#include "llvm/CodeGen/SelectionDAG.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
SDVTList Res = {VTs, NumVTs};
return Res;
}
void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
void SelectionDAG::DAGNodeDeletedListener::anchor() {}
#define DEBUG_TYPE "selectiondag"
static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
cl::Hidden, cl::init(true),
cl::desc("Gang up loads and stores generated by inlining of memcpy"));
static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
cl::desc("Number limit for gluing ld/st of memcpy."),
cl::Hidden, cl::init(0));
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
}
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
return getValueAPF().bitwiseIsEqual(V);
}
bool ConstantFPSDNode::isValueValidForType(EVT VT,
const APFloat& Val) {
assert(VT.isFloatingPoint() && "Can only convert between FP types");
APFloat Val2 = APFloat(Val);
bool losesInfo;
(void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven,
&losesInfo);
return !losesInfo;
}
bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
if (N->getOpcode() == ISD::SPLAT_VECTOR) {
unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
SplatVal = Op0->getAPIntValue().trunc(EltSize);
return true;
}
if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
return true;
}
}
auto *BV = dyn_cast<BuildVectorSDNode>(N);
if (!BV)
return false;
APInt SplatUndef;
unsigned SplatBitSize;
bool HasUndefs;
unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
EltSize) &&
EltSize == SplatBitSize;
}
bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
APInt SplatVal;
return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
}
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
while (i != e && N->getOperand(i).isUndef())
++i;
if (i == e) return false;
SDValue NotZero = N->getOperand(i);
unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
if (CN->getAPIntValue().countTrailingOnes() < EltSize)
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
return false;
} else
return false;
for (++i; i != e; ++i)
if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
return false;
return true;
}
bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
APInt SplatVal;
return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
}
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
bool IsAllUndef = true;
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
IsAllUndef = false;
unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
if (CN->getAPIntValue().countTrailingZeros() < EltSize)
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
return false;
} else
return false;
}
if (IsAllUndef)
return false;
return true;
}
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
return isConstantSplatVectorAllOnes(N, true);
}
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
return isConstantSplatVectorAllZeros(N, true);
}
bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
if (!isa<ConstantSDNode>(Op))
return false;
}
return true;
}
bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
if (!isa<ConstantFPSDNode>(Op))
return false;
}
return true;
}
bool ISD::allOperandsUndef(const SDNode *N) {
if (N->getNumOperands() == 0)
return false;
return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
}
bool ISD::matchUnaryPredicate(SDValue Op,
std::function<bool(ConstantSDNode *)> Match,
bool AllowUndefs) {
if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
return Match(Cst);
if (ISD::BUILD_VECTOR != Op.getOpcode() &&
ISD::SPLAT_VECTOR != Op.getOpcode())
return false;
EVT SVT = Op.getValueType().getScalarType();
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
if (AllowUndefs && Op.getOperand(i).isUndef()) {
if (!Match(nullptr))
return false;
continue;
}
auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
return false;
}
return true;
}
bool ISD::matchBinaryPredicate(
SDValue LHS, SDValue RHS,
std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
bool AllowUndefs, bool AllowTypeMismatch) {
if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
return false;
if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
return Match(LHSCst, RHSCst);
if (LHS.getOpcode() != RHS.getOpcode() ||
(LHS.getOpcode() != ISD::BUILD_VECTOR &&
LHS.getOpcode() != ISD::SPLAT_VECTOR))
return false;
EVT SVT = LHS.getValueType().getScalarType();
for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
SDValue LHSOp = LHS.getOperand(i);
SDValue RHSOp = RHS.getOperand(i);
bool LHSUndef = AllowUndefs && LHSOp.isUndef();
bool RHSUndef = AllowUndefs && RHSOp.isUndef();
auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
return false;
if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
LHSOp.getValueType() != RHSOp.getValueType()))
return false;
if (!Match(LHSCst, RHSCst))
return false;
}
return true;
}
ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
switch (VecReduceOpcode) {
default:
llvm_unreachable("Expected VECREDUCE opcode");
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_SEQ_FADD:
case ISD::VP_REDUCE_FADD:
case ISD::VP_REDUCE_SEQ_FADD:
return ISD::FADD;
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_SEQ_FMUL:
case ISD::VP_REDUCE_FMUL:
case ISD::VP_REDUCE_SEQ_FMUL:
return ISD::FMUL;
case ISD::VECREDUCE_ADD:
case ISD::VP_REDUCE_ADD:
return ISD::ADD;
case ISD::VECREDUCE_MUL:
case ISD::VP_REDUCE_MUL:
return ISD::MUL;
case ISD::VECREDUCE_AND:
case ISD::VP_REDUCE_AND:
return ISD::AND;
case ISD::VECREDUCE_OR:
case ISD::VP_REDUCE_OR:
return ISD::OR;
case ISD::VECREDUCE_XOR:
case ISD::VP_REDUCE_XOR:
return ISD::XOR;
case ISD::VECREDUCE_SMAX:
case ISD::VP_REDUCE_SMAX:
return ISD::SMAX;
case ISD::VECREDUCE_SMIN:
case ISD::VP_REDUCE_SMIN:
return ISD::SMIN;
case ISD::VECREDUCE_UMAX:
case ISD::VP_REDUCE_UMAX:
return ISD::UMAX;
case ISD::VECREDUCE_UMIN:
case ISD::VP_REDUCE_UMIN:
return ISD::UMIN;
case ISD::VECREDUCE_FMAX:
case ISD::VP_REDUCE_FMAX:
return ISD::FMAXNUM;
case ISD::VECREDUCE_FMIN:
case ISD::VP_REDUCE_FMIN:
return ISD::FMINNUM;
}
}
bool ISD::isVPOpcode(unsigned Opcode) {
switch (Opcode) {
default:
return false;
#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
case ISD::VPSD: \
return true;
#include "llvm/IR/VPIntrinsics.def"
}
}
bool ISD::isVPBinaryOp(unsigned Opcode) {
switch (Opcode) {
default:
break;
#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
#define VP_PROPERTY_BINARYOP return true;
#define END_REGISTER_VP_SDNODE(VPSD) break;
#include "llvm/IR/VPIntrinsics.def"
}
return false;
}
bool ISD::isVPReduction(unsigned Opcode) {
switch (Opcode) {
default:
break;
#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
#define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
#define END_REGISTER_VP_SDNODE(VPSD) break;
#include "llvm/IR/VPIntrinsics.def"
}
return false;
}
Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
switch (Opcode) {
default:
return None;
#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
case ISD::VPSD: \
return MASKPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
switch (Opcode) {
default:
return None;
#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
case ISD::VPSD: \
return EVLPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
switch (ExtType) {
case ISD::EXTLOAD:
return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
case ISD::SEXTLOAD:
return ISD::SIGN_EXTEND;
case ISD::ZEXTLOAD:
return ISD::ZERO_EXTEND;
default:
break;
}
llvm_unreachable("Invalid LoadExtType");
}
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
unsigned OldL = (Operation >> 2) & 1;
unsigned OldG = (Operation >> 1) & 1;
return ISD::CondCode((Operation & ~6) | (OldL << 1) | (OldG << 2)); }
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
unsigned Operation = Op;
if (isIntegerLike)
Operation ^= 7; else
Operation ^= 15;
if (Operation > ISD::SETTRUE2)
Operation &= ~8;
return ISD::CondCode(Operation);
}
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
return getSetCCInverseImpl(Op, Type.isInteger());
}
ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
bool isIntegerLike) {
return getSetCCInverseImpl(Op, isIntegerLike);
}
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
default: llvm_unreachable("Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return 1;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return 2;
}
}
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
EVT Type) {
bool IsInteger = Type.isInteger();
if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
return ISD::SETCC_INVALID;
unsigned Op = Op1 | Op2;
if (Op > ISD::SETTRUE2)
Op &= ~16;
if (IsInteger && Op == ISD::SETUNE) Op = ISD::SETNE;
return ISD::CondCode(Op);
}
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
EVT Type) {
bool IsInteger = Type.isInteger();
if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
return ISD::SETCC_INVALID;
ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
if (IsInteger) {
switch (Result) {
default: break;
case ISD::SETUO : Result = ISD::SETFALSE; break; case ISD::SETOEQ: case ISD::SETUEQ: Result = ISD::SETEQ ; break; case ISD::SETOLT: Result = ISD::SETULT ; break; case ISD::SETOGT: Result = ISD::SETUGT ; break; }
}
return Result;
}
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
ID.AddInteger(OpC);
}
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
ID.AddPointer(VTList.VTs);
}
static void AddNodeIDOperands(FoldingSetNodeID &ID,
ArrayRef<SDValue> Ops) {
for (const auto &Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
}
static void AddNodeIDOperands(FoldingSetNodeID &ID,
ArrayRef<SDUse> Ops) {
for (const auto &Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
}
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
SDVTList VTList, ArrayRef<SDValue> OpList) {
AddNodeIDOpcode(ID, OpC);
AddNodeIDValueTypes(ID, VTList);
AddNodeIDOperands(ID, OpList);
}
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
switch (N->getOpcode()) {
case ISD::TargetExternalSymbol:
case ISD::ExternalSymbol:
case ISD::MCSymbol:
llvm_unreachable("Should only be used on nodes with operands");
default: break; case ISD::TargetConstant:
case ISD::Constant: {
const ConstantSDNode *C = cast<ConstantSDNode>(N);
ID.AddPointer(C->getConstantIntValue());
ID.AddBoolean(C->isOpaque());
break;
}
case ISD::TargetConstantFP:
case ISD::ConstantFP:
ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
break;
case ISD::TargetGlobalAddress:
case ISD::GlobalAddress:
case ISD::TargetGlobalTLSAddress:
case ISD::GlobalTLSAddress: {
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
ID.AddPointer(GA->getGlobal());
ID.AddInteger(GA->getOffset());
ID.AddInteger(GA->getTargetFlags());
break;
}
case ISD::BasicBlock:
ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
break;
case ISD::Register:
ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
break;
case ISD::RegisterMask:
ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
break;
case ISD::SRCVALUE:
ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
break;
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::LIFETIME_START:
case ISD::LIFETIME_END:
if (cast<LifetimeSDNode>(N)->hasOffset()) {
ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
}
break;
case ISD::PSEUDO_PROBE:
ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
break;
case ISD::JumpTable:
case ISD::TargetJumpTable:
ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
break;
case ISD::ConstantPool:
case ISD::TargetConstantPool: {
const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
ID.AddInteger(CP->getAlign().value());
ID.AddInteger(CP->getOffset());
if (CP->isMachineConstantPoolEntry())
CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
else
ID.AddPointer(CP->getConstVal());
ID.AddInteger(CP->getTargetFlags());
break;
}
case ISD::TargetIndex: {
const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
ID.AddInteger(TI->getIndex());
ID.AddInteger(TI->getOffset());
ID.AddInteger(TI->getTargetFlags());
break;
}
case ISD::LOAD: {
const LoadSDNode *LD = cast<LoadSDNode>(N);
ID.AddInteger(LD->getMemoryVT().getRawBits());
ID.AddInteger(LD->getRawSubclassData());
ID.AddInteger(LD->getPointerInfo().getAddrSpace());
ID.AddInteger(LD->getMemOperand()->getFlags());
break;
}
case ISD::STORE: {
const StoreSDNode *ST = cast<StoreSDNode>(N);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
ID.AddInteger(ST->getMemOperand()->getFlags());
break;
}
case ISD::VP_LOAD: {
const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
ID.AddInteger(ELD->getMemoryVT().getRawBits());
ID.AddInteger(ELD->getRawSubclassData());
ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
ID.AddInteger(ELD->getMemOperand()->getFlags());
break;
}
case ISD::VP_STORE: {
const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
ID.AddInteger(EST->getMemoryVT().getRawBits());
ID.AddInteger(EST->getRawSubclassData());
ID.AddInteger(EST->getPointerInfo().getAddrSpace());
ID.AddInteger(EST->getMemOperand()->getFlags());
break;
}
case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
ID.AddInteger(SLD->getMemoryVT().getRawBits());
ID.AddInteger(SLD->getRawSubclassData());
ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
break;
}
case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
ID.AddInteger(SST->getMemoryVT().getRawBits());
ID.AddInteger(SST->getRawSubclassData());
ID.AddInteger(SST->getPointerInfo().getAddrSpace());
break;
}
case ISD::VP_GATHER: {
const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
ID.AddInteger(EG->getMemoryVT().getRawBits());
ID.AddInteger(EG->getRawSubclassData());
ID.AddInteger(EG->getPointerInfo().getAddrSpace());
ID.AddInteger(EG->getMemOperand()->getFlags());
break;
}
case ISD::VP_SCATTER: {
const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
ID.AddInteger(ES->getMemoryVT().getRawBits());
ID.AddInteger(ES->getRawSubclassData());
ID.AddInteger(ES->getPointerInfo().getAddrSpace());
ID.AddInteger(ES->getMemOperand()->getFlags());
break;
}
case ISD::MLOAD: {
const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
ID.AddInteger(MLD->getMemoryVT().getRawBits());
ID.AddInteger(MLD->getRawSubclassData());
ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
ID.AddInteger(MLD->getMemOperand()->getFlags());
break;
}
case ISD::MSTORE: {
const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
ID.AddInteger(MST->getMemoryVT().getRawBits());
ID.AddInteger(MST->getRawSubclassData());
ID.AddInteger(MST->getPointerInfo().getAddrSpace());
ID.AddInteger(MST->getMemOperand()->getFlags());
break;
}
case ISD::MGATHER: {
const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
ID.AddInteger(MG->getMemoryVT().getRawBits());
ID.AddInteger(MG->getRawSubclassData());
ID.AddInteger(MG->getPointerInfo().getAddrSpace());
ID.AddInteger(MG->getMemOperand()->getFlags());
break;
}
case ISD::MSCATTER: {
const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
ID.AddInteger(MS->getMemoryVT().getRawBits());
ID.AddInteger(MS->getRawSubclassData());
ID.AddInteger(MS->getPointerInfo().getAddrSpace());
ID.AddInteger(MS->getMemOperand()->getFlags());
break;
}
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: {
const AtomicSDNode *AT = cast<AtomicSDNode>(N);
ID.AddInteger(AT->getMemoryVT().getRawBits());
ID.AddInteger(AT->getRawSubclassData());
ID.AddInteger(AT->getPointerInfo().getAddrSpace());
ID.AddInteger(AT->getMemOperand()->getFlags());
break;
}
case ISD::PREFETCH: {
const MemSDNode *PF = cast<MemSDNode>(N);
ID.AddInteger(PF->getPointerInfo().getAddrSpace());
ID.AddInteger(PF->getMemOperand()->getFlags());
break;
}
case ISD::VECTOR_SHUFFLE: {
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
i != e; ++i)
ID.AddInteger(SVN->getMaskElt(i));
break;
}
case ISD::TargetBlockAddress:
case ISD::BlockAddress: {
const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
ID.AddPointer(BA->getBlockAddress());
ID.AddInteger(BA->getOffset());
ID.AddInteger(BA->getTargetFlags());
break;
}
case ISD::AssertAlign:
ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
break;
}
if (N->isTargetMemoryOpcode()) {
const MemSDNode *MN = cast<MemSDNode>(N);
ID.AddInteger(MN->getPointerInfo().getAddrSpace());
ID.AddInteger(MN->getMemOperand()->getFlags());
}
}
static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
AddNodeIDOpcode(ID, N->getOpcode());
AddNodeIDValueTypes(ID, N->getVTList());
AddNodeIDOperands(ID, N->ops());
AddNodeIDCustom(ID, N);
}
static bool doNotCSE(SDNode *N) {
if (N->getValueType(0) == MVT::Glue)
return true;
switch (N->getOpcode()) {
default: break;
case ISD::HANDLENODE:
case ISD::EH_LABEL:
return true; }
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Glue)
return true;
return false;
}
void SelectionDAG::RemoveDeadNodes() {
HandleSDNode Dummy(getRoot());
SmallVector<SDNode*, 128> DeadNodes;
for (SDNode &Node : allnodes())
if (Node.use_empty())
DeadNodes.push_back(&Node);
RemoveDeadNodes(DeadNodes);
setRoot(Dummy.getValue());
}
void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
while (!DeadNodes.empty()) {
SDNode *N = DeadNodes.pop_back_val();
if (N->getOpcode() == ISD::DELETED_NODE)
continue;
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, nullptr);
RemoveNodeFromCSEMaps(N);
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Operand = Use.getNode();
Use.set(SDValue());
if (Operand->use_empty())
DeadNodes.push_back(Operand);
}
DeallocateNode(N);
}
}
void SelectionDAG::RemoveDeadNode(SDNode *N){
SmallVector<SDNode*, 16> DeadNodes(1, N);
HandleSDNode Dummy(getRoot());
RemoveDeadNodes(DeadNodes);
}
void SelectionDAG::DeleteNode(SDNode *N) {
RemoveNodeFromCSEMaps(N);
DeleteNodeNotInCSEMaps(N);
}
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
assert(N->getIterator() != AllNodes.begin() &&
"Cannot delete the entry node!");
assert(N->use_empty() && "Cannot delete a node that is not dead!");
N->DropOperands();
DeallocateNode(N);
}
void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
assert(!(V->isVariadic() && isParameter));
if (isParameter)
ByvalParmDbgValues.push_back(V);
else
DbgValues.push_back(V);
for (const SDNode *Node : V->getSDNodes())
if (Node)
DbgValMap[Node].push_back(V);
}
void SDDbgInfo::erase(const SDNode *Node) {
DbgValMapType::iterator I = DbgValMap.find(Node);
if (I == DbgValMap.end())
return;
for (auto &Val: I->second)
Val->setIsInvalidated();
DbgValMap.erase(I);
}
void SelectionDAG::DeallocateNode(SDNode *N) {
removeOperands(N);
NodeAllocator.Deallocate(AllNodes.remove(N));
__asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
N->NodeType = ISD::DELETED_NODE;
DbgInfo->erase(N);
}
#ifndef NDEBUG
static void VerifySDNode(SDNode *N) {
switch (N->getOpcode()) {
default:
break;
case ISD::BUILD_PAIR: {
EVT VT = N->getValueType(0);
assert(N->getNumValues() == 1 && "Too many results!");
assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
"Wrong return type!");
assert(N->getNumOperands() == 2 && "Wrong number of operands!");
assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
"Mismatched operand types!");
assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
"Wrong operand type!");
assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
"Wrong return type size");
break;
}
case ISD::BUILD_VECTOR: {
assert(N->getNumValues() == 1 && "Too many results!");
assert(N->getValueType(0).isVector() && "Wrong return type!");
assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
"Wrong number of operands!");
EVT EltVT = N->getValueType(0).getVectorElementType();
for (const SDUse &Op : N->ops()) {
assert((Op.getValueType() == EltVT ||
(EltVT.isInteger() && Op.getValueType().isInteger() &&
EltVT.bitsLE(Op.getValueType()))) &&
"Wrong operand type!");
assert(Op.getValueType() == N->getOperand(0).getValueType() &&
"Operands must all have the same type");
}
break;
}
}
}
#endif
void SelectionDAG::InsertNode(SDNode *N) {
AllNodes.push_back(N);
#ifndef NDEBUG
N->PersistentId = NextPersistentId++;
VerifySDNode(N);
#endif
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeInserted(N);
}
bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::HANDLENODE: return false; case ISD::CONDCODE:
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
"Cond code doesn't exist!");
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
break;
case ISD::ExternalSymbol:
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::TargetExternalSymbol: {
ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
ESN->getSymbol(), ESN->getTargetFlags()));
break;
}
case ISD::MCSymbol: {
auto *MCSN = cast<MCSymbolSDNode>(N);
Erased = MCSymbols.erase(MCSN->getMCSymbol());
break;
}
case ISD::VALUETYPE: {
EVT VT = cast<VTSDNode>(N)->getVT();
if (VT.isExtended()) {
Erased = ExtendedValueTypeNodes.erase(VT);
} else {
Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
}
break;
}
default:
assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
Erased = CSEMap.RemoveNode(N);
break;
}
#ifndef NDEBUG
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
!N->isMachineOpcode() && !doNotCSE(N)) {
N->dump(this);
dbgs() << "\n";
llvm_unreachable("Node is not in map!");
}
#endif
return Erased;
}
void
SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
if (!doNotCSE(N)) {
SDNode *Existing = CSEMap.GetOrInsertNode(N);
if (Existing != N) {
ReplaceAllUsesWith(N, Existing);
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, Existing);
DeleteNodeNotInCSEMaps(N);
return;
}
}
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeUpdated(N);
}
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
SDValue Ops[] = { Op };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
if (Node)
Node->intersectFlagsWith(N->getFlags());
return Node;
}
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
SDValue Op1, SDValue Op2,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
SDValue Ops[] = { Op1, Op2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
if (Node)
Node->intersectFlagsWith(N->getFlags());
return Node;
}
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
if (Node)
Node->intersectFlagsWith(N->getFlags());
return Node;
}
Align SelectionDAG::getEVTAlign(EVT VT) const {
Type *Ty = VT == MVT::iPTR ?
