), DAG);

  SDValue PassThru;
  bool IsPassThruZeroOrUndef = false;

  if (Load->getPassThru()->isUndef()) {
    PassThru = DAG.getUNDEF(ContainerVT);
    IsPassThruZeroOrUndef = true;
  } else {
    if (ContainerVT.isInteger())
      PassThru = DAG.getConstant(0, DL, ContainerVT);
    else
      PassThru = DAG.getConstantFP(0, DL, ContainerVT);
    if (isZerosVector(Load->getPassThru().getNode()))
      IsPassThruZeroOrUndef = true;
  }

  SDValue NewLoad = DAG.getMaskedLoad(
      ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(),
      Mask, PassThru, Load->getMemoryVT(), Load->getMemOperand(),
      Load->getAddressingMode(), Load->getExtensionType());

  SDValue Result = NewLoad;
  if (!IsPassThruZeroOrUndef) {
    SDValue OldPassThru =
        convertToScalableVector(DAG, ContainerVT, Load->getPassThru());
    Result = DAG.getSelect(DL, ContainerVT, Mask, Result, OldPassThru);
  }

  Result = convertFromScalableVector(DAG, VT, Result);
  SDValue MergedValues[2] = {Result, NewLoad.getValue(1)};
  return DAG.getMergeValues(MergedValues, DL);
}

// Convert all fixed length vector stores larger than NEON to masked_stores.
SDValue AArch64TargetLowering::LowerFixedLengthVectorStoreToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  auto Store = cast<StoreSDNode>(Op);

  SDLoc DL(Op);
  EVT VT = Store->getValue().getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
  EVT MemVT = Store->getMemoryVT();

  auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT);
  auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue());

  if (VT.isFloatingPoint() && Store->isTruncatingStore()) {
    EVT TruncVT = ContainerVT.changeVectorElementType(
        Store->getMemoryVT().getVectorElementType());
    MemVT = MemVT.changeTypeToInteger();
    NewValue = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, TruncVT, Pg,
                           NewValue, DAG.getTargetConstant(0, DL, MVT::i64),
                           DAG.getUNDEF(TruncVT));
    NewValue =
        getSVESafeBitCast(ContainerVT.changeTypeToInteger(), NewValue, DAG);
  }

  return DAG.getMaskedStore(Store->getChain(), DL, NewValue,
                            Store->getBasePtr(), Store->getOffset(), Pg, MemVT,
                            Store->getMemOperand(), Store->getAddressingMode(),
                            Store->isTruncatingStore());
}

SDValue AArch64TargetLowering::LowerFixedLengthVectorMStoreToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  auto *Store = cast<MaskedStoreSDNode>(Op);

  SDLoc DL(Op);
  EVT VT = Store->getValue().getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);

  auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue());
  SDValue Mask = convertFixedMaskToScalableVector(Store->getMask(), DAG);

  return DAG.getMaskedStore(
      Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(),
      Mask, Store->getMemoryVT(), Store->getMemOperand(),
      Store->getAddressingMode(), Store->isTruncatingStore());
}

SDValue AArch64TargetLowering::LowerFixedLengthVectorIntDivideToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  EVT EltVT = VT.getVectorElementType();

  bool Signed = Op.getOpcode() == ISD::SDIV;
  unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED;

  bool Negated;
  uint64_t SplatVal;
  if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) {
    EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
    SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));
    SDValue Op2 = DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32);

    SDValue Pg = getPredicateForFixedLengthVector(DAG, dl, VT);
    SDValue Res = DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, ContainerVT, Pg, Op1, Op2);
    if (Negated)
      Res = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Res);

    return convertFromScalableVector(DAG, VT, Res);
  }

  // Scalable vector i32/i64 DIV is supported.
  if (EltVT == MVT::i32 || EltVT == MVT::i64)
    return LowerToPredicatedOp(Op, DAG, PredOpcode);

  // Scalable vector i8/i16 DIV is not supported. Promote it to i32.
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
  EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
  EVT FixedWidenedVT = HalfVT.widenIntegerVectorElementType(*DAG.getContext());
  EVT ScalableWidenedVT = getContainerForFixedLengthVector(DAG, FixedWidenedVT);