PointerType::get(Type::getInt8Ty(*getContext()), 0) :
VT.getTypeForEVT(*getContext());
return getDataLayout().getABITypeAlign(Ty);
}
SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
: TM(tm), OptLevel(OL),
EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
Root(getEntryNode()) {
InsertNode(&EntryNode);
DbgInfo = new SDDbgInfo();
}
void SelectionDAG::init(MachineFunction &NewMF,
OptimizationRemarkEmitter &NewORE,
Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
LegacyDivergenceAnalysis * Divergence,
ProfileSummaryInfo *PSIin,
BlockFrequencyInfo *BFIin) {
MF = &NewMF;
SDAGISelPass = PassPtr;
ORE = &NewORE;
TLI = getSubtarget().getTargetLowering();
TSI = getSubtarget().getSelectionDAGInfo();
LibInfo = LibraryInfo;
Context = &MF->getFunction().getContext();
DA = Divergence;
PSI = PSIin;
BFI = BFIin;
}
SelectionDAG::~SelectionDAG() {
assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
allnodes_clear();
OperandRecycler.clear(OperandAllocator);
delete DbgInfo;
}
bool SelectionDAG::shouldOptForSize() const {
return MF->getFunction().hasOptSize() ||
llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
}
void SelectionDAG::allnodes_clear() {
assert(&*AllNodes.begin() == &EntryNode);
AllNodes.remove(AllNodes.begin());
while (!AllNodes.empty())
DeallocateNode(&AllNodes.front());
#ifndef NDEBUG
NextPersistentId = 0;
#endif
}
SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
void *&InsertPos) {
SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
if (N) {
switch (N->getOpcode()) {
default: break;
case ISD::Constant:
case ISD::ConstantFP:
llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
"debug location. Use another overload.");
}
}
return N;
}
SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
const SDLoc &DL, void *&InsertPos) {
SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
if (N) {
switch (N->getOpcode()) {
case ISD::Constant:
case ISD::ConstantFP:
if (N->getDebugLoc() != DL.getDebugLoc())
N->setDebugLoc(DebugLoc());
break;
default:
if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
N->setDebugLoc(DL.getDebugLoc());
break;
}
}
return N;
}
void SelectionDAG::clear() {
allnodes_clear();
OperandRecycler.clear(OperandAllocator);
OperandAllocator.Reset();
CSEMap.clear();
ExtendedValueTypeNodes.clear();
ExternalSymbols.clear();
TargetExternalSymbols.clear();
MCSymbols.clear();
SDCallSiteDbgInfo.clear();
std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
static_cast<CondCodeSDNode*>(nullptr));
std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
static_cast<SDNode*>(nullptr));
EntryNode.UseList = nullptr;
InsertNode(&EntryNode);
Root = getEntryNode();
DbgInfo->clear();
}
SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType())
? getNode(ISD::FP_EXTEND, DL, VT, Op)
: getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
}
std::pair<SDValue, SDValue>
SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
const SDLoc &DL, EVT VT) {
assert(!VT.bitsEq(Op.getValueType()) &&
"Strict no-op FP extend/round not allowed.");
SDValue Res =
VT.bitsGT(Op.getValueType())
? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
: getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
{Chain, Op, getIntPtrConstant(0, DL)});
return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
}
SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ANY_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
EVT OpVT) {
if (VT.bitsLE(Op.getValueType()))
return getNode(ISD::TRUNCATE, SL, VT, Op);
TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
}
SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
EVT OpVT = Op.getValueType();
assert(VT.isInteger() && OpVT.isInteger() &&
"Cannot getZeroExtendInReg FP types");
assert(VT.isVector() == OpVT.isVector() &&
"getZeroExtendInReg type should be vector iff the operand "
"type is vector!");
assert((!VT.isVector() ||
VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
"Vector element counts must match in getZeroExtendInReg");
assert(VT.bitsLE(OpVT) && "Not extending!");
if (OpVT == VT)
return Op;
APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
VT.getScalarSizeInBits());
return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
}
SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
return getZExtOrTrunc(Op, DL, VT);
}
SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
return getZeroExtendInReg(Op, DL, VT);
}
SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
}
SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
return getNode(ISD::XOR, DL, VT, Val, TrueValue);
}
SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
SDValue Mask, SDValue EVL, EVT VT) {
SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
}
SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
EVT OpVT) {
if (!V)
return getConstant(0, DL, VT);
switch (TLI->getBooleanContents(OpVT)) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::UndefinedBooleanContent:
return getConstant(1, DL, VT);
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return getAllOnesConstant(DL, VT);
}
llvm_unreachable("Unexpected boolean content enum!");
}
SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isT, bool isO) {
EVT EltVT = VT.getScalarType();
assert((EltVT.getSizeInBits() >= 64 ||
(uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
"getConstant with a uint64_t value that doesn't fit in the type!");
return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
}
SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isT, bool isO) {
return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
}
SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
EVT VT, bool isT, bool isO) {
assert(VT.isInteger() && "Cannot create FP integer constant!");
EVT EltVT = VT.getScalarType();
const ConstantInt *Elt = &Val;
if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypePromoteInteger) {
EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
Elt = ConstantInt::get(*getContext(), NewVal);
}
else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
TLI->getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypeExpandInteger) {
const APInt &NewVal = Elt->getValue();
EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
if (VT.isScalableVector()) {
assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
"Can only handle an even split!");
unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
SmallVector<SDValue, 2> ScalarParts;
for (unsigned i = 0; i != Parts; ++i)
ScalarParts.push_back(getConstant(
NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
ViaEltVT, isT, isO));
return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
}
unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
SmallVector<SDValue, 2> EltParts;
for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
EltParts.push_back(getConstant(
NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
ViaEltVT, isT, isO));
if (getDataLayout().isBigEndian())
std::reverse(EltParts.begin(), EltParts.end());
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
llvm::append_range(Ops, EltParts);
SDValue V =
getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
return V;
}
assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
"APInt size does not match type size!");
unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
ID.AddPointer(Elt);
ID.AddBoolean(isO);
void *IP = nullptr;
SDNode *N = nullptr;
if ((N = FindNodeOrInsertPos(ID, DL, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
CSEMap.InsertNode(N, IP);
InsertNode(N);
NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
}
SDValue Result(N, 0);
if (VT.isScalableVector())
Result = getSplatVector(VT, DL, Result);
else if (VT.isVector())
Result = getSplatBuildVector(VT, DL, Result);
return Result;
}
SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
bool isTarget) {
return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
}
SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
const SDLoc &DL, bool LegalTypes) {
assert(VT.isInteger() && "Shift amount is not an integer type!");
EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
return getConstant(Val, DL, ShiftVT);
}
SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
bool isTarget) {
return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
}
SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
bool isTarget) {
return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
}
SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
EVT VT, bool isTarget) {
assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
EVT EltVT = VT.getScalarType();
unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
ID.AddPointer(&V);
void *IP = nullptr;
SDNode *N = nullptr;
if ((N = FindNodeOrInsertPos(ID, DL, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
CSEMap.InsertNode(N, IP);
InsertNode(N);
}
SDValue Result(N, 0);
if (VT.isScalableVector())
Result = getSplatVector(VT, DL, Result);
else if (VT.isVector())
Result = getSplatBuildVector(VT, DL, Result);
NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
return Result;
}
SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
bool isTarget) {
EVT EltVT = VT.getScalarType();
if (EltVT == MVT::f32)
return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
if (EltVT == MVT::f64)
return getConstantFP(APFloat(Val), DL, VT, isTarget);
if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
EltVT == MVT::f16 || EltVT == MVT::bf16) {
bool Ignored;
APFloat APF = APFloat(Val);
APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
&Ignored);
return getConstantFP(APF, DL, VT, isTarget);
}
llvm_unreachable("Unsupported type in getConstantFP");
}
SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
EVT VT, int64_t Offset, bool isTargetGA,
unsigned TargetFlags) {
assert((TargetFlags == 0 || isTargetGA) &&
"Cannot set target flags on target-independent globals");
unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
if (BitWidth < 64)
Offset = SignExtend64(Offset, BitWidth);
unsigned Opc;
if (GV->isThreadLocal())
Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
else
Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddPointer(GV);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
auto *N = newSDNode<GlobalAddressSDNode>(
Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(FI);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
unsigned TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent jump tables");
unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(JTI);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
MaybeAlign Alignment, int Offset,
bool isTarget, unsigned TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (!Alignment)
Alignment = shouldOptForSize()
? getDataLayout().getABITypeAlign(C->getType())
: getDataLayout().getPrefTypeAlign(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(Alignment->value());
ID.AddInteger(Offset);
ID.AddPointer(C);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
return V;
}
SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
MaybeAlign Alignment, int Offset,
bool isTarget, unsigned TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (!Alignment)
Alignment = getDataLayout().getPrefTypeAlign(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(Alignment->value());
ID.AddInteger(Offset);
C->addSelectionDAGCSEId(ID);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
unsigned TargetFlags) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
ID.AddInteger(Index);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
ID.AddPointer(MBB);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<BasicBlockSDNode>(MBB);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getValueType(EVT VT) {
if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
ValueTypeNodes.size())
ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
SDNode *&N = VT.isExtended() ?
ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
if (N) return SDValue(N, 0);
N = newSDNode<VTSDNode>(VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDValue(N, 0);
N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
SDNode *&N = MCSymbols[Sym];
if (N)
return SDValue(N, 0);
N = newSDNode<MCSymbolSDNode>(Sym, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned TargetFlags) {
SDNode *&N =
TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
if (N) return SDValue(N, 0);
N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
if ((unsigned)Cond >= CondCodeNodes.size())
CondCodeNodes.resize(Cond+1);
if (!CondCodeNodes[Cond]) {
auto *N = newSDNode<CondCodeSDNode>(Cond);
CondCodeNodes[Cond] = N;
InsertNode(N);
}
return SDValue(CondCodeNodes[Cond], 0);
}
SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
APInt One(ResVT.getScalarSizeInBits(), 1);
return getStepVector(DL, ResVT, One);
}
SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
if (ResVT.isScalableVector())
return getNode(
ISD::STEP_VECTOR, DL, ResVT,
getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
SmallVector<SDValue, 16> OpsStepConstants;
for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
OpsStepConstants.push_back(
getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
return getBuildVector(ResVT, DL, OpsStepConstants);
}
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
std::swap(N1, N2);
ShuffleVectorSDNode::commuteMask(M);
}
SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
SDValue N2, ArrayRef<int> Mask) {
assert(VT.getVectorNumElements() == Mask.size() &&
"Must have the same number of vector elements as mask elements!");
assert(VT == N1.getValueType() && VT == N2.getValueType() &&
"Invalid VECTOR_SHUFFLE");
if (N1.isUndef() && N2.isUndef())
return getUNDEF(VT);
int NElts = Mask.size();
assert(llvm::all_of(Mask,
[&](int M) { return M < (NElts * 2) && M >= -1; }) &&
"Index out of range");
SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
if (N1 == N2) {
N2 = getUNDEF(VT);
for (int i = 0; i != NElts; ++i)
if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
}
if (N1.isUndef())
commuteShuffle(N1, N2, MaskVec);
if (TLI->hasVectorBlend()) {
auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
BitVector UndefElements;
SDValue Splat = BV->getSplatValue(&UndefElements);
if (!Splat)
return;
for (int i = 0; i < NElts; ++i) {
if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
continue;
if (UndefElements[MaskVec[i] - Offset]) {
MaskVec[i] = -1;
continue;
}
if (!UndefElements[i])
MaskVec[i] = i + Offset;
}
};
if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
BlendSplat(N1BV, 0);
if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
BlendSplat(N2BV, NElts);
}
bool AllLHS = true, AllRHS = true;
bool N2Undef = N2.isUndef();
for (int i = 0; i != NElts; ++i) {
if (MaskVec[i] >= NElts) {
if (N2Undef)
MaskVec[i] = -1;
else
AllLHS = false;
} else if (MaskVec[i] >= 0) {
AllRHS = false;
}
}
if (AllLHS && AllRHS)
return getUNDEF(VT);
if (AllLHS && !N2Undef)
N2 = getUNDEF(VT);
if (AllRHS) {
N1 = getUNDEF(VT);
commuteShuffle(N1, N2, MaskVec);
}
N2Undef = N2.isUndef();
if (N1.isUndef() && N2Undef)
return getUNDEF(VT);
bool Identity = true, AllSame = true;
for (int i = 0; i != NElts; ++i) {
if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
if (MaskVec[i] != MaskVec[0]) AllSame = false;
}
if (Identity && NElts)
return N1;
if (N2Undef) {
SDValue V = N1;
while (V.getOpcode() == ISD::BITCAST)
V = V->getOperand(0);
if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
BitVector UndefElements;
SDValue Splat = BV->getSplatValue(&UndefElements);
if (Splat && Splat.isUndef())
return getUNDEF(VT);
bool SameNumElts =
V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
if (Splat && UndefElements.none()) {
if (SameNumElts)
return N1;
if (auto *C = dyn_cast<ConstantSDNode>(Splat))
if (C->isZero())
return N1;
}
if (AllSame && SameNumElts) {
EVT BuildVT = BV->getValueType(0);
const SDValue &Splatted = BV->getOperand(MaskVec[0]);
SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
if (BuildVT != VT)
NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
return NewBV;
}
}
}
FoldingSetNodeID ID;
SDValue Ops[2] = { N1, N2 };
AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
for (int i = 0; i != NElts; ++i)
ID.AddInteger(MaskVec[i]);
void* IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
llvm::copy(MaskVec, MaskAlloc);
auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
dl.getDebugLoc(), MaskAlloc);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
EVT VT = SV.getValueType(0);
SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
ShuffleVectorSDNode::commuteMask(MaskVec);
SDValue Op0 = SV.getOperand(0);
SDValue Op1 = SV.getOperand(1);
return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
}
SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
ID.AddInteger(RegNo);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
ID.AddPointer(RegMask);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
MCSymbol *Label) {
return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
}
SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
SDValue Root, MCSymbol *Label) {
FoldingSetNodeID ID;
SDValue Ops[] = { Root };
AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
ID.AddPointer(Label);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N =
newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset, bool isTarget,
unsigned TargetFlags) {
unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddPointer(BA);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getSrcValue(const Value *V) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
ID.AddPointer(V);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<SrcValueSDNode>(V);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getMDNode(const MDNode *MD) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
ID.AddPointer(MD);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<MDNodeSDNode>(MD);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
if (VT == V.getValueType())
return V;
return getNode(ISD::BITCAST, SDLoc(V), VT, V);
}
SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
unsigned SrcAS, unsigned DestAS) {
SDValue Ops[] = {Ptr};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
ID.AddInteger(SrcAS);
ID.AddInteger(DestAS);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
VT, SrcAS, DestAS);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getFreeze(SDValue V) {
return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
}
SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
EVT OpTy = Op.getValueType();
EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
if (OpTy == ShTy || OpTy.isVector()) return Op;
return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
}
SDValue SelectionDAG::expandVAArg(SDNode *Node) {
SDLoc dl(Node);
const TargetLowering &TLI = getTargetLoweringInfo();
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
EVT VT = Node->getValueType(0);
SDValue Tmp1 = Node->getOperand(0);
SDValue Tmp2 = Node->getOperand(1);
const MaybeAlign MA(Node->getConstantOperandVal(3));
SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
Tmp2, MachinePointerInfo(V));
SDValue VAList = VAListLoad;
if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
getConstant(MA->value() - 1, dl, VAList.getValueType()));
VAList =
getNode(ISD::AND, dl, VAList.getValueType(), VAList,
getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
}
Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
getConstant(getDataLayout().getTypeAllocSize(
VT.getTypeForEVT(*getContext())),
dl, VAList.getValueType()));
Tmp1 =
getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
}
SDValue SelectionDAG::expandVACopy(SDNode *Node) {
SDLoc dl(Node);
const TargetLowering &TLI = getTargetLoweringInfo();
const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
SDValue Tmp1 =
getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
Node->getOperand(2), MachinePointerInfo(VS));
return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
MachinePointerInfo(VD));
}
Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
const DataLayout &DL = getDataLayout();
Type *Ty = VT.getTypeForEVT(*getContext());
Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
if (TLI->isTypeLegal(VT) || !VT.isVector())
return RedAlign;
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
const Align StackAlign = TFI->getStackAlign();
if (RedAlign > StackAlign) {
EVT IntermediateVT;
MVT RegisterVT;
unsigned NumIntermediates;
TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
NumIntermediates, RegisterVT);
Ty = IntermediateVT.getTypeForEVT(*getContext());
Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
if (RedAlign2 < RedAlign)
RedAlign = RedAlign2;
}
return RedAlign;
}
SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
MachineFrameInfo &MFI = MF->getFrameInfo();
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
int StackID = 0;
if (Bytes.isScalable())
StackID = TFI->getStackIDForScalableVectors();
int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
false, nullptr, StackID);
return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
}
SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
Type *Ty = VT.getTypeForEVT(*getContext());
Align StackAlign =
std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
return CreateStackTemporary(VT.getStoreSize(), StackAlign);
}
SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
TypeSize VT1Size = VT1.getStoreSize();
TypeSize VT2Size = VT2.getStoreSize();
assert(VT1Size.isScalable() == VT2Size.isScalable() &&
"Don't know how to choose the maximum size when creating a stack "
"temporary");
TypeSize Bytes =
VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
Type *Ty1 = VT1.getTypeForEVT(*getContext());
Type *Ty2 = VT2.getTypeForEVT(*getContext());
const DataLayout &DL = getDataLayout();
Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
return CreateStackTemporary(Bytes, Align);
}
SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
ISD::CondCode Cond, const SDLoc &dl) {
EVT OpVT = N1.getValueType();
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
case ISD::SETOEQ:
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETONE:
case ISD::SETO:
case ISD::SETUO:
case ISD::SETUEQ:
case ISD::SETUNE:
assert(!OpVT.isInteger() && "Illegal setcc for integer!");
break;
}
if (OpVT.isInteger()) {
if ((N1.isUndef() || N2.isUndef()) &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE))
return getUNDEF(VT);
if (N1.isUndef() && N2.isUndef())
return getUNDEF(VT);
if (N1 == N2)
return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
}
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
const APInt &C2 = N2C->getAPIntValue();
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
const APInt &C1 = N1C->getAPIntValue();
return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
dl, VT, OpVT);
}
}
auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
if (N1CFP && N2CFP) {
APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
switch (Cond) {
default: break;
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETNE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpLessThan, dl, VT,
OpVT);
case ISD::SETLT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
OpVT);
case ISD::SETGT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
VT, OpVT);
case ISD::SETLE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETGE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual, dl, VT, OpVT);
case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
OpVT);
case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
OpVT);
case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan, dl, VT,
OpVT);
case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpUnordered, dl, VT,
OpVT);
case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
VT, OpVT);
case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
OpVT);
}
} else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
return SDValue();
return getSetCC(dl, VT, N2, N1, SwappedCond);
} else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
(OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
switch (ISD::getUnorderedFlavor(Cond)) {
default:
llvm_unreachable("Unknown flavor!");
case 0: return getBoolConstant(false, dl, VT, OpVT);
case 1: return getBoolConstant(true, dl, VT, OpVT);
case 2: return getUNDEF(VT);
}
}
return SDValue();
}
SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
EVT VT = V.getValueType();
if (VT.isScalableVector())
return SDValue();
switch (V.getOpcode()) {
default:
return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this);
case ISD::Constant: {
const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
APInt NewVal = CVal & DemandedBits;
if (NewVal != CVal)
return getConstant(NewVal, SDLoc(V), V.getValueType());
break;
}
case ISD::SRL:
if (!V.getNode()->hasOneUse())
break;
if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
unsigned Amt = RHSC->getZExtValue();
if (Amt >= DemandedBits.getBitWidth())
break;
APInt SrcDemandedBits = DemandedBits << Amt;
if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits(
V.getOperand(0), SrcDemandedBits, *this))
return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
V.getOperand(1));
}
break;
}
return SDValue();
}
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
unsigned BitWidth = Op.getScalarValueSizeInBits();
return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
}
bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
unsigned Depth) const {
return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
}
bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
const APInt &DemandedElts,
unsigned Depth) const {
return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
}
bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
unsigned Depth ) const {
return computeKnownBits(V, DemandedElts, Depth).isZero();
}
bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
unsigned Depth) const {
return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
}
bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
APInt &UndefElts, unsigned Depth) const {
unsigned Opcode = V.getOpcode();
EVT VT = V.getValueType();
assert(VT.isVector() && "Vector type expected");
if (!VT.isScalableVector() && !DemandedElts)