  // If this is not a full vector, extend, div, and truncate it.
  EVT WidenedVT = VT.widenIntegerVectorElementType(*DAG.getContext());
  if (DAG.getTargetLoweringInfo().isTypeLegal(WidenedVT)) {
    unsigned ExtendOpcode = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    SDValue Op0 = DAG.getNode(ExtendOpcode, dl, WidenedVT, Op.getOperand(0));
    SDValue Op1 = DAG.getNode(ExtendOpcode, dl, WidenedVT, Op.getOperand(1));
    SDValue Div = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0, Op1);
    return DAG.getNode(ISD::TRUNCATE, dl, VT, Div);
  }

  // Convert the operands to scalable vectors.
  SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));
  SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1));

  // Extend the scalable operands.
  unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;
  unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI;
  SDValue Op0Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op0);
  SDValue Op1Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op1);
  SDValue Op0Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op0);
  SDValue Op1Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op1);

  // Convert back to fixed vectors so the DIV can be further lowered.
  Op0Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op0Lo);
  Op1Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op1Lo);
  Op0Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op0Hi);
  Op1Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op1Hi);
  SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT,
                                 Op0Lo, Op1Lo);
  SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT,
                                 Op0Hi, Op1Hi);

  // Convert again to scalable vectors to truncate.
  ResultLo = convertToScalableVector(DAG, ScalableWidenedVT, ResultLo);
  ResultHi = convertToScalableVector(DAG, ScalableWidenedVT, ResultHi);
  SDValue ScalableResult = DAG.getNode(AArch64ISD::UZP1, dl, ContainerVT,
                                       ResultLo, ResultHi);

  return convertFromScalableVector(DAG, VT, ScalableResult);
}

SDValue AArch64TargetLowering::LowerFixedLengthVectorIntExtendToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  SDLoc DL(Op);
  SDValue Val = Op.getOperand(0);
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType());
  Val = convertToScalableVector(DAG, ContainerVT, Val);

  bool Signed = Op.getOpcode() == ISD::SIGN_EXTEND;
  unsigned ExtendOpc = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;

  // Repeatedly unpack Val until the result is of the desired element type.
  switch (ContainerVT.getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("unimplemented container type");
  case MVT::nxv16i8:
    Val = DAG.getNode(ExtendOpc, DL, MVT::nxv8i16, Val);
    if (VT.getVectorElementType() == MVT::i16)
      break;
    LLVM_FALLTHROUGH;
  case MVT::nxv8i16:
    Val = DAG.getNode(ExtendOpc, DL, MVT::nxv4i32, Val);
    if (VT.getVectorElementType() == MVT::i32)
      break;
    LLVM_FALLTHROUGH;
  case MVT::nxv4i32:
    Val = DAG.getNode(ExtendOpc, DL, MVT::nxv2i64, Val);
    assert(VT.getVectorElementType() == MVT::i64 && "Unexpected element type!");
    break;
  }

  return convertFromScalableVector(DAG, VT, Val);
}

SDValue AArch64TargetLowering::LowerFixedLengthVectorTruncateToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  SDLoc DL(Op);
  SDValue Val = Op.getOperand(0);
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType());
  Val = convertToScalableVector(DAG, ContainerVT, Val);

  // Repeatedly truncate Val until the result is of the desired element type.
  switch (ContainerVT.getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("unimplemented container type");
  case MVT::nxv2i64:
    Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv4i32, Val);
    Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv4i32, Val, Val);
    if (VT.getVectorElementType() == MVT::i32)
      break;
    LLVM_FALLTHROUGH;
  case MVT::nxv4i32:
    Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv8i16, Val);
    Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv8i16, Val, Val);
    if (VT.getVectorElementType() == MVT::i16)
      break;
    LLVM_FALLTHROUGH;
  case MVT::nxv8i16:
    Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i8, Val);
    Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv16i8, Val, Val);
    assert(VT.getVectorElementType() == MVT::i8 && "Unexpected element type!");
    break;
  }

  return convertFromScalableVector(DAG, VT, Val);
}

SDValue AArch64TargetLowering::LowerFixedLengthExtractVectorElt(
    SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  EVT InVT = Op.getOperand(0).getValueType();
  assert(InVT.isFixedLengthVector() && "Expected fixed length vector type!");

  SDLoc DL(Op);
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
  SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0));

  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Op.getOperand(1));
}

SDValue AArch64TargetLowering::LowerFixedLengthInsertVectorElt(
    SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  SDLoc DL(Op);
  EVT InVT = Op.getOperand(0).getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
  SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0));

  auto ScalableRes = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, Op0,
                                 Op.getOperand(1), Op.getOperand(2));

  return convertFromScalableVector(DAG, VT, ScalableRes);
}

// Convert vector operation 'Op' to an equivalent predicated operation whereby
// the original operation's type is used to construct a suitable predicate.
// NOTE: The results for inactive lanes are undefined.
SDValue AArch64TargetLowering::LowerToPredicatedOp(SDValue Op,
                                                   SelectionDAG &DAG,
                                                   unsigned NewOp) const {
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  auto Pg = getPredicateForVector(DAG, DL, VT);

  if (VT.isFixedLengthVector()) {
    assert(isTypeLegal(VT) && "Expected only legal fixed-width types");
    EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);

    // Create list of operands by converting existing ones to scalable types.
    SmallVector<SDValue, 4> Operands = {Pg};
    for (const SDValue &V : Op->op_values()) {
      if (isa<CondCodeSDNode>(V)) {
        Operands.push_back(V);
        continue;
      }

      if (const VTSDNode *VTNode = dyn_cast<VTSDNode>(V)) {
        EVT VTArg = VTNode->getVT().getVectorElementType();
        EVT NewVTArg = ContainerVT.changeVectorElementType(VTArg);
        Operands.push_back(DAG.getValueType(NewVTArg));
        continue;
      }

      assert(isTypeLegal(V.getValueType()) &&
             "Expected only legal fixed-width types");
      Operands.push_back(convertToScalableVector(DAG, ContainerVT, V));
    }

    if (isMergePassthruOpcode(NewOp))
      Operands.push_back(DAG.getUNDEF(ContainerVT));

    auto ScalableRes = DAG.getNode(NewOp, DL, ContainerVT, Operands);
    return convertFromScalableVector(DAG, VT, ScalableRes);
  }

  assert(VT.isScalableVector() && "Only expect to lower scalable vector op!");

  SmallVector<SDValue, 4> Operands = {Pg};
  for (const SDValue &V : Op->op_values()) {
    assert((!V.getValueType().isVector() ||
            V.getValueType().isScalableVector()) &&
           "Only scalable vectors are supported!");
    Operands.push_back(V);
  }

  if (isMergePassthruOpcode(NewOp))
    Operands.push_back(DAG.getUNDEF(VT));

  return DAG.getNode(NewOp, DL, VT, Operands, Op->getFlags());
}

// If a fixed length vector operation has no side effects when applied to
// undefined elements, we can safely use scalable vectors to perform the same
// operation without needing to worry about predication.
SDValue AArch64TargetLowering::LowerToScalableOp(SDValue Op,
                                                 SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(useSVEForFixedLengthVectorVT(VT) &&
         "Only expected to lower fixed length vector operation!");
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);

  // Create list of operands by converting existing ones to scalable types.
  SmallVector<SDValue, 4> Ops;
  for (const SDValue &V : Op->op_values()) {
    assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");

    // Pass through non-vector operands.
    if (!V.getValueType().isVector()) {
      Ops.push_back(V);
      continue;
    }

    // "cast" fixed length vector to a scalable vector.
    assert(useSVEForFixedLengthVectorVT(V.getValueType()) &&
           "Only fixed length vectors are supported!");
    Ops.push_back(convertToScalableVector(DAG, ContainerVT, V));
  }

  auto ScalableRes = DAG.getNode(Op.getOpcode(), SDLoc(Op), ContainerVT, Ops);
  return convertFromScalableVector(DAG, VT, ScalableRes);
}

SDValue AArch64TargetLowering::LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp,
    SelectionDAG &DAG) const {
  SDLoc DL(ScalarOp);
  SDValue AccOp = ScalarOp.getOperand(0);
  SDValue VecOp = ScalarOp.getOperand(1);
  EVT SrcVT = VecOp.getValueType();
  EVT ResVT = SrcVT.getVectorElementType();