return false;
if (Depth >= MaxRecursionDepth)
return false;
switch (Opcode) {
case ISD::SPLAT_VECTOR:
UndefElts = V.getOperand(0).isUndef()
? APInt::getAllOnes(DemandedElts.getBitWidth())
: APInt(DemandedElts.getBitWidth(), 0);
return true;
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::XOR:
case ISD::OR: {
APInt UndefLHS, UndefRHS;
SDValue LHS = V.getOperand(0);
SDValue RHS = V.getOperand(1);
if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
UndefElts = UndefLHS | UndefRHS;
return true;
}
return false;
}
case ISD::ABS:
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
default:
if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
break;
}
if (VT.isScalableVector())
return false;
unsigned NumElts = VT.getVectorNumElements();
assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
UndefElts = APInt::getZero(NumElts);
switch (Opcode) {
case ISD::BUILD_VECTOR: {
SDValue Scl;
for (unsigned i = 0; i != NumElts; ++i) {
SDValue Op = V.getOperand(i);
if (Op.isUndef()) {
UndefElts.setBit(i);
continue;
}
if (!DemandedElts[i])
continue;
if (Scl && Scl != Op)
return false;
Scl = Op;
}
return true;
}
case ISD::VECTOR_SHUFFLE: {
APInt DemandedLHS = APInt::getNullValue(NumElts);
APInt DemandedRHS = APInt::getNullValue(NumElts);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
for (int i = 0; i != (int)NumElts; ++i) {
int M = Mask[i];
if (M < 0) {
UndefElts.setBit(i);
continue;
}
if (!DemandedElts[i])
continue;
if (M < (int)NumElts)
DemandedLHS.setBit(M);
else
DemandedRHS.setBit(M - NumElts);
}
if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
(!DemandedLHS.isZero() && !DemandedRHS.isZero()))
return false;
auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
APInt SrcUndefs;
return (SrcElts.countPopulation() == 1) ||
(isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
(SrcElts & SrcUndefs).isZero());
};
if (!DemandedLHS.isZero())
return CheckSplatSrc(V.getOperand(0), DemandedLHS);
return CheckSplatSrc(V.getOperand(1), DemandedRHS);
}
case ISD::EXTRACT_SUBVECTOR: {
SDValue Src = V.getOperand(0);
if (Src.getValueType().isScalableVector())
return false;
uint64_t Idx = V.getConstantOperandVal(1);
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
APInt UndefSrcElts;
APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
return true;
}
break;
}
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG: {
SDValue Src = V.getOperand(0);
if (Src.getValueType().isScalableVector())
return false;
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
APInt UndefSrcElts;
APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
UndefElts = UndefSrcElts.trunc(NumElts);
return true;
}
break;
}
case ISD::BITCAST: {
SDValue Src = V.getOperand(0);
EVT SrcVT = Src.getValueType();
unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
unsigned BitWidth = VT.getScalarSizeInBits();
if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
break;
if ((BitWidth % SrcBitWidth) == 0) {
unsigned Scale = BitWidth / SrcBitWidth;
unsigned NumSrcElts = SrcVT.getVectorNumElements();
APInt ScaledDemandedElts =
APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
for (unsigned I = 0; I != Scale; ++I) {
APInt SubUndefElts;
APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
SubDemandedElts &= ScaledDemandedElts;
if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
return false;
if (!SubUndefElts.isZero())
return false;
}
return true;
}
break;
}
}
return false;
}
bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
EVT VT = V.getValueType();
assert(VT.isVector() && "Vector type expected");
APInt UndefElts;
APInt DemandedElts;
if (!VT.isScalableVector())
DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
return isSplatValue(V, DemandedElts, UndefElts) &&
(AllowUndefs || !UndefElts);
}
SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
V = peekThroughExtractSubvectors(V);
EVT VT = V.getValueType();
unsigned Opcode = V.getOpcode();
switch (Opcode) {
default: {
APInt UndefElts;
APInt DemandedElts;
if (!VT.isScalableVector())
DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
if (isSplatValue(V, DemandedElts, UndefElts)) {
if (VT.isScalableVector()) {
SplatIdx = 0;
} else {
if (DemandedElts.isSubsetOf(UndefElts)) {
SplatIdx = 0;
return getUNDEF(VT);
}
SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
}
return V;
}
break;
}
case ISD::SPLAT_VECTOR:
SplatIdx = 0;
return V;
case ISD::VECTOR_SHUFFLE: {
if (VT.isScalableVector())
return SDValue();
auto *SVN = cast<ShuffleVectorSDNode>(V);
if (!SVN->isSplat())
break;
int Idx = SVN->getSplatIndex();
int NumElts = V.getValueType().getVectorNumElements();
SplatIdx = Idx % NumElts;
return V.getOperand(Idx / NumElts);
}
}
return SDValue();
}
SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
int SplatIdx;
if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
EVT SVT = SrcVector.getValueType().getScalarType();
EVT LegalSVT = SVT;
if (LegalTypes && !TLI->isTypeLegal(SVT)) {
if (!SVT.isInteger())
return SDValue();
LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
if (LegalSVT.bitsLT(SVT))
return SDValue();
}
return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
getVectorIdxConstant(SplatIdx, SDLoc(V)));
}
return SDValue();
}
const APInt *
SelectionDAG::getValidShiftAmountConstant(SDValue V,
const APInt &DemandedElts) const {
assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
V.getOpcode() == ISD::SRA) &&
"Unknown shift node");
unsigned BitWidth = V.getScalarValueSizeInBits();
if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
const APInt &ShAmt = SA->getAPIntValue();
if (ShAmt.ult(BitWidth))
return &ShAmt;
}
return nullptr;
}
const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
SDValue V, const APInt &DemandedElts) const {
assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
V.getOpcode() == ISD::SRA) &&
"Unknown shift node");
if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
return ValidAmt;
unsigned BitWidth = V.getScalarValueSizeInBits();
auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
if (!BV)
return nullptr;
const APInt *MinShAmt = nullptr;
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
if (!SA)
return nullptr;
const APInt &ShAmt = SA->getAPIntValue();
if (ShAmt.uge(BitWidth))
return nullptr;
if (MinShAmt && MinShAmt->ule(ShAmt))
continue;
MinShAmt = &ShAmt;
}
return MinShAmt;
}
const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
SDValue V, const APInt &DemandedElts) const {
assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
V.getOpcode() == ISD::SRA) &&
"Unknown shift node");
if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
return ValidAmt;
unsigned BitWidth = V.getScalarValueSizeInBits();
auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
if (!BV)
return nullptr;
const APInt *MaxShAmt = nullptr;
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
if (!SA)
return nullptr;
const APInt &ShAmt = SA->getAPIntValue();
if (ShAmt.uge(BitWidth))
return nullptr;
if (MaxShAmt && MaxShAmt->uge(ShAmt))
continue;
MaxShAmt = &ShAmt;
}
return MaxShAmt;
}
KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
EVT VT = Op.getValueType();
if (Op.getValueType().isScalableVector()) {
unsigned BitWidth = Op.getScalarValueSizeInBits();
return KnownBits(BitWidth);
}
APInt DemandedElts = VT.isVector()
? APInt::getAllOnes(VT.getVectorNumElements())
: APInt(1, 1);
return computeKnownBits(Op, DemandedElts, Depth);
}
KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth) const {
unsigned BitWidth = Op.getScalarValueSizeInBits();
KnownBits Known(BitWidth);
if (Op.getValueType().isScalableVector())
return Known;
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
return KnownBits::makeConstant(C->getAPIntValue());
}
if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
}
if (Depth >= MaxRecursionDepth)
return Known;
KnownBits Known2;
unsigned NumElts = DemandedElts.getBitWidth();
assert((!Op.getValueType().isVector() ||
NumElts == Op.getValueType().getVectorNumElements()) &&
"Unexpected vector size");
if (!DemandedElts)
return Known;
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
case ISD::MERGE_VALUES:
return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
Depth + 1);
case ISD::BUILD_VECTOR:
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
SDValue SrcOp = Op.getOperand(i);
Known2 = computeKnownBits(SrcOp, Depth + 1);
if (SrcOp.getValueSizeInBits() != BitWidth) {
assert(SrcOp.getValueSizeInBits() > BitWidth &&
"Expected BUILD_VECTOR implicit truncation");
Known2 = Known2.trunc(BitWidth);
}
Known = KnownBits::commonBits(Known, Known2);
if (Known.isUnknown())
break;
}
break;
case ISD::VECTOR_SHUFFLE: {
APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
Known.Zero.setAllBits(); Known.One.setAllBits();
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
int M = SVN->getMaskElt(i);
if (M < 0) {
Known.resetAll();
DemandedLHS.clearAllBits();
DemandedRHS.clearAllBits();
break;
}
if ((unsigned)M < NumElts)
DemandedLHS.setBit((unsigned)M % NumElts);
else
DemandedRHS.setBit((unsigned)M % NumElts);
}
if (!!DemandedLHS) {
SDValue LHS = Op.getOperand(0);
Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
Known = KnownBits::commonBits(Known, Known2);
}
if (Known.isUnknown())
break;
if (!!DemandedRHS) {
SDValue RHS = Op.getOperand(1);
Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case ISD::CONCAT_VECTORS: {
Known.Zero.setAllBits(); Known.One.setAllBits();
EVT SubVectorVT = Op.getOperand(0).getValueType();
unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
unsigned NumSubVectors = Op.getNumOperands();
for (unsigned i = 0; i != NumSubVectors; ++i) {
APInt DemandedSub =
DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
if (!!DemandedSub) {
SDValue Sub = Op.getOperand(i);
Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
Known = KnownBits::commonBits(Known, Known2);
}
if (Known.isUnknown())
break;
}
break;
}
case ISD::INSERT_SUBVECTOR: {
SDValue Src = Op.getOperand(0);
SDValue Sub = Op.getOperand(1);
uint64_t Idx = Op.getConstantOperandVal(2);
unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
APInt DemandedSrcElts = DemandedElts;
DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
Known.One.setAllBits();
Known.Zero.setAllBits();
if (!!DemandedSubElts) {
Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
if (Known.isUnknown())
break; }
if (!!DemandedSrcElts) {
Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case ISD::EXTRACT_SUBVECTOR: {
SDValue Src = Op.getOperand(0);
if (Src.getValueType().isScalableVector())
break;
uint64_t Idx = Op.getConstantOperandVal(1);
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
break;
}
case ISD::SCALAR_TO_VECTOR: {
if (DemandedElts != 1)
break;
SDValue N0 = Op.getOperand(0);
Known = computeKnownBits(N0, Depth + 1);
if (N0.getValueSizeInBits() != BitWidth)
Known = Known.trunc(BitWidth);
break;
}
case ISD::BITCAST: {
SDValue N0 = Op.getOperand(0);
EVT SubVT = N0.getValueType();
unsigned SubBitWidth = SubVT.getScalarSizeInBits();
if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
break;
if (BitWidth == SubBitWidth) {
Known = computeKnownBits(N0, DemandedElts, Depth + 1);
break;
}
bool IsLE = getDataLayout().isLittleEndian();
if ((BitWidth % SubBitWidth) == 0) {
assert(N0.getValueType().isVector() && "Expected bitcast from vector");
unsigned SubScale = BitWidth / SubBitWidth;
APInt SubDemandedElts(NumElts * SubScale, 0);
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i])
SubDemandedElts.setBit(i * SubScale);
for (unsigned i = 0; i != SubScale; ++i) {
Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
Depth + 1);
unsigned Shifts = IsLE ? i : SubScale - 1 - i;
Known.insertBits(Known2, SubBitWidth * Shifts);
}
}
if ((SubBitWidth % BitWidth) == 0) {
assert(Op.getValueType().isVector() && "Expected bitcast to vector");
unsigned SubScale = SubBitWidth / BitWidth;
APInt SubDemandedElts =
APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i]) {
unsigned Shifts = IsLE ? i : NumElts - 1 - i;
unsigned Offset = (Shifts % SubScale) * BitWidth;
Known = KnownBits::commonBits(Known,
Known2.extractBits(BitWidth, Offset));
if (Known.isUnknown())
break;
}
}
break;
}
case ISD::AND:
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known &= Known2;
break;
case ISD::OR:
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known |= Known2;
break;
case ISD::XOR:
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known ^= Known2;
break;
case ISD::MUL: {
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
if (SelfMultiply)
SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
Op.getOperand(0), DemandedElts, false, Depth + 1);
Known = KnownBits::mul(Known, Known2, SelfMultiply);
if (Op->getFlags().hasNoSignedWrap() &&
Op.getOperand(0) == Op.getOperand(1) &&
!Known.isNegative())
Known.makeNonNegative();
break;
}
case ISD::MULHU: {
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = KnownBits::mulhu(Known, Known2);
break;
}
case ISD::MULHS: {
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = KnownBits::mulhs(Known, Known2);
break;
}
case ISD::UMUL_LOHI: {
assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
if (Op.getResNo() == 0)
Known = KnownBits::mul(Known, Known2, SelfMultiply);
else
Known = KnownBits::mulhu(Known, Known2);
break;
}
case ISD::SMUL_LOHI: {
assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
if (Op.getResNo() == 0)
Known = KnownBits::mul(Known, Known2, SelfMultiply);
else
Known = KnownBits::mulhs(Known, Known2);
break;
}
case ISD::AVGCEILU: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = Known.zext(BitWidth + 1);
Known2 = Known2.zext(BitWidth + 1);
KnownBits One = KnownBits::makeConstant(APInt(1, 1));
Known = KnownBits::computeForAddCarry(Known, Known2, One);
Known = Known.extractBits(BitWidth, 1);
break;
}
case ISD::SELECT:
case ISD::VSELECT:
Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
if (Known.isUnknown())
break;
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
Known = KnownBits::commonBits(Known, Known2);
break;
case ISD::SELECT_CC:
Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
if (Known.isUnknown())
break;
Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
Known = KnownBits::commonBits(Known, Known2);
break;
case ISD::SMULO:
case ISD::UMULO:
if (Op.getResNo() != 1)
break;
if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
case ISD::SETCC:
case ISD::SETCCCARRY:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: {
unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
case ISD::SHL:
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::shl(Known, Known2);
if (const APInt *ShMinAmt =
getValidMinimumShiftAmountConstant(Op, DemandedElts))
Known.Zero.setLowBits(ShMinAmt->getZExtValue());
break;
case ISD::SRL:
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::lshr(Known, Known2);
if (const APInt *ShMinAmt =
getValidMinimumShiftAmountConstant(Op, DemandedElts))
Known.Zero.setHighBits(ShMinAmt->getZExtValue());
break;
case ISD::SRA:
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::ashr(Known, Known2);
break;
case ISD::FSHL:
case ISD::FSHR:
if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
unsigned Amt = C->getAPIntValue().urem(BitWidth);
if (Amt == 0) {
Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
DemandedElts, Depth + 1);
break;
}
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
if (Opcode == ISD::FSHL) {
Known.One <<= Amt;
Known.Zero <<= Amt;
Known2.One.lshrInPlace(BitWidth - Amt);
Known2.Zero.lshrInPlace(BitWidth - Amt);
} else {
Known.One <<= BitWidth - Amt;
Known.Zero <<= BitWidth - Amt;
Known2.One.lshrInPlace(Amt);
Known2.Zero.lshrInPlace(Amt);
}
Known.One |= Known2.One;
Known.Zero |= Known2.Zero;
}
break;
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: {
assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = Known.anyext(LoBits + HiBits);
Known.insertBits(Known2, LoBits);
Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
if (Opcode == ISD::SHL_PARTS)
Known = KnownBits::shl(Known, Known2);
else if (Opcode == ISD::SRA_PARTS)
Known = KnownBits::ashr(Known, Known2);
else Known = KnownBits::lshr(Known, Known2);
if (Op.getResNo() == 0)
Known = Known.extractBits(LoBits, 0);
else
Known = Known.extractBits(HiBits, LoBits);
break;
}
case ISD::SIGN_EXTEND_INREG: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
Known = Known.sextInReg(EVT.getScalarSizeInBits());
break;
}
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned PossibleTZ = Known2.countMaxTrailingZeros();
unsigned LowBits = Log2_32(PossibleTZ) + 1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned PossibleLZ = Known2.countMaxLeadingZeros();
unsigned LowBits = Log2_32(PossibleLZ) + 1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case ISD::CTPOP: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned PossibleOnes = Known2.countMaxPopulation();
Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
break;
}
case ISD::PARITY: {
Known.Zero.setBitsFrom(1);
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Op);
const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
if (ISD::isNON_EXTLoad(LD) && Cst) {
Type *CstTy = Cst->getType();
if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
if (CstTy->isVectorTy()) {
if (const Constant *Splat = Cst->getSplatValue()) {
Cst = Splat;
CstTy = Cst->getType();
}
}
if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
Known.One.setAllBits();
Known.Zero.setAllBits();
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
if (Constant *Elt = Cst->getAggregateElement(i)) {
if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
const APInt &Value = CInt->getValue();
Known.One &= Value;
Known.Zero &= ~Value;
continue;
}
if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
APInt Value = CFP->getValueAPF().bitcastToAPInt();
Known.One &= Value;
Known.Zero &= ~Value;
continue;
}
}
Known.One.clearAllBits();
Known.Zero.clearAllBits();
break;
}
} else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
Known = KnownBits::makeConstant(CInt->getValue());
} else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
Known =
KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
}
}
}
} else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
EVT VT = LD->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
Known.Zero.setBitsFrom(MemBits);
} else if (const MDNode *Ranges = LD->getRanges()) {
if (LD->getExtensionType() == ISD::NON_EXTLOAD)
computeKnownBitsFromRangeMetadata(*Ranges, Known);
}
break;
}
case ISD::ZERO_EXTEND_VECTOR_INREG: {
EVT InVT = Op.getOperand(0).getValueType();
APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
Known = Known.zext(BitWidth);
break;
}
case ISD::ZERO_EXTEND: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known.zext(BitWidth);
break;
}
case ISD::SIGN_EXTEND_VECTOR_INREG: {
EVT InVT = Op.getOperand(0).getValueType();
APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
Known = Known.sext(BitWidth);
break;
}
case ISD::SIGN_EXTEND: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known.sext(BitWidth);
break;
}
case ISD::ANY_EXTEND_VECTOR_INREG: {
EVT InVT = Op.getOperand(0).getValueType();
APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
Known = Known.anyext(BitWidth);
break;
}
case ISD::ANY_EXTEND: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known.anyext(BitWidth);
break;
}
case ISD::TRUNCATE: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known.trunc(BitWidth);
break;
}
case ISD::AssertZext: {
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
Known = computeKnownBits(Op.getOperand(0), Depth+1);
Known.Zero |= (~InMask);
Known.One &= (~Known.Zero);
break;
}
case ISD::AssertAlign: {
unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
assert(LogOfAlign != 0);
Known.Zero.setLowBits(LogOfAlign);
Known.One.clearLowBits(LogOfAlign);
break;
}
case ISD::FGETSIGN:
Known.Zero.setBitsFrom(1);
break;
case ISD::USUBO:
case ISD::SSUBO:
case ISD::SUBCARRY:
case ISD::SSUBO_CARRY:
if (Op.getResNo() == 1) {
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
LLVM_FALLTHROUGH;
case ISD::SUB:
case ISD::SUBC: {
assert(Op.getResNo() == 0 &&
"We only compute knownbits for the difference here.");
if (Opcode == ISD::SUBCARRY || Opcode == ISD::SSUBO_CARRY)
break;
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::computeForAddSub( false, false,
Known, Known2);
break;
}
case ISD::UADDO:
case ISD::SADDO:
case ISD::ADDCARRY:
case ISD::SADDO_CARRY:
if (Op.getResNo() == 1) {
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
LLVM_FALLTHROUGH;
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE: {
assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
KnownBits Carry(1);
if (Opcode == ISD::ADDE)
Carry.resetAll();
else if (Opcode == ISD::ADDCARRY || Opcode == ISD::SADDO_CARRY)
Carry.resetAll();
else
Carry.setAllZero();
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
break;
}
case ISD::UDIV: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::udiv(Known, Known2);
break;
}
case ISD::SREM: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::srem(Known, Known2);
break;
}
case ISD::UREM: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::urem(Known, Known2);
break;
}
case ISD::EXTRACT_ELEMENT: {
Known = computeKnownBits(Op.getOperand(0), Depth+1);
const unsigned Index = Op.getConstantOperandVal(1);
const unsigned EltBitWidth = Op.getValueSizeInBits();
Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
Known = Known.trunc(EltBitWidth);
break;
}
case ISD::EXTRACT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue EltNo = Op.getOperand(1);
EVT VecVT = InVec.getValueType();
if (VecVT.isScalableVector())
break;
const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
const unsigned NumSrcElts = VecVT.getVectorNumElements();
if (BitWidth > EltBitWidth)
Known = Known.trunc(EltBitWidth);
APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
DemandedSrcElts =
APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
if (BitWidth > EltBitWidth)
Known = Known.anyext(BitWidth);
break;
}
case ISD::INSERT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue InVal = Op.getOperand(1);
SDValue EltNo = Op.getOperand(2);
bool DemandedVal = true;
APInt DemandedVecElts = DemandedElts;
auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
unsigned EltIdx = CEltNo->getZExtValue();
DemandedVal = !!DemandedElts[EltIdx];
DemandedVecElts.clearBit(EltIdx);
}
Known.One.setAllBits();
Known.Zero.setAllBits();
if (DemandedVal) {
Known2 = computeKnownBits(InVal, Depth + 1);
Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
}
if (!!DemandedVecElts) {
Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case ISD::BITREVERSE: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known2.reverseBits();
break;
}
case ISD::BSWAP: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known2.byteSwap();
break;
}
case ISD::ABS: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known2.abs();
break;
}
case ISD::USUBSAT: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known.Zero.setHighBits(Known2.countMinLeadingZeros());
break;
}
case ISD::UMIN: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::umin(Known, Known2);
break;
}
case ISD::UMAX: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known = KnownBits::umax(Known, Known2);
break;
}
case ISD::SMIN:
case ISD::SMAX: {
bool IsMax = (Opcode == ISD::SMAX);
ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
CstHigh =
isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
if (CstLow && CstHigh) {
if (!IsMax)
std::swap(CstLow, CstHigh);
const APInt &ValueLow = CstLow->getAPIntValue();
const APInt &ValueHigh = CstHigh->getAPIntValue();
if (ValueLow.sle(ValueHigh)) {
unsigned LowSignBits = ValueLow.getNumSignBits();
unsigned HighSignBits = ValueHigh.getNumSignBits();
unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
if (ValueLow.isNegative() && ValueHigh.isNegative()) {
Known.One.setHighBits(MinSignBits);
break;
}
if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
Known.Zero.setHighBits(MinSignBits);
break;
}
}
}
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
if (IsMax)
Known = KnownBits::smax(Known, Known2);
else
Known = KnownBits::smin(Known, Known2);
if (IsMax && CstLow) {
const APInt &ValueLow = CstLow->getAPIntValue();
if (ValueLow.isNonNegative()) {
unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
}
}
break;
}
case ISD::FP_TO_UINT_SAT: {
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
break;
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
if (Op.getResNo() == 1) {
if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
LLVM_FALLTHROUGH;
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD: {
unsigned MemBits =
cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
if (Op.getResNo() == 0) {
if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
Known.Zero.setBitsFrom(MemBits);
}
break;
}
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
Known, getMachineFunction());
break;
default:
if (Opcode < ISD::BUILTIN_OP_END)
break;
LLVM_FALLTHROUGH;
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
break;
}
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
return Known;
}
SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
SDValue N1) const {
if (isNullConstant(N1))
return OFK_Never;
KnownBits N1Known = computeKnownBits(N1);
if (N1Known.Zero.getBoolValue()) {
KnownBits N0Known = computeKnownBits(N0);
bool overflow;
(void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
if (!overflow)
return OFK_Never;
}
if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
(N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
return OFK_Never;
if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
KnownBits N0Known = computeKnownBits(N0);
if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
return OFK_Never;
}
return OFK_Sometime;
}
bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
EVT OpVT = Val.getValueType();
unsigned BitWidth = OpVT.getScalarSizeInBits();
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
if (Val.getOpcode() == ISD::SHL) {
auto *C = isConstOrConstSplat(Val.getOperand(0));
if (C && C->getAPIntValue() == 1)
return true;
}
if (Val.getOpcode() == ISD::SRL) {
auto *C = isConstOrConstSplat(Val.getOperand(0));
if (C && C->getAPIntValue().isSignMask())
return true;
}
if (Val.getOpcode() == ISD::BUILD_VECTOR)
if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
return false;
}))
return true;
if (Val.getOpcode() == ISD::SPLAT_VECTOR)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
return true;
if (Val.getOpcode() == ISD::VSCALE &&
getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
isKnownToBeAPowerOfTwo(Val.getOperand(0)))
return true;
KnownBits Known = computeKnownBits(Val);
return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
}
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
EVT VT = Op.getValueType();
if (VT.isScalableVector())
return 1;
APInt DemandedElts = VT.isVector()
? APInt::getAllOnes(VT.getVectorNumElements())
: APInt(1, 1);
return ComputeNumSignBits(Op, DemandedElts, Depth);
}
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth) const {
EVT VT = Op.getValueType();
assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
unsigned VTBits = VT.getScalarSizeInBits();
unsigned NumElts = DemandedElts.getBitWidth();
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
const APInt &Val = C->getAPIntValue();
return Val.getNumSignBits();
}
if (Depth >= MaxRecursionDepth)
return 1;
if (!DemandedElts || VT.isScalableVector())
return 1;
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
default: break;
case ISD::AssertSext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp+1;
case ISD::AssertZext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp;
case ISD::MERGE_VALUES:
return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
Depth + 1);
case ISD::BUILD_VECTOR:
Tmp = VTBits;
for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
if (!DemandedElts[i])
continue;
SDValue SrcOp = Op.getOperand(i);
Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
if (SrcOp.getValueSizeInBits() != VTBits) {
assert(SrcOp.getValueSizeInBits() > VTBits &&
"Expected BUILD_VECTOR implicit truncation");
unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
}
Tmp = std::min(Tmp, Tmp2);
}
return Tmp;
case ISD::VECTOR_SHUFFLE: {
APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
for (unsigned i = 0; i != NumElts; ++i) {
int M = SVN->getMaskElt(i);
if (!DemandedElts[i])
continue;
if (M < 0)
return 1;
if ((unsigned)M < NumElts)
DemandedLHS.setBit((unsigned)M % NumElts);
else
DemandedRHS.setBit((unsigned)M % NumElts);
}
Tmp = std::numeric_limits<unsigned>::max();
if (!!DemandedLHS)
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
if (!!DemandedRHS) {
Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
if (Tmp == 1)
break;
assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
return Tmp;
}
case ISD::BITCAST: {
SDValue N0 = Op.getOperand(0);
EVT SrcVT = N0.getValueType();
unsigned SrcBits = SrcVT.getScalarSizeInBits();
if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
break;
if (VTBits == SrcBits)
return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
bool IsLE = getDataLayout().isLittleEndian();
if ((SrcBits % VTBits) == 0) {
assert(VT.isVector() && "Expected bitcast to vector");
unsigned Scale = SrcBits / VTBits;
APInt SrcDemandedElts =
APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
if (Tmp == SrcBits)
return VTBits;
Tmp2 = VTBits;
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i]) {
unsigned SubOffset = i % Scale;
SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
SubOffset = SubOffset * VTBits;
if (Tmp <= SubOffset)
return 1;
Tmp2 = std::min(Tmp2, Tmp - SubOffset);
}
return Tmp2;
}
break;
}
case ISD::FP_TO_SINT_SAT:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
return VTBits - Tmp + 1;
case ISD::SIGN_EXTEND:
Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
case ISD::SIGN_EXTEND_INREG:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
Tmp = VTBits-Tmp+1;
Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
return std::max(Tmp, Tmp2);
case ISD::SIGN_EXTEND_VECTOR_INREG: {
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
Tmp = VTBits - SrcVT.getScalarSizeInBits();
return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
}
case ISD::SRA:
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (const APInt *ShAmt =
getValidMinimumShiftAmountConstant(Op, DemandedElts))
Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
return Tmp;
case ISD::SHL:
if (const APInt *ShAmt =
getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (ShAmt->ult(Tmp))
return Tmp - ShAmt->getZExtValue();
}
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
FirstAnswer = std::min(Tmp, Tmp2);
}
break;
case ISD::SELECT:
case ISD::VSELECT:
Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
if (Tmp == 1) return 1; Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SELECT_CC:
Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
if (Tmp == 1) return 1; Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SMIN:
case ISD::SMAX: {
bool IsMax = (Opcode == ISD::SMAX);
ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
CstHigh =
isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
if (CstLow && CstHigh) {
if (!IsMax)
std::swap(CstLow, CstHigh);
if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
Tmp = CstLow->getAPIntValue().getNumSignBits();
Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
return std::min(Tmp, Tmp2);
}
}
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Tmp == 1)
return 1; Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
return std::min(Tmp, Tmp2);
}
case ISD::UMIN:
case ISD::UMAX:
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Tmp == 1)
return 1; Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
return std::min(Tmp, Tmp2);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SADDO_CARRY:
case ISD::ADDCARRY:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SSUBO_CARRY:
case ISD::SUBCARRY:
case ISD::SMULO:
case ISD::UMULO:
if (Op.getResNo() != 1)
break;
if (TLI->getBooleanContents(VT.isVector(), false) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return VTBits;
break;
case ISD::SETCC:
case ISD::SETCCCARRY:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: {
unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return VTBits;
break;
}
case ISD::ROTL:
case ISD::ROTR:
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Tmp == VTBits)
return VTBits;
if (ConstantSDNode *C =
isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
unsigned RotAmt = C->getAPIntValue().urem(VTBits);
if (Opcode == ISD::ROTR)
RotAmt = (VTBits - RotAmt) % VTBits;
if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
}
break;
case ISD::ADD:
case ISD::ADDC:
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Tmp == 1) return 1;
if (ConstantSDNode *CRHS =
isConstOrConstSplat(Op.getOperand(1), DemandedElts))
if (CRHS->isAllOnes()) {
KnownBits Known =
computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
if ((Known.Zero | 1).isAllOnes())
return VTBits;
if (Known.isNonNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
if (Tmp2 == 1) return 1; return std::min(Tmp, Tmp2) - 1;
case ISD::SUB:
Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
if (Tmp2 == 1) return 1;
if (ConstantSDNode *CLHS =
isConstOrConstSplat(Op.getOperand(0), DemandedElts))
if (CLHS->isZero()) {
KnownBits Known =
computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
if ((Known.Zero | 1).isAllOnes())
return VTBits;
if (Known.isNonNegative())
return Tmp2;
}
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Tmp == 1) return 1; return std::min(Tmp, Tmp2) - 1;
case ISD::MUL: {
unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
if (SignBitsOp0 == 1)
break;
unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
if (SignBitsOp1 == 1)
break;
unsigned OutValidBits =
(VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
}
case ISD::SREM:
return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
case ISD::TRUNCATE: {
unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
if (NumSrcSignBits > (NumSrcBits - VTBits))
return NumSrcSignBits - (NumSrcBits - VTBits);
break;
}
case ISD::EXTRACT_ELEMENT: {
const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
const int BitWidth = Op.getValueSizeInBits();
const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
}
case ISD::INSERT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue InVal = Op.getOperand(1);
SDValue EltNo = Op.getOperand(2);
bool DemandedVal = true;
APInt DemandedVecElts = DemandedElts;
auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
unsigned EltIdx = CEltNo->getZExtValue();
DemandedVal = !!DemandedElts[EltIdx];
DemandedVecElts.clearBit(EltIdx);
}
Tmp = std::numeric_limits<unsigned>::max();
if (DemandedVal) {
if (InVal.getScalarValueSizeInBits() != VTBits)
break;
Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
if (!!DemandedVecElts) {
Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
return Tmp;
}
case ISD::EXTRACT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue EltNo = Op.getOperand(1);
EVT VecVT = InVec.getValueType();
if (VecVT.isScalableVector())
break;
const unsigned BitWidth = Op.getValueSizeInBits();
const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
const unsigned NumSrcElts = VecVT.getVectorNumElements();
if (BitWidth != EltBitWidth)
break;
APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
DemandedSrcElts =
APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
}
case ISD::EXTRACT_SUBVECTOR: {
SDValue Src = Op.getOperand(0);
if (Src.getValueType().isScalableVector())
break;
uint64_t Idx = Op.getConstantOperandVal(1);
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
}
case ISD::CONCAT_VECTORS: {
Tmp = std::numeric_limits<unsigned>::max();
EVT SubVectorVT = Op.getOperand(0).getValueType();
unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
unsigned NumSubVectors = Op.getNumOperands();
for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
APInt DemandedSub =
DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
if (!DemandedSub)
continue;
Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
return Tmp;
}
case ISD::INSERT_SUBVECTOR: {
SDValue Src = Op.getOperand(0);
SDValue Sub = Op.getOperand(1);
uint64_t Idx = Op.getConstantOperandVal(2);
unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
APInt DemandedSrcElts = DemandedElts;
DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
Tmp = std::numeric_limits<unsigned>::max();
if (!!DemandedSubElts) {
Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
if (Tmp == 1)
return 1; }
if (!!DemandedSrcElts) {
Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
return Tmp;
}
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD: {
Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
if (Op.getResNo() == 0) {
if (Tmp == VTBits)
return 1; if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
return VTBits - Tmp + 1;
if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
return VTBits - Tmp;
}
break;
}
}
if (Op.getResNo() == 0) {
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
unsigned ExtType = LD->getExtensionType();
switch (ExtType) {
default: break;
case ISD::SEXTLOAD: Tmp = LD->getMemoryVT().getScalarSizeInBits();
return VTBits - Tmp + 1;
case ISD::ZEXTLOAD: Tmp = LD->getMemoryVT().getScalarSizeInBits();
return VTBits - Tmp;
case ISD::NON_EXTLOAD:
if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
Type *CstTy = Cst->getType();
if (CstTy->isVectorTy() &&
(NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
VTBits == CstTy->getScalarSizeInBits()) {
Tmp = VTBits;
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
if (Constant *Elt = Cst->getAggregateElement(i)) {
if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
const APInt &Value = CInt->getValue();
Tmp = std::min(Tmp, Value.getNumSignBits());
continue;
}
if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
APInt Value = CFP->getValueAPF().bitcastToAPInt();
Tmp = std::min(Tmp, Value.getNumSignBits());
continue;
}
}
return 1;
}
return Tmp;
}
}
break;
}
}
}
if (Opcode >= ISD::BUILTIN_OP_END ||
Opcode == ISD::INTRINSIC_WO_CHAIN ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::INTRINSIC_VOID) {
unsigned NumBits =
TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
if (NumBits > 1)
FirstAnswer = std::max(FirstAnswer, NumBits);
}
KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
return std::max(FirstAnswer, Known.countMinSignBits());
}
unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
unsigned Depth) const {
unsigned SignBits = ComputeNumSignBits(Op, Depth);
return Op.getScalarValueSizeInBits() - SignBits + 1;
}
unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
const APInt &DemandedElts,
unsigned Depth) const {
unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
return Op.getScalarValueSizeInBits() - SignBits + 1;
}
bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
unsigned Depth) const {
if (Op.getOpcode() == ISD::FREEZE)
return true;
EVT VT = Op.getValueType();
if (VT.isScalableVector())
return false;
APInt DemandedElts = VT.isVector()
? APInt::getAllOnes(VT.getVectorNumElements())
: APInt(1, 1);
return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
}
bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
const APInt &DemandedElts,
bool PoisonOnly,
unsigned Depth) const {
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::FREEZE)
return true;
if (Depth >= MaxRecursionDepth)
return false;
if (isIntOrFPConstant(Op))
return true;
switch (Opcode) {
case ISD::UNDEF:
return PoisonOnly;
case ISD::BUILD_VECTOR:
for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
if (!DemandedElts[i])
continue;
if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
Depth + 1))
return false;
}
return true;
default:
if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
Op, DemandedElts, *this, PoisonOnly, Depth);
break;
}
return false;
}
bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
!isa<ConstantSDNode>(Op.getOperand(1)))
return false;
if (Op.getOpcode() == ISD::OR &&
!MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
return false;
return true;
}
bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
return true;
if (Depth >= MaxRecursionDepth)
return false;
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
return !C->getValueAPF().isNaN() ||
(SNaN && !C->getValueAPF().isSignaling());
}
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FSIN:
case ISD::FCOS: {
if (SNaN)
return true;
return false;
}
case ISD::FCANONICALIZE:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FROUND:
case ISD::FROUNDEVEN:
case ISD::FRINT:
case ISD::FNEARBYINT: {
if (SNaN)
return true;
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
case ISD::FABS:
case ISD::FNEG:
case ISD::FCOPYSIGN: {
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
case ISD::SELECT:
return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
case ISD::FP_EXTEND:
case ISD::FP_ROUND: {
if (SNaN)
return true;
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return true;
case ISD::FMA:
case ISD::FMAD: {
if (SNaN)
return true;
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
}
case ISD::FSQRT: case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FPOWI:
case ISD::FPOW: {
if (SNaN)
return true;
return false;
}
case ISD::FMINNUM:
case ISD::FMAXNUM: {
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
}
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE: {
if (SNaN)
return true;
return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
(isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
}
case ISD::FMINIMUM:
case ISD::FMAXIMUM: {
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
}
case ISD::EXTRACT_VECTOR_ELT: {
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
default:
if (Opcode >= ISD::BUILTIN_OP_END ||
Opcode == ISD::INTRINSIC_WO_CHAIN ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::INTRINSIC_VOID) {
return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
}
return false;
}
}
bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
assert(Op.getValueType().isFloatingPoint() &&
"Floating point type expected");
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return !C->isZero();
return false;
}
bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
assert(!Op.getValueType().isFloatingPoint() &&
"Floating point types unsupported - use isKnownNeverZeroFloat");
if (ISD::matchUnaryPredicate(Op,
[](ConstantSDNode *C) { return !C->isZero(); }))
return true;
switch (Op.getOpcode()) {
default: break;
case ISD::OR:
if (isKnownNeverZero(Op.getOperand(1)) ||
isKnownNeverZero(Op.getOperand(0)))
return true;
break;
}
return false;
}
bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
if (A == B) return true;
if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
if (CA->isZero() && CB->isZero()) return true;
return false;
}
SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
if (isBitwiseNot(V, AllowUndefs))
return V.getOperand(0);
ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
return SDValue();
SDValue ExtArg = V.getOperand(0);
if (ExtArg.getScalarValueSizeInBits() >=
MaskC->getAPIntValue().getActiveBits() &&
isBitwiseNot(ExtArg, AllowUndefs) &&
ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
return ExtArg.getOperand(0).getOperand(0);
return SDValue();
}
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
SDValue Other) {
if (SDValue NotOperand =
getBitwiseNotOperand(Not, Mask, true)) {
if (Other == NotOperand)
return true;
if (Other->getOpcode() == ISD::AND)
return NotOperand == Other->getOperand(0) ||
NotOperand == Other->getOperand(1);
}
return false;
};
if (A->getOpcode() == ISD::AND)
return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
return false;
}
bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
assert(A.getValueType() == B.getValueType() &&
"Values must have the same type");
if (haveNoCommonBitsSetCommutative(A, B) ||
haveNoCommonBitsSetCommutative(B, A))
return true;
return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
computeKnownBits(B));
}
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
SelectionDAG &DAG) {
if (cast<ConstantSDNode>(Step)->isZero())
return DAG.getConstant(0, DL, VT);
return SDValue();
}
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
SelectionDAG &DAG) {
int NumOps = Ops.size();
assert(NumOps != 0 && "Can't build an empty vector!");
assert(!VT.isScalableVector() &&
"BUILD_VECTOR cannot be used with scalable types");
assert(VT.getVectorNumElements() == (unsigned)NumOps &&
"Incorrect element count in BUILD_VECTOR!");
if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
return DAG.getUNDEF(VT);
SDValue IdentitySrc;
bool IsIdentity = true;
for (int i = 0; i != NumOps; ++i) {
if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Ops[i].getOperand(0).getValueType() != VT ||
(IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
!isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
IsIdentity = false;
break;
}
IdentitySrc = Ops[i].getOperand(0);
}
if (IsIdentity)
return IdentitySrc;
return SDValue();
}
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
SelectionDAG &DAG) {
assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
assert(llvm::all_of(Ops,
[Ops](SDValue Op) {
return Ops[0].getValueType() == Op.getValueType();
}) &&
"Concatenation of vectors with inconsistent value types!");
assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
VT.getVectorElementCount() &&
"Incorrect element count in vector concatenation!");
if (Ops.size() == 1)
return Ops[0];
if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
return DAG.getUNDEF(VT);
SDValue IdentitySrc;
bool IsIdentity = true;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
SDValue Op = Ops[i];
unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
Op.getOperand(0).getValueType() != VT ||
(IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
Op.getConstantOperandVal(1) != IdentityIndex) {
IsIdentity = false;
break;
}
assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
"Unexpected identity source vector for concat of extracts");
IdentitySrc = Op.getOperand(0);
}
if (IsIdentity) {
assert(IdentitySrc && "Failed to set source vector of extracts");
return IdentitySrc;
}
if (VT.isScalableVector())
return SDValue();
EVT SVT = VT.getScalarType();
SmallVector<SDValue, 16> Elts;
for (SDValue Op : Ops) {
EVT OpVT = Op.getValueType();
if (Op.isUndef())
Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
else if (Op.getOpcode() == ISD::BUILD_VECTOR)
Elts.append(Op->op_begin(), Op->op_end());
else
return SDValue();
}
for (SDValue Op : Elts)
SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
if (SVT.bitsGT(VT.getScalarType())) {
for (SDValue &Op : Elts) {
if (Op.isUndef())
Op = DAG.getUNDEF(SVT);
else
Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
? DAG.getZExtOrTrunc(Op, DL, SVT)
: DAG.getSExtOrTrunc(Op, DL, SVT);
}
}
SDValue V = DAG.getBuildVector(VT, DL, Elts);
NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, getVTList(VT), None);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
getVTList(VT));
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue Operand) {
SDNodeFlags Flags;
if (Inserter)
Flags = Inserter->getFlags();
return getNode(Opcode, DL, VT, Operand, Flags);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue Operand, const SDNodeFlags Flags) {
assert(Operand.getOpcode() != ISD::DELETED_NODE &&
"Operand is DELETED_NODE!");
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
const APInt &Val = C->getAPIntValue();
switch (Opcode) {
default: break;
case ISD::SIGN_EXTEND:
return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
C->isTargetOpcode(), C->isOpaque());
case ISD::TRUNCATE:
if (C->isOpaque())
break;
LLVM_FALLTHROUGH;
case ISD::ZERO_EXTEND:
return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
C->isTargetOpcode(), C->isOpaque());
case ISD::ANY_EXTEND:
if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
C->isTargetOpcode(), C->isOpaque());
return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
C->isTargetOpcode(), C->isOpaque());
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
APFloat apf(EVTToAPFloatSemantics(VT),
APInt::getZero(VT.getSizeInBits()));
(void)apf.convertFromAPInt(Val,
Opcode==ISD::SINT_TO_FP,
APFloat::rmNearestTiesToEven);
return getConstantFP(apf, DL, VT);
}
case ISD::BITCAST:
if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
break;
case ISD::ABS:
return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::BITREVERSE:
return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::BSWAP:
return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTPOP:
return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::FP16_TO_FP:
case ISD::BF16_TO_FP: {
bool Ignored;
APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
: APFloat::BFloat(),
(Val.getBitWidth() == 16) ? Val : Val.trunc(16));
(void)FPV.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &Ignored);
return getConstantFP(FPV, DL, VT);
}
case ISD::STEP_VECTOR: {
if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
return V;
break;
}
}
}
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
APFloat V = C->getValueAPF(); switch (Opcode) {
case ISD::FNEG:
V.changeSign();
return getConstantFP(V, DL, VT);
case ISD::FABS:
V.clearSign();
return getConstantFP(V, DL, VT);
case ISD::FCEIL: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, DL, VT);
break;
}
case ISD::FTRUNC: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, DL, VT);
break;
}
case ISD::FFLOOR: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, DL, VT);
break;
}
case ISD::FP_EXTEND: {
bool ignored;
(void)V.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, DL, VT);
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
bool ignored;
APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
APFloat::opStatus s =
V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
if (s == APFloat::opInvalidOp) break;
return getConstant(IntVal, DL, VT);
}
case ISD::BITCAST:
if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
break;
case ISD::FP_TO_FP16:
case ISD::FP_TO_BF16: {
bool Ignored;
(void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
: APFloat::BFloat(),
APFloat::rmNearestTiesToEven, &Ignored);
return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
}
}
}
switch (Opcode) {
default:
break;
case ISD::FNEG:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::TRUNCATE:
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::ABS:
case ISD::BITREVERSE:
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTPOP: {
SDValue Ops = {Operand};
if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
return Fold;
}
}
unsigned OpOpcode = Operand.getNode()->getOpcode();
switch (Opcode) {
case ISD::STEP_VECTOR:
assert(VT.isScalableVector() &&
"STEP_VECTOR can only be used with scalable types");
assert(OpOpcode == ISD::TargetConstant &&
VT.getVectorElementType() == Operand.getValueType() &&
"Unexpected step operand");
break;
case ISD::FREEZE:
assert(VT == Operand.getValueType() && "Unexpected VT!");
if (isGuaranteedNotToBeUndefOrPoison(Operand))
return Operand;
break;
case ISD::TokenFactor:
case ISD::MERGE_VALUES:
case ISD::CONCAT_VECTORS:
return Operand; case ISD::BUILD_VECTOR: {
SDValue Ops[] = {Operand};
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
}
case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
case ISD::FP_EXTEND:
assert(VT.isFloatingPoint() &&
Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
if (Operand.getValueType() == VT) return Operand; assert((!VT.isVector() ||
VT.getVectorElementCount() ==
Operand.getValueType().getVectorElementCount()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid fpext node, dst < src!");
if (Operand.isUndef())
return getUNDEF(VT);
break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
if (Operand.isUndef())
return getUNDEF(VT);
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
if (Operand.isUndef())
return getConstantFP(0.0, DL, VT);
break;
case ISD::SIGN_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid SIGN_EXTEND!");
assert(VT.isVector() == Operand.getValueType().isVector() &&
"SIGN_EXTEND result type type should be vector iff the operand "
"type is vector!");
if (Operand.getValueType() == VT) return Operand; assert((!VT.isVector() ||
VT.getVectorElementCount() ==