  EVT ContainerVT = SrcVT;
  if (SrcVT.isFixedLengthVector()) {
    ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT);
    VecOp = convertToScalableVector(DAG, ContainerVT, VecOp);
  }

  SDValue Pg = getPredicateForVector(DAG, DL, SrcVT);
  SDValue Zero = DAG.getConstant(0, DL, MVT::i64);

  // Convert operands to Scalable.
  AccOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT,
                      DAG.getUNDEF(ContainerVT), AccOp, Zero);

  // Perform reduction.
  SDValue Rdx = DAG.getNode(AArch64ISD::FADDA_PRED, DL, ContainerVT,
                            Pg, AccOp, VecOp);

  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, Zero);
}

SDValue AArch64TargetLowering::LowerPredReductionToSVE(SDValue ReduceOp,
                                                       SelectionDAG &DAG) const {
  SDLoc DL(ReduceOp);
  SDValue Op = ReduceOp.getOperand(0);
  EVT OpVT = Op.getValueType();
  EVT VT = ReduceOp.getValueType();

  if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1)
    return SDValue();

  SDValue Pg = getPredicateForVector(DAG, DL, OpVT);

  switch (ReduceOp.getOpcode()) {
  default:
    return SDValue();
  case ISD::VECREDUCE_OR:
    if (isAllActivePredicate(DAG, Pg) && OpVT == MVT::nxv16i1)
      // The predicate can be 'Op' because
      // vecreduce_or(Op & <all true>) <=> vecreduce_or(Op).
      return getPTest(DAG, VT, Op, Op, AArch64CC::ANY_ACTIVE);
    else
      return getPTest(DAG, VT, Pg, Op, AArch64CC::ANY_ACTIVE);
  case ISD::VECREDUCE_AND: {
    Op = DAG.getNode(ISD::XOR, DL, OpVT, Op, Pg);
    return getPTest(DAG, VT, Pg, Op, AArch64CC::NONE_ACTIVE);
  }
  case ISD::VECREDUCE_XOR: {
    SDValue ID =
        DAG.getTargetConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64);
    if (OpVT == MVT::nxv1i1) {
      // Emulate a CNTP on .Q using .D and a different governing predicate.
      Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Pg);
      Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Op);
    }
    SDValue Cntp =
        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64, ID, Pg, Op);
    return DAG.getAnyExtOrTrunc(Cntp, DL, VT);
  }
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerReductionToSVE(unsigned Opcode,
                                                   SDValue ScalarOp,
                                                   SelectionDAG &DAG) const {
  SDLoc DL(ScalarOp);
  SDValue VecOp = ScalarOp.getOperand(0);
  EVT SrcVT = VecOp.getValueType();

  if (useSVEForFixedLengthVectorVT(
          SrcVT,
          /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) {
    EVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT);
    VecOp = convertToScalableVector(DAG, ContainerVT, VecOp);
  }

  // UADDV always returns an i64 result.
  EVT ResVT = (Opcode == AArch64ISD::UADDV_PRED) ? MVT::i64 :
                                                   SrcVT.getVectorElementType();
  EVT RdxVT = SrcVT;
  if (SrcVT.isFixedLengthVector() || Opcode == AArch64ISD::UADDV_PRED)
    RdxVT = getPackedSVEVectorVT(ResVT);

  SDValue Pg = getPredicateForVector(DAG, DL, SrcVT);
  SDValue Rdx = DAG.getNode(Opcode, DL, RdxVT, Pg, VecOp);
  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT,
                            Rdx, DAG.getConstant(0, DL, MVT::i64));

  // The VEC_REDUCE nodes expect an element size result.
  if (ResVT != ScalarOp.getValueType())
    Res = DAG.getAnyExtOrTrunc(Res, DL, ScalarOp.getValueType());

  return Res;
}

SDValue
AArch64TargetLowering::LowerFixedLengthVectorSelectToSVE(SDValue Op,
    SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  EVT InVT = Op.getOperand(1).getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
  SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(1));
  SDValue Op2 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(2));