Operand.getValueType().getVectorElementCount()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid sext node, dst < src!");
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getConstant(0, DL, VT);
break;
case ISD::ZERO_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ZERO_EXTEND!");
assert(VT.isVector() == Operand.getValueType().isVector() &&
"ZERO_EXTEND result type type should be vector iff the operand "
"type is vector!");
if (Operand.getValueType() == VT) return Operand; assert((!VT.isVector() ||
VT.getVectorElementCount() ==
Operand.getValueType().getVectorElementCount()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid zext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND) return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getConstant(0, DL, VT);
break;
case ISD::ANY_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ANY_EXTEND!");
assert(VT.isVector() == Operand.getValueType().isVector() &&
"ANY_EXTEND result type type should be vector iff the operand "
"type is vector!");
if (Operand.getValueType() == VT) return Operand; assert((!VT.isVector() ||
VT.getVectorElementCount() ==
Operand.getValueType().getVectorElementCount()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid anyext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND)
return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
if (OpOpcode == ISD::TRUNCATE) {
SDValue OpOp = Operand.getOperand(0);
if (OpOp.getValueType() == VT) {
transferDbgValues(Operand, OpOp);
return OpOp;
}
}
break;
case ISD::TRUNCATE:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid TRUNCATE!");
assert(VT.isVector() == Operand.getValueType().isVector() &&
"TRUNCATE result type type should be vector iff the operand "
"type is vector!");
if (Operand.getValueType() == VT) return Operand; assert((!VT.isVector() ||
VT.getVectorElementCount() ==
Operand.getValueType().getVectorElementCount()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsGT(VT) &&
"Invalid truncate node, src < dst!");
if (OpOpcode == ISD::TRUNCATE)
return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND) {
if (Operand.getOperand(0).getValueType().getScalarType()
.bitsLT(VT.getScalarType()))
return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
if (Operand.getOperand(0).getValueType().bitsGT(VT))
return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
return Operand.getOperand(0);
}
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
assert(VT.isVector() && "This DAG node is restricted to vector types.");
assert(Operand.getValueType().bitsLE(VT) &&
"The input must be the same size or smaller than the result.");
assert(VT.getVectorMinNumElements() <
Operand.getValueType().getVectorMinNumElements() &&
"The destination vector type must have fewer lanes than the input.");
break;
case ISD::ABS:
assert(VT.isInteger() && VT == Operand.getValueType() &&
"Invalid ABS!");
if (OpOpcode == ISD::UNDEF)
return getConstant(0, DL, VT);
break;
case ISD::BSWAP:
assert(VT.isInteger() && VT == Operand.getValueType() &&
"Invalid BSWAP!");
assert((VT.getScalarSizeInBits() % 16 == 0) &&
"BSWAP types must be a multiple of 16 bits!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
if (OpOpcode == ISD::BSWAP)
return Operand.getOperand(0);
break;
case ISD::BITREVERSE:
assert(VT.isInteger() && VT == Operand.getValueType() &&
"Invalid BITREVERSE!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::BITCAST:
assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
"Cannot BITCAST between types of different sizes!");
if (VT == Operand.getValueType()) return Operand; if (OpOpcode == ISD::BITCAST) return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::SCALAR_TO_VECTOR:
assert(VT.isVector() && !Operand.getValueType().isVector() &&
(VT.getVectorElementType() == Operand.getValueType() ||
(VT.getVectorElementType().isInteger() &&
Operand.getValueType().isInteger() &&
VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
"Illegal SCALAR_TO_VECTOR node!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(Operand.getOperand(1)) &&
Operand.getConstantOperandVal(1) == 0 &&
Operand.getOperand(0).getValueType() == VT)
return Operand.getOperand(0);
break;
case ISD::FNEG:
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
if (OpOpcode == ISD::FNEG) return Operand.getOperand(0);
break;
case ISD::FABS:
if (OpOpcode == ISD::FNEG) return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
break;
case ISD::VSCALE:
assert(VT == Operand.getValueType() && "Unexpected VT!");
break;
case ISD::CTPOP:
if (Operand.getValueType().getScalarType() == MVT::i1)
return Operand;
break;
case ISD::CTLZ:
case ISD::CTTZ:
if (Operand.getValueType().getScalarType() == MVT::i1)
return getNOT(DL, Operand, Operand.getValueType());
break;
case ISD::VECREDUCE_ADD:
if (Operand.getValueType().getScalarType() == MVT::i1)
return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand);
break;
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
if (Operand.getValueType().getScalarType() == MVT::i1)
return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
break;
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_UMIN:
if (Operand.getValueType().getScalarType() == MVT::i1)
return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
break;
}
SDNode *N;
SDVTList VTs = getVTList(VT);
SDValue Ops[] = {Operand};
if (VT != MVT::Glue) { FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
N->setFlags(Flags);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
const APInt &C2) {
switch (Opcode) {
case ISD::ADD: return C1 + C2;
case ISD::SUB: return C1 - C2;
case ISD::MUL: return C1 * C2;
case ISD::AND: return C1 & C2;
case ISD::OR: return C1 | C2;
case ISD::XOR: return C1 ^ C2;
case ISD::SHL: return C1 << C2;
case ISD::SRL: return C1.lshr(C2);
case ISD::SRA: return C1.ashr(C2);
case ISD::ROTL: return C1.rotl(C2);
case ISD::ROTR: return C1.rotr(C2);
case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
case ISD::SADDSAT: return C1.sadd_sat(C2);
case ISD::UADDSAT: return C1.uadd_sat(C2);
case ISD::SSUBSAT: return C1.ssub_sat(C2);
case ISD::USUBSAT: return C1.usub_sat(C2);
case ISD::SSHLSAT: return C1.sshl_sat(C2);
case ISD::USHLSAT: return C1.ushl_sat(C2);
case ISD::UDIV:
if (!C2.getBoolValue())
break;
return C1.udiv(C2);
case ISD::UREM:
if (!C2.getBoolValue())
break;
return C1.urem(C2);
case ISD::SDIV:
if (!C2.getBoolValue())
break;
return C1.sdiv(C2);
case ISD::SREM:
if (!C2.getBoolValue())
break;
return C1.srem(C2);
case ISD::MULHS: {
unsigned FullWidth = C1.getBitWidth() * 2;
APInt C1Ext = C1.sext(FullWidth);
APInt C2Ext = C2.sext(FullWidth);
return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
}
case ISD::MULHU: {
unsigned FullWidth = C1.getBitWidth() * 2;
APInt C1Ext = C1.zext(FullWidth);
APInt C2Ext = C2.zext(FullWidth);
return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
}
case ISD::AVGFLOORS: {
unsigned FullWidth = C1.getBitWidth() + 1;
APInt C1Ext = C1.sext(FullWidth);
APInt C2Ext = C2.sext(FullWidth);
return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
}
case ISD::AVGFLOORU: {
unsigned FullWidth = C1.getBitWidth() + 1;
APInt C1Ext = C1.zext(FullWidth);
APInt C2Ext = C2.zext(FullWidth);
return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
}
case ISD::AVGCEILS: {
unsigned FullWidth = C1.getBitWidth() + 1;
APInt C1Ext = C1.sext(FullWidth);
APInt C2Ext = C2.sext(FullWidth);
return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
}
case ISD::AVGCEILU: {
unsigned FullWidth = C1.getBitWidth() + 1;
APInt C1Ext = C1.zext(FullWidth);
APInt C2Ext = C2.zext(FullWidth);
return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
}
}
return llvm::None;
}
SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
const GlobalAddressSDNode *GA,
const SDNode *N2) {
if (GA->getOpcode() != ISD::GlobalAddress)
return SDValue();
if (!TLI->isOffsetFoldingLegal(GA))
return SDValue();
auto *C2 = dyn_cast<ConstantSDNode>(N2);
if (!C2)
return SDValue();
int64_t Offset = C2->getSExtValue();
switch (Opcode) {
case ISD::ADD: break;
case ISD::SUB: Offset = -uint64_t(Offset); break;
default: return SDValue();
}
return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
GA->getOffset() + uint64_t(Offset));
}
bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
switch (Opcode) {
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM: {
assert(Ops.size() == 2 && "Div/rem should have 2 operands");
SDValue Divisor = Ops[1];
if (Divisor.isUndef() || isNullConstant(Divisor))
return true;
return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
llvm::any_of(Divisor->op_values(),
[](SDValue V) { return V.isUndef() ||
isNullConstant(V); });
}
default:
return false;
}
}
SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
EVT VT, ArrayRef<SDValue> Ops) {
if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
return SDValue();
unsigned NumOps = Ops.size();
if (NumOps == 0)
return SDValue();
if (isUndef(Opcode, Ops))
return getUNDEF(VT);
if (NumOps == 2) {
if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
return CFP;
if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
if (C1->isOpaque() || C2->isOpaque())
return SDValue();
Optional<APInt> FoldAttempt =
FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
if (!FoldAttempt)
return SDValue();
SDValue Folded = getConstant(*FoldAttempt, DL, VT);
assert((!Folded || !VT.isVector()) &&
"Can't fold vectors ops with scalar operands");
return Folded;
}
}
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
if (TLI->isCommutativeBinOp(Opcode))
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
}
if (!VT.isVector())
return SDValue();
ElementCount NumElts = VT.getVectorElementCount();
if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
Ops[0].getOpcode() == ISD::BITCAST &&
Ops[1].getOpcode() == ISD::BITCAST) {
SDValue N1 = peekThroughBitcasts(Ops[0]);
SDValue N2 = peekThroughBitcasts(Ops[1]);
auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
EVT BVVT = N1.getValueType();
if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
bool IsLE = getDataLayout().isLittleEndian();
unsigned EltBits = VT.getScalarSizeInBits();
SmallVector<APInt> RawBits1, RawBits2;
BitVector UndefElts1, UndefElts2;
if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
UndefElts1.none() && UndefElts2.none()) {
SmallVector<APInt> RawBits;
for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
if (!Fold)
break;
RawBits.push_back(*Fold);
}
if (RawBits.size() == NumElts.getFixedValue()) {
SmallVector<APInt> DstBits;
BitVector DstUndefs;
BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
DstBits, RawBits, DstUndefs,
BitVector(RawBits.size(), false));
EVT BVEltVT = BV1->getOperand(0).getValueType();
unsigned BVEltBits = BVEltVT.getSizeInBits();
SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
if (DstUndefs[I])
continue;
Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
}
return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
}
}
}
}
if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
Ops[0].getOpcode() == ISD::STEP_VECTOR) {
APInt RHSVal;
if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
APInt NewStep = Opcode == ISD::MUL
? Ops[0].getConstantOperandAPInt(0) * RHSVal
: Ops[0].getConstantOperandAPInt(0) << RHSVal;
return getStepVector(DL, VT, NewStep);
}
}
auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
return !Op.getValueType().isVector() ||
Op.getValueType().getVectorElementCount() == NumElts;
};
auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
Op.getOpcode() == ISD::BUILD_VECTOR ||
Op.getOpcode() == ISD::SPLAT_VECTOR;
};
if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
!llvm::all_of(Ops, IsScalarOrSameVectorSize))
return SDValue();
EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
ISD::NodeType ExtendCode =
(Opcode == ISD::SETCC && SVT != VT.getScalarType())
? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
: ISD::SIGN_EXTEND;
EVT LegalSVT = VT.getScalarType();
if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
if (LegalSVT.bitsLT(VT.getScalarType()))
return SDValue();
}
unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
SmallVector<SDValue, 4> ScalarResults;
for (unsigned I = 0; I != NumVectorElts; I++) {
SmallVector<SDValue, 4> ScalarOps;
for (SDValue Op : Ops) {
EVT InSVT = Op.getValueType().getScalarType();
if (Op.getOpcode() != ISD::BUILD_VECTOR &&
Op.getOpcode() != ISD::SPLAT_VECTOR) {
if (Op.isUndef())
ScalarOps.push_back(getUNDEF(InSVT));
else
ScalarOps.push_back(Op);
continue;
}
SDValue ScalarOp =
Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
EVT ScalarVT = ScalarOp.getValueType();
if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
!isa<ConstantSDNode>(ScalarOp) &&
TLI->getTypeAction(*getContext(), InSVT) !=
TargetLowering::TypeLegal)
return SDValue();
ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
}
ScalarOps.push_back(ScalarOp);
}
SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
if (LegalSVT != SVT)
ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
ScalarResult.getOpcode() != ISD::ConstantFP)
return SDValue();
ScalarResults.push_back(ScalarResult);
}
SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
: getBuildVector(VT, DL, ScalarResults);
NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
return V;
}
SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
EVT VT, SDValue N1, SDValue N2) {
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, false);
ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, false);
if (N1CFP && N2CFP) {
APFloat C1 = N1CFP->getValueAPF(); const APFloat &C2 = N2CFP->getValueAPF();
switch (Opcode) {
case ISD::FADD:
C1.add(C2, APFloat::rmNearestTiesToEven);
return getConstantFP(C1, DL, VT);
case ISD::FSUB:
C1.subtract(C2, APFloat::rmNearestTiesToEven);
return getConstantFP(C1, DL, VT);
case ISD::FMUL:
C1.multiply(C2, APFloat::rmNearestTiesToEven);
return getConstantFP(C1, DL, VT);
case ISD::FDIV:
C1.divide(C2, APFloat::rmNearestTiesToEven);
return getConstantFP(C1, DL, VT);
case ISD::FREM:
C1.mod(C2);
return getConstantFP(C1, DL, VT);
case ISD::FCOPYSIGN:
C1.copySign(C2);
return getConstantFP(C1, DL, VT);
case ISD::FMINNUM:
return getConstantFP(minnum(C1, C2), DL, VT);
case ISD::FMAXNUM:
return getConstantFP(maxnum(C1, C2), DL, VT);
case ISD::FMINIMUM:
return getConstantFP(minimum(C1, C2), DL, VT);
case ISD::FMAXIMUM:
return getConstantFP(maximum(C1, C2), DL, VT);
default: break;
}
}
if (N1CFP && Opcode == ISD::FP_ROUND) {
APFloat C1 = N1CFP->getValueAPF(); bool Unused;
(void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
&Unused);
return getConstantFP(C1, DL, VT);
}
switch (Opcode) {
case ISD::FSUB:
if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true))
if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::FADD:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
if (N1.isUndef() && N2.isUndef())
return getUNDEF(VT);
if (N1.isUndef() || N2.isUndef())
return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
}
return SDValue();
}
SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
if (A == Align(1))
return Val;
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
ID.AddInteger(A.value());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
Val.getValueType(), A);
createOperands(N, {Val});
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2) {
SDNodeFlags Flags;
if (Inserter)
Flags = Inserter->getFlags();
return getNode(Opcode, DL, VT, N1, N2, Flags);
}
void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
SDValue &N2) const {
if (!TLI->isCommutativeBinOp(Opcode))
return;
bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
std::swap(N1, N2);
else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
N2.getOpcode() == ISD::STEP_VECTOR)
std::swap(N1, N2);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, const SDNodeFlags Flags) {
assert(N1.getOpcode() != ISD::DELETED_NODE &&
N2.getOpcode() != ISD::DELETED_NODE &&
"Operand is DELETED_NODE!");
canonicalizeCommutativeBinop(Opcode, N1, N2);
auto *N1C = dyn_cast<ConstantSDNode>(N1);
auto *N2C = dyn_cast<ConstantSDNode>(N2);
ConstantSDNode *N2CV =
isConstOrConstSplat(N2, false, true);
switch (Opcode) {
default: break;
case ISD::TokenFactor:
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
N2.getValueType() == MVT::Other && "Invalid token factor!");
if (N1.getOpcode() == ISD::EntryToken) return N2;
if (N2.getOpcode() == ISD::EntryToken) return N1;
if (N1 == N2) return N1;
break;
case ISD::BUILD_VECTOR: {
SDValue Ops[] = {N1, N2};
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
}
case ISD::CONCAT_VECTORS: {
SDValue Ops[] = {N1, N2};
if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
return V;
break;
}
case ISD::AND:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
if (N2CV && N2CV->isZero())
return N2;
if (N2CV && N2CV->isAllOnes()) return N1;
break;
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
if (N2CV && N2CV->isZero())
return N1;
if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
VT.getVectorElementType() == MVT::i1)
return getNode(ISD::XOR, DL, VT, N1, N2);
break;
case ISD::MUL:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
return getNode(ISD::AND, DL, VT, N1, N2);
if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
const APInt &MulImm = N1->getConstantOperandAPInt(0);
const APInt &N2CImm = N2C->getAPIntValue();
return getVScale(DL, VT, MulImm * N2CImm);
}
break;
case ISD::UDIV:
case ISD::UREM:
case ISD::MULHU:
case ISD::MULHS:
case ISD::SDIV:
case ISD::SREM:
case ISD::SADDSAT:
case ISD::SSUBSAT:
case ISD::UADDSAT:
case ISD::USUBSAT:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
return getNode(ISD::OR, DL, VT, N1, N2);
if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
}
break;
case ISD::SMIN:
case ISD::UMAX:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
return getNode(ISD::OR, DL, VT, N1, N2);
break;
case ISD::SMAX:
case ISD::UMIN:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
return getNode(ISD::AND, DL, VT, N1, N2);
break;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
return V;
break;
case ISD::FCOPYSIGN: assert(N1.getValueType() == VT &&
N1.getValueType().isFloatingPoint() &&
N2.getValueType().isFloatingPoint() &&
"Invalid FCOPYSIGN!");
break;
case ISD::SHL:
if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
const APInt &MulImm = N1->getConstantOperandAPInt(0);
const APInt &ShiftImm = N2C->getAPIntValue();
return getVScale(DL, VT, MulImm << ShiftImm);
}
LLVM_FALLTHROUGH;
case ISD::SRA:
case ISD::SRL:
if (SDValue V = simplifyShift(N1, N2))
return V;
LLVM_FALLTHROUGH;
case ISD::ROTL:
case ISD::ROTR:
assert(VT == N1.getValueType() &&
"Shift operators return type must be the same as their first arg");
assert(VT.isInteger() && N2.getValueType().isInteger() &&
"Shifts only work on integers");
assert((!VT.isVector() || VT == N2.getValueType()) &&
"Vector shift amounts must be in the same as their first arg");
assert(N2.getValueType().getScalarSizeInBits() >=
Log2_32_Ceil(VT.getScalarSizeInBits()) &&
"Invalid use of small shift amount with oversized value!");
if (VT == MVT::i1)
return N1;
if (N2CV && N2CV->isZero())
return N1;
break;
case ISD::FP_ROUND:
assert(VT.isFloatingPoint() &&
N1.getValueType().isFloatingPoint() &&
VT.bitsLE(N1.getValueType()) &&
N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
"Invalid FP_ROUND!");
if (N1.getValueType() == VT) return N1; break;
case ISD::AssertSext:
case ISD::AssertZext: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(!EVT.isVector() &&
"AssertSExt/AssertZExt type should be the vector element type "
"rather than the vector type!");
assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
if (VT.getScalarType() == EVT) return N1; break;
}
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(EVT.isVector() == VT.isVector() &&
"SIGN_EXTEND_INREG type should be vector iff the operand "
"type is vector!");
assert((!EVT.isVector() ||
EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
"Vector element counts must match in SIGN_EXTEND_INREG");
assert(EVT.bitsLE(VT) && "Not extending!");
if (EVT == VT) return N1;
auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
unsigned FromBits = EVT.getScalarSizeInBits();
Val <<= Val.getBitWidth() - FromBits;
Val.ashrInPlace(Val.getBitWidth() - FromBits);
return getConstant(Val, DL, ConstantVT);
};
if (N1C) {
const APInt &Val = N1C->getAPIntValue();
return SignExtendInReg(Val, VT);
}
if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
SmallVector<SDValue, 8> Ops;
llvm::EVT OpVT = N1.getOperand(0).getValueType();
for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
SDValue Op = N1.getOperand(i);
if (Op.isUndef()) {
Ops.push_back(getUNDEF(OpVT));
continue;
}
ConstantSDNode *C = cast<ConstantSDNode>(Op);
APInt Val = C->getAPIntValue();
Ops.push_back(SignExtendInReg(Val, OpVT));
}
return getBuildVector(VT, DL, Ops);
}
break;
}
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT: {
assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
assert(N1.getValueType().isVector() == VT.isVector() &&
"FP_TO_*INT_SAT type should be vector iff the operand type is "
"vector!");
assert((!VT.isVector() || VT.getVectorElementCount() ==
N1.getValueType().getVectorElementCount()) &&
"Vector element counts must match in FP_TO_*INT_SAT");
assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
"Type to saturate to must be a scalar.");
assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
"Not extending!");
break;
}
case ISD::EXTRACT_VECTOR_ELT:
assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
"The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
element type of the vector.");
if (N1.isUndef() || N2.isUndef())
return getUNDEF(VT);
if (N2C && N1.getValueType().isFixedLengthVector() &&
N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
return getUNDEF(VT);
if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
unsigned Factor =
N1.getOperand(0).getValueType().getVectorNumElements();
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
N1.getOperand(N2C->getZExtValue() / Factor),
getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
}
if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
N1.getOpcode() == ISD::SPLAT_VECTOR)) {
assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
N1.getValueType().isFixedLengthVector()) &&
"BUILD_VECTOR used for scalable vectors");
unsigned Index =
N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
SDValue Elt = N1.getOperand(Index);
if (VT != Elt.getValueType())
Elt = getAnyExtOrTrunc(Elt, DL, VT);
return Elt;
}
if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
SDValue N1Op2 = N1.getOperand(2);
ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
if (N1Op2C && N2C) {
if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
if (VT == N1.getOperand(1).getValueType())
return N1.getOperand(1);
if (VT.isFloatingPoint()) {
assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
return getFPExtendOrRound(N1.getOperand(1), DL, VT);
}
return getSExtOrTrunc(N1.getOperand(1), DL, VT);
}
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
}
}
if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N1.getValueType().isFixedLengthVector() &&
N1.getValueType().getVectorNumElements() == 1) {
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
N1.getOperand(1));
}
break;
case ISD::EXTRACT_ELEMENT:
assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
assert(!N1.getValueType().isVector() && !VT.isVector() &&
(N1.getValueType().isInteger() == VT.isInteger()) &&
N1.getValueType() != VT &&
"Wrong types for EXTRACT_ELEMENT!");
if (N1.getOpcode() == ISD::BUILD_PAIR)
return N1.getOperand(N2C->getZExtValue());
if (N1C) {
unsigned ElementSize = VT.getSizeInBits();
unsigned Shift = ElementSize * N2C->getZExtValue();
const APInt &Val = N1C->getAPIntValue();
return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
}
break;
case ISD::EXTRACT_SUBVECTOR: {
EVT N1VT = N1.getValueType();
assert(VT.isVector() && N1VT.isVector() &&
"Extract subvector VTs must be vectors!");
assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
"Extract subvector VTs must have the same element type!");
assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
"Cannot extract a scalable vector from a fixed length vector!");
assert((VT.isScalableVector() != N1VT.isScalableVector() ||
VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
"Extract subvector must be from larger vector to smaller vector!");
assert(N2C && "Extract subvector index must be a constant");
assert((VT.isScalableVector() != N1VT.isScalableVector() ||
(VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
N1VT.getVectorMinNumElements()) &&
"Extract subvector overflow!");
assert(N2C->getAPIntValue().getBitWidth() ==
TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
"Constant index for EXTRACT_SUBVECTOR has an invalid size");
if (VT == N1VT)
return N1;
if (N1.isUndef())
return getUNDEF(VT);
if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
VT == N1.getOperand(0).getValueType()) {
unsigned Factor = VT.getVectorMinNumElements();
return N1.getOperand(N2C->getZExtValue() / Factor);
}
if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
VT == N1.getOperand(1).getValueType())
return N1.getOperand(1);
break;
}
}
if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
return SV;
if (N1.isUndef()) {
if (TLI->isCommutativeBinOp(Opcode)) {
std::swap(N1, N2);
} else {
switch (Opcode) {
case ISD::SUB:
return getUNDEF(VT); case ISD::SIGN_EXTEND_INREG:
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
case ISD::SSUBSAT:
case ISD::USUBSAT:
return getConstant(0, DL, VT); }
}
}
if (N2.isUndef()) {
switch (Opcode) {
case ISD::XOR:
if (N1.isUndef())
return getConstant(0, DL, VT);
LLVM_FALLTHROUGH;
case ISD::ADD:
case ISD::SUB:
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
return getUNDEF(VT); case ISD::MUL:
case ISD::AND:
case ISD::SSUBSAT:
case ISD::USUBSAT:
return getConstant(0, DL, VT); case ISD::OR:
case ISD::SADDSAT:
case ISD::UADDSAT:
return getAllOnesConstant(DL, VT);
}
}
SDNode *N;
SDVTList VTs = getVTList(VT);
SDValue Ops[] = {N1, N2};
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
N->setFlags(Flags);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3) {
SDNodeFlags Flags;