  // Convert the mask to a predicated (NOTE: We don't need to worry about
  // inactive lanes since VSELECT is safe when given undefined elements).
  EVT MaskVT = Op.getOperand(0).getValueType();
  EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskVT);
  auto Mask = convertToScalableVector(DAG, MaskContainerVT, Op.getOperand(0));
  Mask = DAG.getNode(ISD::TRUNCATE, DL,
                     MaskContainerVT.changeVectorElementType(MVT::i1), Mask);

  auto ScalableRes = DAG.getNode(ISD::VSELECT, DL, ContainerVT,
                                Mask, Op1, Op2);

  return convertFromScalableVector(DAG, VT, ScalableRes);
}

SDValue AArch64TargetLowering::LowerFixedLengthVectorSetccToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT InVT = Op.getOperand(0).getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);

  assert(useSVEForFixedLengthVectorVT(InVT) &&
         "Only expected to lower fixed length vector operation!");
  assert(Op.getValueType() == InVT.changeTypeToInteger() &&
         "Expected integer result of the same bit length as the inputs!");

  auto Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));
  auto Op2 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1));
  auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT);

  EVT CmpVT = Pg.getValueType();
  auto Cmp = DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, CmpVT,
                         {Pg, Op1, Op2, Op.getOperand(2)});

  EVT PromoteVT = ContainerVT.changeTypeToInteger();
  auto Promote = DAG.getBoolExtOrTrunc(Cmp, DL, PromoteVT, InVT);
  return convertFromScalableVector(DAG, Op.getValueType(), Promote);
}

SDValue
AArch64TargetLowering::LowerFixedLengthBitcastToSVE(SDValue Op,
                                                    SelectionDAG &DAG) const {
  SDLoc DL(Op);
  auto SrcOp = Op.getOperand(0);
  EVT VT = Op.getValueType();
  EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT);
  EVT ContainerSrcVT =
      getContainerForFixedLengthVector(DAG, SrcOp.getValueType());

  SrcOp = convertToScalableVector(DAG, ContainerSrcVT, SrcOp);
  Op = DAG.getNode(ISD::BITCAST, DL, ContainerDstVT, SrcOp);
  return convertFromScalableVector(DAG, VT, Op);
}

SDValue AArch64TargetLowering::LowerFixedLengthConcatVectorsToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  unsigned NumOperands = Op->getNumOperands();

  assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
         "Unexpected number of operands in CONCAT_VECTORS");

  auto SrcOp1 = Op.getOperand(0);
  auto SrcOp2 = Op.getOperand(1);
  EVT VT = Op.getValueType();
  EVT SrcVT = SrcOp1.getValueType();

  if (NumOperands > 2) {
    SmallVector<SDValue, 4> Ops;
    EVT PairVT = SrcVT.getDoubleNumVectorElementsVT(*DAG.getContext());
    for (unsigned I = 0; I < NumOperands; I += 2)
      Ops.push_back(DAG.getNode(ISD::CONCAT_VECTORS, DL, PairVT,
                                Op->getOperand(I), Op->getOperand(I + 1)));

    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Ops);
  }

  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);

  SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT);
  SrcOp1 = convertToScalableVector(DAG, ContainerVT, SrcOp1);
  SrcOp2 = convertToScalableVector(DAG, ContainerVT, SrcOp2);

  Op = DAG.getNode(AArch64ISD::SPLICE, DL, ContainerVT, Pg, SrcOp1, SrcOp2);

  return convertFromScalableVector(DAG, VT, Op);
}

SDValue
AArch64TargetLowering::LowerFixedLengthFPExtendToSVE(SDValue Op,
                                                     SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  SDLoc DL(Op);
  SDValue Val = Op.getOperand(0);
  SDValue Pg = getPredicateForVector(DAG, DL, VT);
  EVT SrcVT = Val.getValueType();
  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
  EVT ExtendVT = ContainerVT.changeVectorElementType(
      SrcVT.getVectorElementType());

  Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val);
  Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT.changeTypeToInteger(), Val);