if (Inserter)
Flags = Inserter->getFlags();
return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
const SDNodeFlags Flags) {
assert(N1.getOpcode() != ISD::DELETED_NODE &&
N2.getOpcode() != ISD::DELETED_NODE &&
N3.getOpcode() != ISD::DELETED_NODE &&
"Operand is DELETED_NODE!");
switch (Opcode) {
case ISD::FMA: {
assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
assert(N1.getValueType() == VT && N2.getValueType() == VT &&
N3.getValueType() == VT && "FMA types must match!");
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
if (N1CFP && N2CFP && N3CFP) {
APFloat V1 = N1CFP->getValueAPF();
const APFloat &V2 = N2CFP->getValueAPF();
const APFloat &V3 = N3CFP->getValueAPF();
V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
return getConstantFP(V1, DL, VT);
}
break;
}
case ISD::BUILD_VECTOR: {
SDValue Ops[] = {N1, N2, N3};
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
}
case ISD::CONCAT_VECTORS: {
SDValue Ops[] = {N1, N2, N3};
if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
return V;
break;
}
case ISD::SETCC: {
assert(VT.isInteger() && "SETCC result type must be an integer!");
assert(N1.getValueType() == N2.getValueType() &&
"SETCC operands must have the same type!");
assert(VT.isVector() == N1.getValueType().isVector() &&
"SETCC type should be vector iff the operand type is vector!");
assert((!VT.isVector() || VT.getVectorElementCount() ==
N1.getValueType().getVectorElementCount()) &&
"SETCC vector element counts must match!");
if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
return V;
SDValue Ops[] = {N1, N2, N3};
if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
return V;
}
break;
}
case ISD::SELECT:
case ISD::VSELECT:
if (SDValue V = simplifySelect(N1, N2, N3))
return V;
break;
case ISD::VECTOR_SHUFFLE:
llvm_unreachable("should use getVectorShuffle constructor!");
case ISD::VECTOR_SPLICE: {
if (cast<ConstantSDNode>(N3)->isNullValue())
return N1;
break;
}
case ISD::INSERT_VECTOR_ELT: {
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
if (N3C && N1.getValueType().isFixedLengthVector() &&
N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
return getUNDEF(VT);
if (N3.isUndef())
return getUNDEF(VT);
if (N2.isUndef())
return N1;
break;
}
case ISD::INSERT_SUBVECTOR: {
if (N1.isUndef() && N2.isUndef())
return getUNDEF(VT);
EVT N2VT = N2.getValueType();
assert(VT == N1.getValueType() &&
"Dest and insert subvector source types must match!");
assert(VT.isVector() && N2VT.isVector() &&
"Insert subvector VTs must be vectors!");
assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
"Cannot insert a scalable vector into a fixed length vector!");
assert((VT.isScalableVector() != N2VT.isScalableVector() ||
VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
"Insert subvector must be from smaller vector to larger vector!");
assert(isa<ConstantSDNode>(N3) &&
"Insert subvector index must be constant");
assert((VT.isScalableVector() != N2VT.isScalableVector() ||
(N2VT.getVectorMinNumElements() +
cast<ConstantSDNode>(N3)->getZExtValue()) <=
VT.getVectorMinNumElements()) &&
"Insert subvector overflow!");
assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
"Constant index for INSERT_SUBVECTOR has an invalid size");
if (VT == N2VT)
return N2;
if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
return N2.getOperand(0);
break;
}
case ISD::BITCAST:
if (N1.getValueType() == VT)
return N1;
break;
}
SDNode *N;
SDVTList VTs = getVTList(VT);
SDValue Ops[] = {N1, N2, N3};
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
N->setFlags(Flags);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VT, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VT, Ops);
}
SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
SmallVector<SDValue, 8> ArgChains;
ArgChains.push_back(Chain);
for (SDNode *U : getEntryNode().getNode()->uses())
if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0)
ArgChains.push_back(SDValue(L, 1));
return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}
static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
const SDLoc &dl) {
assert(!Value.isUndef());
unsigned NumBits = VT.getScalarSizeInBits();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
assert(C->getAPIntValue().getBitWidth() == 8);
APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
if (VT.isInteger()) {
bool IsOpaque = VT.getSizeInBits() > 64 ||
!DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
return DAG.getConstant(Val, dl, VT, false, IsOpaque);
}
return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
VT);
}
assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
EVT IntVT = VT.getScalarType();
if (!IntVT.isInteger())
IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
if (NumBits > 8) {
APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
DAG.getConstant(Magic, dl, IntVT));
}
if (VT != Value.getValueType() && !VT.isInteger())
Value = DAG.getBitcast(VT.getScalarType(), Value);
if (VT != Value.getValueType())
Value = DAG.getSplatBuildVector(VT, dl, Value);
return Value;
}
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
const TargetLowering &TLI,
const ConstantDataArraySlice &Slice) {
if (Slice.Array == nullptr) {
if (VT.isInteger())
return DAG.getConstant(0, dl, VT);
if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
return DAG.getConstantFP(0.0, dl, VT);
if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getConstant(0, dl,
EVT::getVectorVT(*DAG.getContext(),
EltVT, NumElts)));
}
llvm_unreachable("Expected type!");
}
assert(!VT.isVector() && "Can't handle vector type here!");
unsigned NumVTBits = VT.getSizeInBits();
unsigned NumVTBytes = NumVTBits / 8;
unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
APInt Val(NumVTBits, 0);
if (DAG.getDataLayout().isLittleEndian()) {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
} else {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
}
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
return DAG.getConstant(Val, dl, VT);
return SDValue();
}
SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
const SDLoc &DL,
const SDNodeFlags Flags) {
EVT VT = Base.getValueType();
SDValue Index;
if (Offset.isScalable())
Index = getVScale(DL, Base.getValueType(),
APInt(Base.getValueSizeInBits().getFixedSize(),
Offset.getKnownMinSize()));
else
Index = getConstant(Offset.getFixedSize(), DL, VT);
return getMemBasePlusOffset(Base, Index, DL, Flags);
}
SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
const SDLoc &DL,
const SDNodeFlags Flags) {
assert(Offset.getValueType().isInteger());
EVT BasePtrVT = Ptr.getValueType();
return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
}
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
uint64_t SrcDelta = 0;
GlobalAddressSDNode *G = nullptr;
if (Src.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Src);
else if (Src.getOpcode() == ISD::ADD &&
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Src.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
}
if (!G)
return false;
return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
SrcDelta + G->getOffset());
}
static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
SelectionDAG &DAG) {
if (MF.getTarget().getTargetTriple().isOSDarwin())
return MF.getFunction().hasMinSize();
return DAG.shouldOptForSize();
}
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
SmallVector<SDValue, 32> &OutChains, unsigned From,
unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
SmallVector<SDValue, 16> &OutStoreChains) {
assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
SmallVector<SDValue, 16> GluedLoadChains;
for (unsigned i = From; i < To; ++i) {
OutChains.push_back(OutLoadChains[i]);
GluedLoadChains.push_back(OutLoadChains[i]);
}
SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
GluedLoadChains);
for (unsigned i = From; i < To; ++i) {
StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
ST->getBasePtr(), ST->getMemoryVT(),
ST->getMemOperand());
OutChains.push_back(NewStore);
}
}
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src,
uint64_t Size, Align Alignment,
bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo,
const AAMDNodes &AAInfo, AAResults *AA) {
if (Src.isUndef())
return Chain;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const DataLayout &DL = DAG.getDataLayout();
LLVMContext &C = *DAG.getContext();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
if (!SrcAlign || Alignment > *SrcAlign)
SrcAlign = Alignment;
assert(SrcAlign && "SrcAlign must be set");
ConstantDataArraySlice Slice;
bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
const MemOp Op = isZeroConstant
? MemOp::Set(Size, DstAlignCanChange, Alignment,
true, isVol)
: MemOp::Copy(Size, DstAlignCanChange, Alignment,
*SrcAlign, isVol, CopyFromConstant);
if (!TLI.findOptimalMemOpLowering(
MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(C);
Align NewAlign = DL.getABITypeAlign(Ty);
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->hasStackRealignment(MF))
while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
NewAlign = NewAlign.previous();
if (NewAlign > Alignment) {
if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Alignment = NewAlign;
}
}
AAMDNodes NewAAInfo = AAInfo;
NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
const Value *SrcVal = SrcPtrInfo.V.dyn_cast<const Value *>();
bool isConstant =
AA && SrcVal &&
AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
MachineMemOperand::Flags MMOFlags =
isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
SmallVector<SDValue, 16> OutLoadChains;
SmallVector<SDValue, 16> OutStoreChains;
SmallVector<SDValue, 32> OutChains;
unsigned NumMemOps = MemOps.size();
uint64_t SrcOff = 0, DstOff = 0;
for (unsigned i = 0; i != NumMemOps; ++i) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
if (VTSize > Size) {
assert(i == NumMemOps-1 && i != 0);
SrcOff -= VTSize - Size;
DstOff -= VTSize - Size;
}
if (CopyFromConstant &&
(isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
ConstantDataArraySlice SubSlice;
if (SrcOff < Slice.Length) {
SubSlice = Slice;
SubSlice.move(SrcOff);
} else {
SubSlice.Array = nullptr;
SubSlice.Offset = 0;
SubSlice.Length = VTSize;
}
Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
if (Value.getNode()) {
Store = DAG.getStore(
Chain, dl, Value,
DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
OutChains.push_back(Store);
}
}
if (!Store.getNode()) {
EVT NVT = TLI.getTypeToTransformTo(C, VT);
assert(NVT.bitsGE(VT));
bool isDereferenceable =
SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
if (isDereferenceable)
SrcMMOFlags |= MachineMemOperand::MODereferenceable;
if (isConstant)
SrcMMOFlags |= MachineMemOperand::MOInvariant;
Value = DAG.getExtLoad(
ISD::EXTLOAD, dl, NVT, Chain,
DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
SrcPtrInfo.getWithOffset(SrcOff), VT,
commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
OutLoadChains.push_back(Value.getValue(1));
Store = DAG.getTruncStore(
Chain, dl, Value,
DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
OutStoreChains.push_back(Store);
}
SrcOff += VTSize;
DstOff += VTSize;
Size -= VTSize;
}
unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
unsigned NumLdStInMemcpy = OutStoreChains.size();
if (NumLdStInMemcpy) {
if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
OutChains.push_back(OutLoadChains[i]);
OutChains.push_back(OutStoreChains[i]);
}
} else {
if (NumLdStInMemcpy <= GluedLdStLimit) {
chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
NumLdStInMemcpy, OutLoadChains,
OutStoreChains);
} else {
unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
unsigned GlueIter = 0;
for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
unsigned IndexTo = NumLdStInMemcpy - GlueIter;
chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
OutLoadChains, OutStoreChains);
GlueIter += GluedLdStLimit;
}
if (RemainingLdStInMemcpy) {
chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
RemainingLdStInMemcpy, OutLoadChains,
OutStoreChains);
}
}
}
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src,
uint64_t Size, Align Alignment,
bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo,
const AAMDNodes &AAInfo) {
if (Src.isUndef())
return Chain;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const DataLayout &DL = DAG.getDataLayout();
LLVMContext &C = *DAG.getContext();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
if (!SrcAlign || Alignment > *SrcAlign)
SrcAlign = Alignment;
assert(SrcAlign && "SrcAlign must be set");
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
if (!TLI.findOptimalMemOpLowering(
MemOps, Limit,
MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
true),
DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
MF.getFunction().getAttributes()))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(C);
Align NewAlign = DL.getABITypeAlign(Ty);
if (NewAlign > Alignment) {
if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Alignment = NewAlign;
}
}
AAMDNodes NewAAInfo = AAInfo;
NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
MachineMemOperand::Flags MMOFlags =
isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
uint64_t SrcOff = 0, DstOff = 0;
SmallVector<SDValue, 8> LoadValues;
SmallVector<SDValue, 8> LoadChains;
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value;
bool isDereferenceable =
SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
if (isDereferenceable)
SrcMMOFlags |= MachineMemOperand::MODereferenceable;
Value = DAG.getLoad(
VT, dl, Chain,
DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
LoadValues.push_back(Value);
LoadChains.push_back(Value.getValue(1));
SrcOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
OutChains.clear();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Store;
Store = DAG.getStore(
Chain, dl, LoadValues[i],
DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
OutChains.push_back(Store);
DstOff += VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src,
uint64_t Size, Align Alignment, bool isVol,
bool AlwaysInline, MachinePointerInfo DstPtrInfo,
const AAMDNodes &AAInfo) {
if (Src.isUndef())
return Chain;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
bool IsZeroVal =
isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
if (!TLI.findOptimalMemOpLowering(
MemOps, Limit,
MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
if (NewAlign > Alignment) {
if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Alignment = NewAlign;
}
}
SmallVector<SDValue, 8> OutChains;
uint64_t DstOff = 0;
unsigned NumMemOps = MemOps.size();
EVT LargestVT = MemOps[0];
for (unsigned i = 1; i < NumMemOps; i++)
if (MemOps[i].bitsGT(LargestVT))
LargestVT = MemOps[i];
SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
AAMDNodes NewAAInfo = AAInfo;
NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
if (VTSize > Size) {
assert(i == NumMemOps-1 && i != 0);
DstOff -= VTSize - Size;
}
SDValue Value = MemSetValue;
if (VT.bitsLT(LargestVT)) {
if (!LargestVT.isVector() && !VT.isVector() &&
TLI.isTruncateFree(LargestVT, VT))
Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
else
Value = getMemsetValue(Src, VT, DAG, dl);
}
assert(Value.getValueType() == VT && "Value with wrong type.");
SDValue Store = DAG.getStore(
Chain, dl, Value,
DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
DstPtrInfo.getWithOffset(DstOff), Alignment,
isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
NewAAInfo);
OutChains.push_back(Store);
DstOff += VT.getSizeInBits() / 8;
Size -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
unsigned AS) {
if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
report_fatal_error("cannot lower memory intrinsic in address space " +
Twine(AS));
}
}
SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
SDValue Src, SDValue Size, Align Alignment,
bool isVol, bool AlwaysInline, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo,
const AAMDNodes &AAInfo, AAResults *AA) {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
if (ConstantSize->isZero())
return Chain;
SDValue Result = getMemcpyLoadsAndStores(
*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
if (Result.getNode())
return Result;
}
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemcpy(
*this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
if (AlwaysInline) {
assert(ConstantSize && "AlwaysInline requires a constant size!");
return getMemcpyLoadsAndStores(
*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
}
checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = Type::getInt8PtrTy(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Size; Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
Dst.getValueType().getTypeForEVT(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
SDValue Dst, SDValue Src, SDValue Size,
Type *SizeTy, unsigned ElemSz,
bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst;
Args.push_back(Entry);
Entry.Node = Src;
Args.push_back(Entry);
Entry.Ty = SizeTy;
Entry.Node = Size;
Args.push_back(Entry);
RTLIB::Libcall LibraryCall =
RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
report_fatal_error("Unsupported element size");
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(LibraryCall),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
SDValue Src, SDValue Size, Align Alignment,
bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo,
const AAMDNodes &AAInfo, AAResults *AA) {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
if (ConstantSize->isZero())
return Chain;
SDValue Result = getMemmoveLoadsAndStores(
*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
if (Result.getNode())
return Result;
}
if (TSI) {
SDValue Result =
TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
Alignment, isVol, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = Type::getInt8PtrTy(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Size; Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
Dst.getValueType().getTypeForEVT(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
SDValue Dst, SDValue Src, SDValue Size,
Type *SizeTy, unsigned ElemSz,
bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst;
Args.push_back(Entry);
Entry.Node = Src;
Args.push_back(Entry);
Entry.Ty = SizeTy;
Entry.Node = Size;
Args.push_back(Entry);
RTLIB::Libcall LibraryCall =
RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
report_fatal_error("Unsupported element size");
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(LibraryCall),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
SDValue Src, SDValue Size, Align Alignment,
bool isVol, bool AlwaysInline, bool isTailCall,
MachinePointerInfo DstPtrInfo,
const AAMDNodes &AAInfo) {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
if (ConstantSize->isZero())
return Chain;
SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Alignment,
isVol, false, DstPtrInfo, AAInfo);
if (Result.getNode())
return Result;
}
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemset(
*this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
if (Result.getNode())
return Result;
}
if (AlwaysInline) {
assert(ConstantSize && "AlwaysInline requires a constant size!");
SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Alignment,
isVol, true, DstPtrInfo, AAInfo);
assert(Result &&
"getMemsetStores must return a valid sequence when AlwaysInline");
return Result;
}
checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
auto &Ctx = *getContext();
const auto& DL = getDataLayout();
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl).setChain(Chain);
ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src);
const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero();
const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
const auto CreateEntry = [](SDValue Node, Type *Ty) {
TargetLowering::ArgListEntry Entry;
Entry.Node = Node;
Entry.Ty = Ty;
return Entry;
};
if (SrcIsZero && BzeroName) {
TargetLowering::ArgListTy Args;
Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
CLI.setLibCallee(
TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
} else {
TargetLowering::ArgListTy Args;
Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
Dst.getValueType().getTypeForEVT(Ctx),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
TLI->getPointerTy(DL)),
std::move(Args));
}
CLI.setDiscardResult().setTailCall(isTailCall);
std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
SDValue Dst, SDValue Value, SDValue Size,
Type *SizeTy, unsigned ElemSz,
bool isTailCall,
MachinePointerInfo DstPtrInfo) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst;
Args.push_back(Entry);
Entry.Ty = Type::getInt8Ty(*getContext());
Entry.Node = Value;
Args.push_back(Entry);
Entry.Ty = SizeTy;
Entry.Node = Size;
Args.push_back(Entry);
RTLIB::Libcall LibraryCall =
RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
report_fatal_error("Unsupported element size");
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(LibraryCall),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO) {
FoldingSetNodeID ID;
ID.AddInteger(MemVT.getRawBits());
AddNodeIDNode(ID, Opcode, VTList, Ops);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void* IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
VTList, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
EVT MemVT, SDVTList VTs, SDValue Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp,
MachineMemOperand *MMO) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDValue Chain, SDValue Ptr, SDValue Val,
MachineMemOperand *MMO) {
assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
Opcode == ISD::ATOMIC_LOAD_SUB ||
Opcode == ISD::ATOMIC_LOAD_AND ||
Opcode == ISD::ATOMIC_LOAD_CLR ||
Opcode == ISD::ATOMIC_LOAD_OR ||
Opcode == ISD::ATOMIC_LOAD_XOR ||
Opcode == ISD::ATOMIC_LOAD_NAND ||
Opcode == ISD::ATOMIC_LOAD_MIN ||
Opcode == ISD::ATOMIC_LOAD_MAX ||
Opcode == ISD::ATOMIC_LOAD_UMIN ||
Opcode == ISD::ATOMIC_LOAD_UMAX ||
Opcode == ISD::ATOMIC_LOAD_FADD ||
Opcode == ISD::ATOMIC_LOAD_FSUB ||
Opcode == ISD::ATOMIC_LOAD_FMAX ||
Opcode == ISD::ATOMIC_LOAD_FMIN ||
Opcode == ISD::ATOMIC_SWAP ||
Opcode == ISD::ATOMIC_STORE) &&
"Invalid Atomic Op");
EVT VT = Val.getValueType();
SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr, Val};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
EVT VT, SDValue Chain, SDValue Ptr,
MachineMemOperand *MMO) {
assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
if (Ops.size() == 1)
return Ops[0];
SmallVector<EVT, 4> VTs;
VTs.reserve(Ops.size());
for (const SDValue &Op : Ops)
VTs.push_back(Op.getValueType());
return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
}
SDValue SelectionDAG::getMemIntrinsicNode(
unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
if (!Size && MemVT.isScalableVector())
Size = MemoryLocation::UnknownSize;
else if (!Size)
Size = MemVT.getStoreSize();
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
}
SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO) {
assert((Opcode == ISD::INTRINSIC_VOID ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::PREFETCH ||
((int)Opcode <= std::numeric_limits<int>::max() &&
(int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
"Opcode is not a memory-accessing opcode!");
MemIntrinsicSDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
Opcode, dl.getIROrder(), VTList, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
VTList, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
VTList, MemVT, MMO);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
SDValue Chain, int FrameIndex,
int64_t Size, int64_t Offset) {
const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
const auto VTs = getVTList(MVT::Other);
SDValue Ops[2] = {
Chain,
getFrameIndex(FrameIndex,
getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
true)};
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
ID.AddInteger(FrameIndex);
ID.AddInteger(Size);
ID.AddInteger(Offset);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
uint64_t Guid, uint64_t Index,
uint32_t Attr) {
const unsigned Opcode = ISD::PSEUDO_PROBE;
const auto VTs = getVTList(MVT::Other);
SDValue Ops[] = {Chain};
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
ID.AddInteger(Guid);
ID.AddInteger(Index);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
return SDValue(E, 0);
auto *N = newSDNode<PseudoProbeSDNode>(
Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
SelectionDAG &DAG, SDValue Ptr,
int64_t Offset = 0) {
if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
FI->getIndex(), Offset);
if (Ptr.getOpcode() != ISD::ADD ||
!isa<ConstantSDNode>(Ptr.getOperand(1)) ||
!isa<FrameIndexSDNode>(Ptr.getOperand(0)))
return Info;
int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
return MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FI,
Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
}
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
SelectionDAG &DAG, SDValue Ptr,
SDValue OffsetOp) {
if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
if (OffsetOp.isUndef())
return InferPointerInfo(Info, DAG, Ptr);
return Info;
}
SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT,
Align Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo, const MDNode *Ranges) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
MMOFlags |= MachineMemOperand::MOLoad;
assert((MMOFlags & MachineMemOperand::MOStore) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
Alignment, AAInfo, Ranges);
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
}
SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Offset, EVT MemVT,
MachineMemOperand *MMO) {
if (VT == MemVT) {
ExtType = ISD::NON_EXTLOAD;
} else if (ExtType == ISD::NON_EXTLOAD) {
assert(VT == MemVT && "Non-extending load from different memory type!");
} else {
assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be an extending load, not truncating!");
assert(VT.isInteger() == MemVT.isInteger() &&
"Cannot convert from FP to Int or Int -> FP!");
assert(VT.isVector() == MemVT.isVector() &&
"Cannot use an ext load to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
"Cannot use an ext load to change the number of vector elements!");
}
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
SDVTList VTs = Indexed ?
getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<LoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
ExtType, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, MachinePointerInfo PtrInfo,
MaybeAlign Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo, const MDNode *Ranges) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
}
SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, MachineMemOperand *MMO) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
VT, MMO);
}
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
EVT VT, SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT MemVT,
MaybeAlign Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
MemVT, Alignment, MMOFlags, AAInfo);
}
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
MachineMemOperand *MMO) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
MemVT, MMO);
}
SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
auto MMOFlags =
LD->getMemOperand()->getFlags() &
~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
LD->getChain(), Base, Offset, LD->getPointerInfo(),
LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
}
SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
Align Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
MMOFlags |= MachineMemOperand::MOStore;
assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
MachineFunction &MF = getMachineFunction();
uint64_t Size =
MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
return getStore(Chain, dl, Val, Ptr, MMO);
}
SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, MachineMemOperand *MMO) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
ISD::UNINDEXED, false, VT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
EVT SVT, Align Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
MMOFlags |= MachineMemOperand::MOStore;
assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
Alignment, AAInfo);
return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, EVT SVT,
MachineMemOperand *MMO) {
EVT VT = Val.getValueType();
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (VT == SVT)
return getStore(Chain, dl, Val, Ptr, MMO);
assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be a truncating store, not extending!");
assert(VT.isInteger() == SVT.isInteger() &&
"Can't do FP-INT conversion!");
assert(VT.isVector() == SVT.isVector() &&
"Cannot use trunc store to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
"Cannot use trunc store to change the number of vector elements!");
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(SVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
ISD::UNINDEXED, true, SVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
ID.AddInteger(ST->getMemOperand()->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
ST->isTruncatingStore(), ST->getMemoryVT(),
ST->getMemOperand());
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getLoadVP(
ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
const MDNode *Ranges, bool IsExpanding) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
MMOFlags |= MachineMemOperand::MOLoad;
assert((MMOFlags & MachineMemOperand::MOStore) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
Alignment, AAInfo, Ranges);
return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
MMO, IsExpanding);
}
SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr,
SDValue Offset, SDValue Mask, SDValue EVL,
EVT MemVT, MachineMemOperand *MMO,
bool IsExpanding) {
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
: getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<VPLoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
ExtType, IsExpanding, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Mask, SDValue EVL,
MachinePointerInfo PtrInfo,
MaybeAlign Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo, const MDNode *Ranges,
bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
IsExpanding);
}
SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Mask, SDValue EVL,
MachineMemOperand *MMO, bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
Mask, EVL, VT, MMO, IsExpanding);
}
SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
EVT VT, SDValue Chain, SDValue Ptr,
SDValue Mask, SDValue EVL,
MachinePointerInfo PtrInfo, EVT MemVT,
MaybeAlign Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo, bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
IsExpanding);
}
SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
EVT VT, SDValue Chain, SDValue Ptr,
SDValue Mask, SDValue EVL, EVT MemVT,
MachineMemOperand *MMO, bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
EVL, MemVT, MMO, IsExpanding);
}
SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
auto *LD = cast<VPLoadSDNode>(OrigLoad);
assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
auto MMOFlags =
LD->getMemOperand()->getFlags() &
~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
LD->getChain(), Base, Offset, LD->getMask(),
LD->getVectorLength(), LD->getPointerInfo(),
LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
nullptr, LD->isExpandingLoad());
}
SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, SDValue Offset, SDValue Mask,
SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
ISD::MemIndexedMode AM, bool IsTruncating,
bool IsCompressing) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
: getVTList(MVT::Other);
SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<VPStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
IsTruncating, IsCompressing, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
SDValue Val, SDValue Ptr, SDValue Mask,
SDValue EVL, MachinePointerInfo PtrInfo,
EVT SVT, Align Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo,
bool IsCompressing) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
MMOFlags |= MachineMemOperand::MOStore;
assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
Alignment, AAInfo);
return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
IsCompressing);
}
SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
SDValue Val, SDValue Ptr, SDValue Mask,
SDValue EVL, EVT SVT,
MachineMemOperand *MMO,
bool IsCompressing) {
EVT VT = Val.getValueType();
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
if (VT == SVT)
return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
EVL, VT, MMO, ISD::UNINDEXED,
false, IsCompressing);
assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be a truncating store, not extending!");
assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
assert(VT.isVector() == SVT.isVector() &&
"Cannot use trunc store to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
"Cannot use trunc store to change the number of vector elements!");
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
ID.AddInteger(SVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<VPStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N =
newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
auto *ST = cast<VPStoreSDNode>(OrigStore);
assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
Offset, ST->getMask(), ST->getVectorLength()};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
ID.AddInteger(ST->getMemOperand()->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
auto *N = newSDNode<VPStoreSDNode>(
dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getStridedLoadVP(
ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
const MDNode *Ranges, bool IsExpanding) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
MMOFlags |= MachineMemOperand::MOLoad;
assert((MMOFlags & MachineMemOperand::MOStore) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
uint64_t Size = MemoryLocation::UnknownSize;
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
Alignment, AAInfo, Ranges);
return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
EVL, MemVT, MMO, IsExpanding);
}
SDValue SelectionDAG::getStridedLoadVP(
ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
: getVTList(VT, MVT::Other);
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N =
newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
ExtType, IsExpanding, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getStridedLoadVP(
EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
const MDNode *Ranges, bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
MMOFlags, AAInfo, Ranges, IsExpanding);
}
SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
SDValue Ptr, SDValue Stride,
SDValue Mask, SDValue EVL,
MachineMemOperand *MMO,
bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
}
SDValue SelectionDAG::getExtStridedLoadVP(
ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
MMOFlags, AAInfo, nullptr, IsExpanding);
}
SDValue SelectionDAG::getExtStridedLoadVP(
ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
MachineMemOperand *MMO, bool IsExpanding) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
Stride, Mask, EVL, MemVT, MMO, IsExpanding);
}
SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
assert(SLD->getOffset().isUndef() &&
"Strided load is already a indexed load!");
auto MMOFlags =
SLD->getMemOperand()->getFlags() &
~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
return getStridedLoadVP(
AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
}
SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
SDValue Val, SDValue Ptr,
SDValue Offset, SDValue Stride,
SDValue Mask, SDValue EVL, EVT MemVT,
MachineMemOperand *MMO,
ISD::MemIndexedMode AM,
bool IsTruncating, bool IsCompressing) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
: getVTList(MVT::Other);
SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
VTs, AM, IsTruncating,
IsCompressing, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getTruncStridedStoreVP(
SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
bool IsCompressing) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
MMOFlags |= MachineMemOperand::MOStore;
assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
MMO, IsCompressing);
}
SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
SDValue Val, SDValue Ptr,
SDValue Stride, SDValue Mask,
SDValue EVL, EVT SVT,
MachineMemOperand *MMO,
bool IsCompressing) {
EVT VT = Val.getValueType();
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
if (VT == SVT)
return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
false, IsCompressing);
assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be a truncating store, not extending!");
assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
assert(VT.isVector() == SVT.isVector() &&
"Cannot use trunc store to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
"Cannot use trunc store to change the number of vector elements!");
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
ID.AddInteger(SVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
VTs, ISD::UNINDEXED, true,
IsCompressing, SVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
const SDLoc &DL, SDValue Base,
SDValue Offset,
ISD::MemIndexedMode AM) {
auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
assert(SST->getOffset().isUndef() &&
"Strided store is already an indexed store!");
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
SDValue Ops[] = {
SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(),
SST->getMask(), SST->getVectorLength()};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
ID.AddInteger(SST->getMemoryVT().getRawBits());
ID.AddInteger(SST->getRawSubclassData());
ID.AddInteger(SST->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
auto *N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
ISD::MemIndexType IndexType) {
assert(Ops.size() == 6 && "Incompatible number of operands");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
dl.getIROrder(), VTs, VT, MMO, IndexType));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<VPGatherSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
VT, MMO, IndexType);
createOperands(N, Ops);
assert(N->getMask().getValueType().getVectorElementCount() ==
N->getValueType(0).getVectorElementCount() &&
"Vector width mismatch between mask and data");
assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
N->getValueType(0).getVectorElementCount().isScalable() &&
"Scalable flags of index and data do not match");
assert(ElementCount::isKnownGE(
N->getIndex().getValueType().getVectorElementCount(),
N->getValueType(0).getVectorElementCount()) &&
"Vector width mismatch between index and data");
assert(isa<ConstantSDNode>(N->getScale()) &&
cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
"Scale should be a constant power of 2");
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops,
MachineMemOperand *MMO,
ISD::MemIndexType IndexType) {
assert(Ops.size() == 7 && "Incompatible number of operands");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
dl.getIROrder(), VTs, VT, MMO, IndexType));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<VPScatterSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
VT, MMO, IndexType);
createOperands(N, Ops);
assert(N->getMask().getValueType().getVectorElementCount() ==
N->getValue().getValueType().getVectorElementCount() &&
"Vector width mismatch between mask and data");
assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
N->getValue().getValueType().getVectorElementCount().isScalable() &&
"Scalable flags of index and data do not match");
assert(ElementCount::isKnownGE(
N->getIndex().getValueType().getVectorElementCount(),
N->getValue().getValueType().getVectorElementCount()) &&
"Vector width mismatch between index and data");
assert(isa<ConstantSDNode>(N->getScale()) &&
cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
"Scale should be a constant power of 2");
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Base, SDValue Offset, SDValue Mask,
SDValue PassThru, EVT MemVT,
MachineMemOperand *MMO,
ISD::MemIndexedMode AM,
ISD::LoadExtType ExtTy, bool isExpanding) {
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) &&
"Unindexed masked load with an offset!");
SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
: getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
AM, ExtTy, isExpanding, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
Offset, LD->getMask(), LD->getPassThru(),
LD->getMemoryVT(), LD->getMemOperand(), AM,
LD->getExtensionType(), LD->isExpandingLoad());
}
SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
SDValue Val, SDValue Base, SDValue Offset,
SDValue Mask, EVT MemVT,
MachineMemOperand *MMO,
ISD::MemIndexedMode AM, bool IsTruncating,
bool IsCompressing) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) &&
"Unindexed masked store with an offset!");
SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
: getVTList(MVT::Other);
SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N =
newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
IsTruncating, IsCompressing, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
assert(ST->getOffset().isUndef() &&
"Masked store is already a indexed store!");
return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
AM, ST->isTruncatingStore(), ST->isCompressingStore());
}
SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
ArrayRef<SDValue> Ops,
MachineMemOperand *MMO,
ISD::MemIndexType IndexType,
ISD::LoadExtType ExtTy) {
assert(Ops.size() == 6 && "Incompatible number of operands");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
VTs, MemVT, MMO, IndexType, ExtTy);
createOperands(N, Ops);
assert(N->getPassThru().getValueType() == N->getValueType(0) &&
"Incompatible type of the PassThru value in MaskedGatherSDNode");
assert(N->getMask().getValueType().getVectorElementCount() ==
N->getValueType(0).getVectorElementCount() &&
"Vector width mismatch between mask and data");
assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
N->getValueType(0).getVectorElementCount().isScalable() &&
"Scalable flags of index and data do not match");
assert(ElementCount::isKnownGE(
N->getIndex().getValueType().getVectorElementCount(),
N->getValueType(0).getVectorElementCount()) &&
"Vector width mismatch between index and data");
assert(isa<ConstantSDNode>(N->getScale()) &&
cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
"Scale should be a constant power of 2");
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
ArrayRef<SDValue> Ops,
MachineMemOperand *MMO,
ISD::MemIndexType IndexType,
bool IsTrunc) {
assert(Ops.size() == 6 && "Incompatible number of operands");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(MMO->getFlags());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
VTs, MemVT, MMO, IndexType, IsTrunc);
createOperands(N, Ops);
assert(N->getMask().getValueType().getVectorElementCount() ==
N->getValue().getValueType().getVectorElementCount() &&
"Vector width mismatch between mask and data");
assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
N->getValue().getValueType().getVectorElementCount().isScalable() &&
"Scalable flags of index and data do not match");
assert(ElementCount::isKnownGE(
N->getIndex().getValueType().getVectorElementCount(),
N->getValue().getValueType().getVectorElementCount()) &&
"Vector width mismatch between index and data");
assert(isa<ConstantSDNode>(N->getScale()) &&
cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
"Scale should be a constant power of 2");
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
if (Cond.isUndef())
return isConstantValueOfAnyType(T) ? T : F;
if (T.isUndef())
return F;
if (F.isUndef())
return T;
if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
return CondC->isZero() ? F : T;
if (T == F)
return T;
return SDValue();
}
SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
if (X.isUndef())
return getConstant(0, SDLoc(X.getNode()), X.getValueType());
if (Y.isUndef())
return getUNDEF(X.getValueType());
if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
return X;
auto isShiftTooBig = [X](ConstantSDNode *Val) {
return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
};
if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
return getUNDEF(X.getValueType());
return SDValue();
}
SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
SDNodeFlags Flags) {
ConstantFPSDNode *XC = isConstOrConstSplatFP(X, true);
ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, true);
bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
(YC && YC->getValueAPF().isNaN());
bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
(YC && YC->getValueAPF().isInfinity());
if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
return getUNDEF(X.getValueType());
if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
return getUNDEF(X.getValueType());
if (!YC)
return SDValue();
if (Opcode == ISD::FADD)
if (YC->getValueAPF().isNegZero())
return X;
if (Opcode == ISD::FSUB)
if (YC->getValueAPF().isPosZero())
return X;
if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
if (YC->getValueAPF().isExactlyValue(1.0))
return X;
if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
if (YC->getValueAPF().isZero())
return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
return SDValue();
}
SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue SV, unsigned Align) {
SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDUse> Ops) {
switch (Ops.size()) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
return getNode(Opcode, DL, VT, NewOps);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops) {
SDNodeFlags Flags;
if (Inserter)
Flags = Inserter->getFlags();
return getNode(Opcode, DL, VT, Ops, Flags);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
unsigned NumOps = Ops.size();
switch (NumOps) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
default: break;
}
#ifndef NDEBUG
for (const auto &Op : Ops)
assert(Op.getOpcode() != ISD::DELETED_NODE &&
"Operand is DELETED_NODE!");
#endif
switch (Opcode) {
default: break;
case ISD::BUILD_VECTOR:
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
case ISD::CONCAT_VECTORS:
if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
return V;
break;
case ISD::SELECT_CC:
assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
"LHS and RHS of condition must have same type!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"True and False arms of SelectCC must have same type!");
assert(Ops[2].getValueType() == VT &&
"select_cc node must be of same type as true and false value!");
assert((!Ops[0].getValueType().isVector() ||
Ops[0].getValueType().getVectorElementCount() ==
VT.getVectorElementCount()) &&
"Expected select_cc with vector result to have the same sized "
"comparison type!");
break;
case ISD::BR_CC:
assert(NumOps == 5 && "BR_CC takes 5 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS/RHS of comparison should match types!");
break;
case ISD::VP_ADD:
case ISD::VP_SUB:
if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
Opcode = ISD::VP_XOR;
break;
case ISD::VP_MUL:
if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
Opcode = ISD::VP_AND;
break;
case ISD::VP_REDUCE_MUL:
if (VT == MVT::i1)
Opcode = ISD::VP_REDUCE_AND;
break;
case ISD::VP_REDUCE_ADD:
if (VT == MVT::i1)
Opcode = ISD::VP_REDUCE_XOR;
break;
case ISD::VP_REDUCE_SMAX:
case ISD::VP_REDUCE_UMIN:
if (VT == MVT::i1)
Opcode = ISD::VP_REDUCE_AND;
break;
case ISD::VP_REDUCE_SMIN:
case ISD::VP_REDUCE_UMAX:
if (VT == MVT::i1)
Opcode = ISD::VP_REDUCE_OR;
break;
}
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
N->setFlags(Flags);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
return getNode(Opcode, DL, getVTList(ResultTys), Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
ArrayRef<SDValue> Ops) {
SDNodeFlags Flags;
if (Inserter)
Flags = Inserter->getFlags();
return getNode(Opcode, DL, VTList, Ops, Flags);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
if (VTList.NumVTs == 1)
return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
#ifndef NDEBUG
for (const auto &Op : Ops)
assert(Op.getOpcode() != ISD::DELETED_NODE &&
"Operand is DELETED_NODE!");
#endif
switch (Opcode) {
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO: {
assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
"Invalid add/sub overflow op!");
assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
Ops[0].getValueType() == Ops[1].getValueType() &&
Ops[0].getValueType() == VTList.VTs[0] &&
"Binary operator types must match!");
SDValue N1 = Ops[0], N2 = Ops[1];
canonicalizeCommutativeBinop(Opcode, N1, N2);
ConstantSDNode *N2CV = isConstOrConstSplat(N2, false,
true);
if (N2CV && N2CV->isZero()) {
SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
}
break;
}
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI: {
assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
VTList.VTs[0] == Ops[0].getValueType() &&
VTList.VTs[0] == Ops[1].getValueType() &&
"Binary operator types must match!");
break;
}
case ISD::STRICT_FP_EXTEND:
assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
"Invalid STRICT_FP_EXTEND!");
assert(VTList.VTs[0].isFloatingPoint() &&
Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
"STRICT_FP_EXTEND result type should be vector iff the operand "
"type is vector!");
assert((!VTList.VTs[0].isVector() ||
VTList.VTs[0].getVectorNumElements() ==
Ops[1].getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
"Invalid fpext node, dst <= src!");
break;
case ISD::STRICT_FP_ROUND:
assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
"STRICT_FP_ROUND result type should be vector iff the operand "
"type is vector!");
assert((!VTList.VTs[0].isVector() ||
VTList.VTs[0].getVectorNumElements() ==
Ops[1].getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
assert(VTList.VTs[0].isFloatingPoint() &&
Ops[1].getValueType().isFloatingPoint() &&
VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
isa<ConstantSDNode>(Ops[2]) &&
(cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
"Invalid STRICT_FP_ROUND!");
break;
#if 0#endif
}
SDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
createOperands(N, Ops);
}
N->setFlags(Flags);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
SDVTList VTList) {
return getNode(Opcode, DL, VTList, None);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1) {
SDValue Ops[] = { N1 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2) {
SDValue Ops[] = { N1, N2 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3) {
SDValue Ops[] = { N1, N2, N3 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VTList, Ops);
}
SDVTList SelectionDAG::getVTList(EVT VT) {
return makeVTList(SDNode::getValueTypeList(VT), 1);
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
FoldingSetNodeID ID;
ID.AddInteger(2U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(2);
Array[0] = VT1;
Array[1] = VT2;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
FoldingSetNodeID ID;
ID.AddInteger(3U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
ID.AddInteger(VT3.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(3);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
FoldingSetNodeID ID;
ID.AddInteger(4U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
ID.AddInteger(VT3.getRawBits());
ID.AddInteger(VT4.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(4);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
Array[3] = VT4;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
unsigned NumVTs = VTs.size();
FoldingSetNodeID ID;
ID.AddInteger(NumVTs);
for (unsigned index = 0; index < NumVTs; index++) {
ID.AddInteger(VTs[index].getRawBits());
}
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(NumVTs);
llvm::copy(VTs, Array);
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
if (Op == N->getOperand(0)) return N;
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
return Existing;
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
N->OperandList[0].set(Op);
updateDivergence(N);
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
return N;
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
return Existing;
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