  Val = convertToScalableVector(DAG, ContainerVT.changeTypeToInteger(), Val);
  Val = getSVESafeBitCast(ExtendVT, Val, DAG);
  Val = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT,
                    Pg, Val, DAG.getUNDEF(ContainerVT));

  return convertFromScalableVector(DAG, VT, Val);
}

SDValue
AArch64TargetLowering::LowerFixedLengthFPRoundToSVE(SDValue Op,
                                                    SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  SDLoc DL(Op);
  SDValue Val = Op.getOperand(0);
  EVT SrcVT = Val.getValueType();
  EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT);
  EVT RoundVT = ContainerSrcVT.changeVectorElementType(
      VT.getVectorElementType());
  SDValue Pg = getPredicateForVector(DAG, DL, RoundVT);

  Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
  Val = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, RoundVT, Pg, Val,
                    Op.getOperand(1), DAG.getUNDEF(RoundVT));
  Val = getSVESafeBitCast(ContainerSrcVT.changeTypeToInteger(), Val, DAG);
  Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val);

  Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val);
  return DAG.getNode(ISD::BITCAST, DL, VT, Val);
}

SDValue
AArch64TargetLowering::LowerFixedLengthIntToFPToSVE(SDValue Op,
                                                    SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP;
  unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU
                             : AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU;

  SDLoc DL(Op);
  SDValue Val = Op.getOperand(0);
  EVT SrcVT = Val.getValueType();
  EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT);
  EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT);

  if (ContainerSrcVT.getVectorElementType().getSizeInBits() <=
      ContainerDstVT.getVectorElementType().getSizeInBits()) {
    SDValue Pg = getPredicateForVector(DAG, DL, VT);

    Val = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
                      VT.changeTypeToInteger(), Val);

    Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
    Val = getSVESafeBitCast(ContainerDstVT.changeTypeToInteger(), Val, DAG);
    // Safe to use a larger than specified operand since we just unpacked the
    // data, hence the upper bits are zero.
    Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val,
                      DAG.getUNDEF(ContainerDstVT));
    return convertFromScalableVector(DAG, VT, Val);
  } else {
    EVT CvtVT = ContainerSrcVT.changeVectorElementType(
        ContainerDstVT.getVectorElementType());
    SDValue Pg = getPredicateForVector(DAG, DL, CvtVT);

    Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
    Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT));
    Val = getSVESafeBitCast(ContainerSrcVT, Val, DAG);
    Val = convertFromScalableVector(DAG, SrcVT, Val);

    Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val);
    return DAG.getNode(ISD::BITCAST, DL, VT, Val);
  }
}

SDValue
AArch64TargetLowering::LowerFixedLengthFPToIntToSVE(SDValue Op,
                                                    SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT;
  unsigned Opcode = IsSigned ? AArch64ISD::FCVTZS_MERGE_PASSTHRU
                             : AArch64ISD::FCVTZU_MERGE_PASSTHRU;

  SDLoc DL(Op);
  SDValue Val = Op.getOperand(0);
  EVT SrcVT = Val.getValueType();
  EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT);
  EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT);

  if (ContainerSrcVT.getVectorElementType().getSizeInBits() <=
      ContainerDstVT.getVectorElementType().getSizeInBits()) {
    EVT CvtVT = ContainerDstVT.changeVectorElementType(
      ContainerSrcVT.getVectorElementType());
    SDValue Pg = getPredicateForVector(DAG, DL, VT);

    Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val);
    Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Val);

    Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
    Val = getSVESafeBitCast(CvtVT, Val, DAG);
    Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val,
                      DAG.getUNDEF(ContainerDstVT));
    return convertFromScalableVector(DAG, VT, Val);
  } else {
    EVT CvtVT = ContainerSrcVT.changeTypeToInteger();
    SDValue Pg = getPredicateForVector(DAG, DL, CvtVT);

    // Safe to use a larger than specified result since an fp_to_int where the
    // result doesn't fit into the destination is undefined.
    Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
    Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT));
    Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val);

    return DAG.getNode(ISD::TRUNCATE, DL, VT, Val);
  }
}

SDValue AArch64TargetLowering::LowerFixedLengthVECTOR_SHUFFLEToSVE(
    SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");

  auto *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
  auto ShuffleMask = SVN->getMask();

  SDLoc DL(Op);
  SDValue Op1 = Op.getOperand(0);
  SDValue Op2 = Op.getOperand(1);

  EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
  Op1 = convertToScalableVector(DAG, ContainerVT, Op1);
  Op2 = convertToScalableVector(DAG, ContainerVT, Op2);

  bool ReverseEXT = false;
  unsigned Imm;
  if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm) &&
      Imm == VT.getVectorNumElements() - 1) {
    if (ReverseEXT)
      std::swap(Op1, Op2);

    EVT ScalarTy = VT.getVectorElementType();
    if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
      ScalarTy = MVT::i32;
    SDValue Scalar = DAG.getNode(
        ISD::EXTRACT_VECTOR_ELT, DL, ScalarTy, Op1,
        DAG.getConstant(VT.getVectorNumElements() - 1, DL, MVT::i64));
    Op = DAG.getNode(AArch64ISD::INSR, DL, ContainerVT, Op2, Scalar);
    return convertFromScalableVector(DAG, VT, Op);
  }

  for (unsigned LaneSize : {64U, 32U, 16U}) {
    if (isREVMask(ShuffleMask, VT, LaneSize)) {
      EVT NewVT =
          getPackedSVEVectorVT(EVT::getIntegerVT(*DAG.getContext(), LaneSize));
      unsigned RevOp;
      unsigned EltSz = VT.getScalarSizeInBits();
      if (EltSz == 8)
        RevOp = AArch64ISD::BSWAP_MERGE_PASSTHRU;
      else if (EltSz == 16)
        RevOp = AArch64ISD::REVH_MERGE_PASSTHRU;
      else
        RevOp = AArch64ISD::REVW_MERGE_PASSTHRU;

      Op = DAG.getNode(ISD::BITCAST, DL, NewVT, Op1);
      Op = LowerToPredicatedOp(Op, DAG, RevOp);
      Op = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Op);
      return convertFromScalableVector(DAG, VT, Op);
    }
  }

  unsigned WhichResult;
  if (isZIPMask(ShuffleMask, VT, WhichResult) && WhichResult == 0)
    return convertFromScalableVector(
        DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op2));

  if (isTRNMask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
    return convertFromScalableVector(
        DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2));
  }

  if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult == 0)
    return convertFromScalableVector(
        DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op1));

  if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
    return convertFromScalableVector(
        DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1));
  }

  // Functions like isZIPMask return true when a ISD::VECTOR_SHUFFLE's mask
  // represents the same logical operation as performed by a ZIP instruction. In
  // isolation these functions do not mean the ISD::VECTOR_SHUFFLE is exactly
  // equivalent to an AArch64 instruction. There's the extra component of
  // ISD::VECTOR_SHUFFLE's value type to consider. Prior to SVE these functions
  // only operated on 64/128bit vector types that have a direct mapping to a
  // target register and so an exact mapping is implied.
  // However, when using SVE for fixed length vectors, most legal vector types
  // are actually sub-vectors of a larger SVE register. When mapping
  // ISD::VECTOR_SHUFFLE to an SVE instruction care must be taken to consider
  // how the mask's indices translate. Specifically, when the mapping requires
  // an exact meaning for a specific vector index (e.g. Index X is the last
  // vector element in the register) then such mappings are often only safe when
  // the exact SVE register size is know. The main exception to this is when
  // indices are logically relative to the first element of either
  // ISD::VECTOR_SHUFFLE operand because these relative indices don't change
  // when converting from fixed-length to scalable vector types (i.e. the start
  // of a fixed length vector is always the start of a scalable vector).
  unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits();
  unsigned MaxSVESize = Subtarget->getMaxSVEVectorSizeInBits();
  if (MinSVESize == MaxSVESize && MaxSVESize == VT.getSizeInBits()) {
    if (ShuffleVectorInst::isReverseMask(ShuffleMask) && Op2.isUndef()) {
      Op = DAG.getNode(ISD::VECTOR_REVERSE, DL, ContainerVT, Op1);
      return convertFromScalableVector(DAG, VT, Op);
    }

    if (isZIPMask(ShuffleMask, VT, WhichResult) && WhichResult != 0)
      return convertFromScalableVector(
          DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op2));

    if (isUZPMask(ShuffleMask, VT, WhichResult)) {
      unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
      return convertFromScalableVector(
          DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2));
    }

    if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult != 0)
      return convertFromScalableVector(
          DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op1));

    if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
      unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
      return convertFromScalableVector(
          DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1));
    }
  }

  return SDValue();
}

SDValue AArch64TargetLowering::getSVESafeBitCast(EVT VT, SDValue Op,
                                                 SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT InVT = Op.getValueType();

  assert(VT.isScalableVector() && isTypeLegal(VT) &&
         InVT.isScalableVector() && isTypeLegal(InVT) &&
         "Only expect to cast between legal scalable vector types!");
  assert(VT.getVectorElementType() != MVT::i1 &&
         InVT.getVectorElementType() != MVT::i1 &&
         "For predicate bitcasts, use getSVEPredicateBitCast");

  if (InVT == VT)
    return Op;

  EVT PackedVT = getPackedSVEVectorVT(VT.getVectorElementType());
  EVT PackedInVT = getPackedSVEVectorVT(InVT.getVectorElementType());

  // Safe bitcasting between unpacked vector types of different element counts
  // is currently unsupported because the following is missing the necessary
  // work to ensure the result's elements live where they're supposed to within
  // an SVE register.
  //                01234567
  // e.g. nxv2i32 = XX??XX??
  //      nxv4f16 = X?X?X?X?
  assert((VT.getVectorElementCount() == InVT.getVectorElementCount() ||
          VT == PackedVT || InVT == PackedInVT) &&
         "Unexpected bitcast!");

  // Pack input if required.
  if (InVT != PackedInVT)
    Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, PackedInVT, Op);

  Op = DAG.getNode(ISD::BITCAST, DL, PackedVT, Op);

  // Unpack result if required.
  if (VT != PackedVT)
    Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op);

  return Op;
}

bool AArch64TargetLowering::isAllActivePredicate(SelectionDAG &DAG,
                                                 SDValue N) const {
  return ::isAllActivePredicate(DAG, N);
}

EVT AArch64TargetLowering::getPromotedVTForPredicate(EVT VT) const {
  return ::getPromotedVTForPredicate(VT);
}

bool AArch64TargetLowering::SimplifyDemandedBitsForTargetNode(
    SDValue Op, const APInt &OriginalDemandedBits,
    const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
    unsigned Depth) const {

  unsigned Opc = Op.getOpcode();
  switch (Opc) {
  case AArch64ISD::VSHL: {
    // Match (VSHL (VLSHR Val X) X)
    SDValue ShiftL = Op;
    SDValue ShiftR = Op->getOperand(0);
    if (ShiftR->getOpcode() != AArch64ISD::VLSHR)
      return false;

    if (!ShiftL.hasOneUse() || !ShiftR.hasOneUse())
      return false;

    unsigned ShiftLBits = ShiftL->getConstantOperandVal(1);
    unsigned ShiftRBits = ShiftR->getConstantOperandVal(1);

    // Other cases can be handled as well, but this is not
    // implemented.
    if (ShiftRBits != ShiftLBits)
      return false;

    unsigned ScalarSize = Op.getScalarValueSizeInBits();
    assert(ScalarSize > ShiftLBits && "Invalid shift imm");

    APInt ZeroBits = APInt::getLowBitsSet(ScalarSize, ShiftLBits);
    APInt UnusedBits = ~OriginalDemandedBits;

    if ((ZeroBits & UnusedBits) != ZeroBits)
      return false;

    // All bits that are zeroed by (VSHL (VLSHR Val X) X) are not
    // used - simplify to just Val.
    return TLO.CombineTo(Op, ShiftR->getOperand(0));
  }
  }

  return TargetLowering::SimplifyDemandedBitsForTargetNode(
      Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
}

bool AArch64TargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
  return Op.getOpcode() == AArch64ISD::DUP ||
         (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
          Op.getOperand(0).getOpcode() == AArch64ISD::DUP) ||
         TargetLowering::isTargetCanonicalConstantNode(Op);
}

bool AArch64TargetLowering::isConstantUnsignedBitfieldExtractLegal(
    unsigned Opc, LLT Ty1, LLT Ty2) const {
  return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64));
}