if (N->OperandList[0] != Op1)
N->OperandList[0].set(Op1);
if (N->OperandList[1] != Op2)
N->OperandList[1].set(Op2);
updateDivergence(N);
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
SDValue Ops[] = { Op1, Op2, Op3 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4) {
SDValue Ops[] = { Op1, Op2, Op3, Op4 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5) {
SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
unsigned NumOps = Ops.size();
assert(N->getNumOperands() == NumOps &&
"Update with wrong number of operands");
if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
return N;
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
return Existing;
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
for (unsigned i = 0; i != NumOps; ++i)
if (N->OperandList[i] != Ops[i])
N->OperandList[i].set(Ops[i]);
updateDivergence(N);
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
void SDNode::DropOperands() {
for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
SDUse &Use = *I++;
Use.set(SDValue());
}
}
void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
ArrayRef<MachineMemOperand *> NewMemRefs) {
if (NewMemRefs.empty()) {
N->clearMemRefs();
return;
}
if (NewMemRefs.size() == 1) {
N->MemRefs = NewMemRefs[0];
N->NumMemRefs = 1;
return;
}
MachineMemOperand **MemRefsBuffer =
Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
llvm::copy(NewMemRefs, MemRefsBuffer);
N->MemRefs = MemRefsBuffer;
N->NumMemRefs = static_cast<int>(NewMemRefs.size());
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, None);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, None);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
SDVTList VTs,ArrayRef<SDValue> Ops) {
SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
New->setNodeId(-1);
if (New != N) {
ReplaceAllUsesWith(N, New);
RemoveDeadNode(N);
}
return New;
}
SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
DebugLoc NLoc = N->getDebugLoc();
if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
N->setDebugLoc(DebugLoc());
}
unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
N->setIROrder(Order);
return N;
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
SDVTList VTs, ArrayRef<SDValue> Ops) {
void *IP = nullptr;
if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, VTs, Ops);
if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
}
if (!RemoveNodeFromCSEMaps(N))
IP = nullptr;
N->NodeType = Opc;
N->ValueList = VTs.VTs;
N->NumValues = VTs.NumVTs;
SmallPtrSet<SDNode*, 16> DeadNodeSet;
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Used = Use.getNode();
Use.set(SDValue());
if (Used->use_empty())
DeadNodeSet.insert(Used);
}
if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
MN->clearMemRefs();
removeOperands(N);
createOperands(N, Ops);
if (!DeadNodeSet.empty()) {
SmallVector<SDNode *, 16> DeadNodes;
for (SDNode *N : DeadNodeSet)
if (N->use_empty())
DeadNodes.push_back(N);
RemoveDeadNodes(DeadNodes);
}
if (IP)
CSEMap.InsertNode(N, IP); return N;
}
SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
unsigned OrigOpc = Node->getOpcode();
unsigned NewOpc;
switch (OrigOpc) {
default:
llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
#include "llvm/IR/ConstrainedOps.def"
}
assert(Node->getNumValues() == 2 && "Unexpected number of results!");
SDValue InputChain = Node->getOperand(0);
SDValue OutputChain = SDValue(Node, 1);
ReplaceAllUsesOfValueWith(OutputChain, InputChain);
SmallVector<SDValue, 3> Ops;
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(Node->getOperand(i));
SDVTList VTs = getVTList(Node->getValueType(0));
SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
if (Res == Node) {
Res->setNodeId(-1);
} else {
ReplaceAllUsesWith(Node, Res);
RemoveDeadNode(Node);
}
return Res;
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, None);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, EVT VT3,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
ArrayRef<EVT> ResultTys,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(ResultTys);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
SDVTList VTs,
ArrayRef<SDValue> Ops) {
bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
MachineSDNode *N;
void *IP = nullptr;
if (DoCSE) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ~Opcode, VTs, Ops);
IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
}
}
N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
if (DoCSE)
CSEMap.InsertNode(N, IP);
InsertNode(N);
NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
return N;
}
SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand) {
SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
VT, Operand, SRIdxVal);
return SDValue(Subreg, 0);
}
SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand, SDValue Subreg) {
SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
VT, Operand, Subreg, SRIdxVal);
return SDValue(Result, 0);
}
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
ArrayRef<SDValue> Ops) {
SDNodeFlags Flags;
if (Inserter)
Flags = Inserter->getFlags();
return getNodeIfExists(Opcode, VTList, Ops, Flags);
}
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
ArrayRef<SDValue> Ops,
const SDNodeFlags Flags) {
if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
E->intersectFlagsWith(Flags);
return E;
}
}
return nullptr;
}
bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
ArrayRef<SDValue> Ops) {
if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
void *IP = nullptr;
if (FindNodeOrInsertPos(ID, SDLoc(), IP))
return true;
}
return false;
}
SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
SDNode *N, unsigned R, bool IsIndirect,
const DebugLoc &DL, unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
{}, IsIndirect, DL, O,
false);
}
SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
DIExpression *Expr,
const Value *C,
const DebugLoc &DL, unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
false, DL, O,
false);
}
SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
DIExpression *Expr, unsigned FI,
bool IsIndirect,
const DebugLoc &DL,
unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
}
SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
DIExpression *Expr, unsigned FI,
ArrayRef<SDNode *> Dependencies,
bool IsIndirect,
const DebugLoc &DL,
unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
Dependencies, IsIndirect, DL, O,
false);
}
SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
unsigned VReg, bool IsIndirect,
const DebugLoc &DL, unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
{}, IsIndirect, DL, O,
false);
}
SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
ArrayRef<SDDbgOperand> Locs,
ArrayRef<SDNode *> Dependencies,
bool IsIndirect, const DebugLoc &DL,
unsigned O, bool IsVariadic) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
DL, O, IsVariadic);
}
void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
unsigned OffsetInBits, unsigned SizeInBits,
bool InvalidateDbg) {
SDNode *FromNode = From.getNode();
SDNode *ToNode = To.getNode();
assert(FromNode && ToNode && "Can't modify dbg values");
if (From == To || FromNode == ToNode)
return;
if (!FromNode->getHasDebugValue())
return;
SDDbgOperand FromLocOp =
SDDbgOperand::fromNode(From.getNode(), From.getResNo());
SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
SmallVector<SDDbgValue *, 2> ClonedDVs;
for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
if (Dbg->isInvalidated())
continue;
bool Changed = false;
auto NewLocOps = Dbg->copyLocationOps();
std::replace_if(
NewLocOps.begin(), NewLocOps.end(),
[&Changed, FromLocOp](const SDDbgOperand &Op) {
bool Match = Op == FromLocOp;
Changed |= Match;
return Match;
},
ToLocOp);
if (!Changed)
continue;
DIVariable *Var = Dbg->getVariable();
auto *Expr = Dbg->getExpression();
if (SizeInBits) {
if (auto FI = Expr->getFragmentInfo())
if (OffsetInBits + SizeInBits > FI->SizeInBits)
continue;
auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
SizeInBits);
if (!Fragment)
continue;
Expr = *Fragment;
}
auto AdditionalDependencies = Dbg->getAdditionalDependencies();
SDDbgValue *Clone = getDbgValueList(
Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
Dbg->isVariadic());
ClonedDVs.push_back(Clone);
if (InvalidateDbg) {
Dbg->setIsInvalidated();
Dbg->setIsEmitted();
}
}
for (SDDbgValue *Dbg : ClonedDVs) {
assert(is_contained(Dbg->getSDNodes(), ToNode) &&
"Transferred DbgValues should depend on the new SDNode");
AddDbgValue(Dbg, false);
}
}
void SelectionDAG::salvageDebugInfo(SDNode &N) {
if (!N.getHasDebugValue())
return;
SmallVector<SDDbgValue *, 2> ClonedDVs;
for (auto *DV : GetDbgValues(&N)) {
if (DV->isInvalidated())
continue;
switch (N.getOpcode()) {
default:
break;
case ISD::ADD:
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
if (!isConstantIntBuildVectorOrConstantInt(N0) &&
isConstantIntBuildVectorOrConstantInt(N1)) {
uint64_t Offset = N.getConstantOperandVal(1);
auto *DIExpr = DV->getExpression();
auto NewLocOps = DV->copyLocationOps();
bool Changed = false;
for (size_t i = 0; i < NewLocOps.size(); ++i) {
if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
NewLocOps[i].getSDNode() != &N)
continue;
NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
SmallVector<uint64_t, 3> ExprOps;
DIExpression::appendOffset(ExprOps, Offset);
DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
Changed = true;
}
(void)Changed;
assert(Changed && "Salvage target doesn't use N");
auto AdditionalDependencies = DV->getAdditionalDependencies();
SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
NewLocOps, AdditionalDependencies,
DV->isIndirect(), DV->getDebugLoc(),
DV->getOrder(), DV->isVariadic());
ClonedDVs.push_back(Clone);
DV->setIsInvalidated();
DV->setIsEmitted();
LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
N0.getNode()->dumprFull(this);
dbgs() << " into " << *DIExpr << '\n');
}
}
}
for (SDDbgValue *Dbg : ClonedDVs) {
assert(!Dbg->getSDNodes().empty() &&
"Salvaged DbgValue should depend on a new SDNode");
AddDbgValue(Dbg, false);
}
}
SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
const DebugLoc &DL, unsigned O) {
assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
}
namespace {
class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
SDNode::use_iterator &UI;
SDNode::use_iterator &UE;
void NodeDeleted(SDNode *N, SDNode *E) override {
while (UI != UE && N == *UI)
++UI;
}
public:
RAUWUpdateListener(SelectionDAG &d,
SDNode::use_iterator &ui,
SDNode::use_iterator &ue)
: SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
};
}
void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
SDNode *From = FromN.getNode();
assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
"Cannot replace with this method!");
assert(From != To.getNode() && "Cannot replace uses of with self");
transferDbgValues(FromN, To);
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
RemoveNodeFromCSEMaps(User);
do {
SDUse &Use = UI.getUse();
++UI;
Use.set(To);
if (To->isDivergent() != From->isDivergent())
updateDivergence(User);
} while (UI != UE && *UI == User);
AddModifiedNodeToCSEMaps(User);
}
if (FromN == getRoot())
setRoot(To);
}
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
#ifndef NDEBUG
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
assert((!From->hasAnyUseOfValue(i) ||
From->getValueType(i) == To->getValueType(i)) &&
"Cannot use this version of ReplaceAllUsesWith!");
#endif
if (From == To)
return;
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
if (From->hasAnyUseOfValue(i)) {
assert((i < To->getNumValues()) && "Invalid To location");
transferDbgValues(SDValue(From, i), SDValue(To, i));
}
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
RemoveNodeFromCSEMaps(User);
do {
SDUse &Use = UI.getUse();
++UI;
Use.setNode(To);
if (To->isDivergent() != From->isDivergent())
updateDivergence(User);
} while (UI != UE && *UI == User);
AddModifiedNodeToCSEMaps(User);
}
if (From == getRoot().getNode())
setRoot(SDValue(To, getRoot().getResNo()));
}
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
if (From->getNumValues() == 1) return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
transferDbgValues(SDValue(From, i), To[i]);
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
RemoveNodeFromCSEMaps(User);
bool To_IsDivergent = false;
do {
SDUse &Use = UI.getUse();
const SDValue &ToOp = To[Use.getResNo()];
++UI;
Use.set(ToOp);
To_IsDivergent |= ToOp->isDivergent();
} while (UI != UE && *UI == User);
if (To_IsDivergent != From->isDivergent())
updateDivergence(User);
AddModifiedNodeToCSEMaps(User);
}
if (From == getRoot().getNode())
setRoot(SDValue(To[getRoot().getResNo()]));
}
void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
if (From == To) return;
if (From.getNode()->getNumValues() == 1) {
ReplaceAllUsesWith(From, To);
return;
}
transferDbgValues(From, To);
SDNode::use_iterator UI = From.getNode()->use_begin(),
UE = From.getNode()->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
bool UserRemovedFromCSEMaps = false;
do {
SDUse &Use = UI.getUse();
if (Use.getResNo() != From.getResNo()) {
++UI;
continue;
}
if (!UserRemovedFromCSEMaps) {
RemoveNodeFromCSEMaps(User);
UserRemovedFromCSEMaps = true;
}
++UI;
Use.set(To);
if (To->isDivergent() != From->isDivergent())
updateDivergence(User);
} while (UI != UE && *UI == User);
if (!UserRemovedFromCSEMaps)
continue;
AddModifiedNodeToCSEMaps(User);
}
if (From == getRoot())
setRoot(To);
}
namespace {
struct UseMemo {
SDNode *User;
unsigned Index;
SDUse *Use;
};
bool operator<(const UseMemo &L, const UseMemo &R) {
return (intptr_t)L.User < (intptr_t)R.User;
}
class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
SmallVector<UseMemo, 4> &Uses;
void NodeDeleted(SDNode *N, SDNode *E) override {
for (UseMemo &Memo : Uses)
if (Memo.User == N)
Memo.User = nullptr;
}
public:
RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
: SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
};
}
bool SelectionDAG::calculateDivergence(SDNode *N) {
if (TLI->isSDNodeAlwaysUniform(N)) {
assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
"Conflicting divergence information!");
return false;
}
if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
return true;
for (const auto &Op : N->ops()) {
if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
return true;
}
return false;
}
void SelectionDAG::updateDivergence(SDNode *N) {
SmallVector<SDNode *, 16> Worklist(1, N);
do {
N = Worklist.pop_back_val();
bool IsDivergent = calculateDivergence(N);
if (N->SDNodeBits.IsDivergent != IsDivergent) {
N->SDNodeBits.IsDivergent = IsDivergent;
llvm::append_range(Worklist, N->uses());
}
} while (!Worklist.empty());
}
void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
DenseMap<SDNode *, unsigned> Degree;
Order.reserve(AllNodes.size());
for (auto &N : allnodes()) {
unsigned NOps = N.getNumOperands();
Degree[&N] = NOps;
if (0 == NOps)
Order.push_back(&N);
}
for (size_t I = 0; I != Order.size(); ++I) {
SDNode *N = Order[I];
for (auto *U : N->uses()) {
unsigned &UnsortedOps = Degree[U];
if (0 == --UnsortedOps)
Order.push_back(U);
}
}
}
#ifndef NDEBUG
void SelectionDAG::VerifyDAGDivergence() {
std::vector<SDNode *> TopoOrder;
CreateTopologicalOrder(TopoOrder);
for (auto *N : TopoOrder) {
assert(calculateDivergence(N) == N->isDivergent() &&
"Divergence bit inconsistency detected");
}
}
#endif
void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
const SDValue *To,
unsigned Num){
if (Num == 1)
return ReplaceAllUsesOfValueWith(*From, *To);
transferDbgValues(*From, *To);
SmallVector<UseMemo, 4> Uses;
for (unsigned i = 0; i != Num; ++i) {
unsigned FromResNo = From[i].getResNo();
SDNode *FromNode = From[i].getNode();
for (SDNode::use_iterator UI = FromNode->use_begin(),
E = FromNode->use_end(); UI != E; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == FromResNo) {
UseMemo Memo = { *UI, i, &Use };
Uses.push_back(Memo);
}
}
}
llvm::sort(Uses);
RAUOVWUpdateListener Listener(*this, Uses);
for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
UseIndex != UseIndexEnd; ) {
SDNode *User = Uses[UseIndex].User;
if (User == nullptr) {
++UseIndex;
continue;
}
RemoveNodeFromCSEMaps(User);
do {
unsigned i = Uses[UseIndex].Index;
SDUse &Use = *Uses[UseIndex].Use;
++UseIndex;
Use.set(To[i]);
} while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
AddModifiedNodeToCSEMaps(User);
}
}
unsigned SelectionDAG::AssignTopologicalOrder() {
unsigned DAGSize = 0;
allnodes_iterator SortedPos = allnodes_begin();
for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
checkForCycles(&N, this);
unsigned Degree = N.getNumOperands();
if (Degree == 0) {
N.setNodeId(DAGSize++);
allnodes_iterator Q(&N);
if (Q != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
N.setNodeId(Degree);
}
}
for (SDNode &Node : allnodes()) {
SDNode *N = &Node;
checkForCycles(N, this);
for (SDNode *P : N->uses()) {
unsigned Degree = P->getNodeId();
assert(Degree != 0 && "Invalid node degree");
--Degree;
if (Degree == 0) {
P->setNodeId(DAGSize++);
if (P->getIterator() != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
P->setNodeId(Degree);
}
}
if (Node.getIterator() == SortedPos) {
#ifndef NDEBUG
allnodes_iterator I(N);
SDNode *S = &*++I;
dbgs() << "Overran sorted position:\n";
S->dumprFull(this); dbgs() << "\n";
dbgs() << "Checking if this is due to cycles\n";
checkForCycles(this, true);
#endif
llvm_unreachable(nullptr);
}
}
assert(SortedPos == AllNodes.end() &&
"Topological sort incomplete!");
assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
"First node in topological sort is not the entry token!");
assert(AllNodes.front().getNodeId() == 0 &&
"First node in topological sort has non-zero id!");
assert(AllNodes.front().getNumOperands() == 0 &&
"First node in topological sort has operands!");
assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
"Last node in topologic sort has unexpected id!");
assert(AllNodes.back().use_empty() &&
"Last node in topologic sort has users!");
assert(DAGSize == allnodes_size() && "Node count mismatch!");
return DAGSize;
}
void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
for (SDNode *SD : DB->getSDNodes()) {
if (!SD)
continue;
assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
SD->setHasDebugValue(true);
}
DbgInfo->add(DB, isParameter);
}
void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
SDValue NewMemOpChain) {
assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
if (OldChain == NewMemOpChain || OldChain.use_empty())
return NewMemOpChain;
SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
OldChain, NewMemOpChain);
ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
return TokenFactor;
}
SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
SDValue NewMemOp) {
assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
SDValue OldChain = SDValue(OldLoad, 1);
SDValue NewMemOpChain = NewMemOp.getValue(1);
return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
}
SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
Function **OutFunction) {
assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
auto *Module = MF->getFunction().getParent();
auto *Function = Module->getFunction(Symbol);
if (OutFunction != nullptr)
*OutFunction = Function;
if (Function != nullptr) {
auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
return getGlobalAddress(Function, SDLoc(Op), PtrTy);
}
std::string ErrorStr;
raw_string_ostream ErrorFormatter(ErrorStr);
ErrorFormatter << "Undefined external symbol ";
ErrorFormatter << '"' << Symbol << '"';
report_fatal_error(Twine(ErrorFormatter.str()));
}
bool llvm::isNullConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isZero();
}
bool llvm::isNullFPConstant(SDValue V) {
ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
return Const != nullptr && Const->isZero() && !Const->isNegative();
}
bool llvm::isAllOnesConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isAllOnes();
}
bool llvm::isOneConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isOne();
}
bool llvm::isMinSignedConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isMinSignedValue();
}
SDValue llvm::peekThroughBitcasts(SDValue V) {
while (V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
return V;
}
SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
V = V.getOperand(0);
return V;
}
SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
V = V.getOperand(0);
return V;
}
bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
if (V.getOpcode() != ISD::XOR)
return false;
V = peekThroughBitcasts(V.getOperand(1));
unsigned NumBits = V.getScalarValueSizeInBits();
ConstantSDNode *C =
isConstOrConstSplat(V, AllowUndefs, true);
return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
}
ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
bool AllowTruncation) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
return CN;
if (N->getOpcode() == ISD::SPLAT_VECTOR) {
EVT VecEltVT = N->getValueType(0).getVectorElementType();
if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
EVT CVT = CN->getValueType(0);
assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
if (AllowTruncation || CVT == VecEltVT)
return CN;
}
}
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
if (CN && (UndefElements.none() || AllowUndefs)) {
EVT CVT = CN->getValueType(0);
EVT NSVT = N.getValueType().getScalarType();
assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
if (AllowTruncation || (CVT == NSVT))
return CN;
}
}
return nullptr;
}
ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
bool AllowUndefs,
bool AllowTruncation) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
return CN;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
if (CN && (UndefElements.none() || AllowUndefs)) {
EVT CVT = CN->getValueType(0);
EVT NSVT = N.getValueType().getScalarType();
assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
if (AllowTruncation || (CVT == NSVT))
return CN;
}
}
return nullptr;
}
ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
return CN;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
if (CN && (UndefElements.none() || AllowUndefs))
return CN;
}
if (N.getOpcode() == ISD::SPLAT_VECTOR)
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
return CN;
return nullptr;
}
ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
const APInt &DemandedElts,
bool AllowUndefs) {
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
return CN;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantFPSDNode *CN =
BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
if (CN && (UndefElements.none() || AllowUndefs))
return CN;
}
return nullptr;
}
bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
ConstantSDNode *C =
isConstOrConstSplat(N, AllowUndefs, true);
return C && C->isZero();
}
bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
ConstantSDNode *C =
isConstOrConstSplat(N, AllowUndefs, true);
return C && C->isOne();
}
bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
N = peekThroughBitcasts(N);
unsigned BitWidth = N.getScalarValueSizeInBits();
ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
}
HandleSDNode::~HandleSDNode() {
DropOperands();
}
GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
const DebugLoc &DL,
const GlobalValue *GA, EVT VT,
int64_t o, unsigned TF)
: SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
TheGlobal = GA;
}
AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
EVT VT, unsigned SrcAS,
unsigned DestAS)
: SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
: SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
MemSDNodeBits.IsVolatile = MMO->isVolatile();
MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
MemSDNodeBits.IsInvariant = MMO->isInvariant();
assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
"Size mismatch!");
}
void SDNode::Profile(FoldingSetNodeID &ID) const {
AddNodeIDNode(ID, this);
}
namespace {
struct EVTArray {
std::vector<EVT> VTs;
EVTArray() {
VTs.reserve(MVT::VALUETYPE_SIZE);
for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
VTs.push_back(MVT((MVT::SimpleValueType)i));
}
};
}
const EVT *SDNode::getValueTypeList(EVT VT) {
static std::set<EVT, EVT::compareRawBits> EVTs;
static EVTArray SimpleVTArray;
static sys::SmartMutex<true> VTMutex;
if (VT.isExtended()) {
sys::SmartScopedLock<true> Lock(VTMutex);
return &(*EVTs.insert(VT).first);
}
assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy];
}
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
if (UI.getUse().getResNo() == Value) {
if (NUses == 0)
return false;
--NUses;
}
}
return NUses == 0;
}
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
if (UI.getUse().getResNo() == Value)
return true;
return false;
}
bool SDNode::isOnlyUserOf(const SDNode *N) const {
bool Seen = false;
for (const SDNode *User : N->uses()) {
if (User == this)
Seen = true;
else
return false;
}
return Seen;
}
bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
bool Seen = false;
for (const SDNode *User : N->uses()) {
if (llvm::is_contained(Nodes, User))
Seen = true;
else
return false;
}
return Seen;
}
bool SDValue::isOperandOf(const SDNode *N) const {
return is_contained(N->op_values(), *this);
}
bool SDNode::isOperandOf(const SDNode *N) const {
return any_of(N->op_values(),
[this](SDValue Op) { return this == Op.getNode(); });
}
bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth) const {
if (*this == Dest) return true;
if (Depth == 0) return false;
if (getOpcode() == ISD::TokenFactor) {
if (is_contained((*this)->ops(), Dest)) {
if (Dest.hasOneUse())
return true;
}
return llvm::all_of((*this)->ops(), [=](SDValue Op) {
return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
});
}
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
if (Ld->isUnordered())
return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
}
return false;
}
bool SDNode::hasPredecessor(const SDNode *N) const {
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Worklist.push_back(this);
return hasPredecessorHelper(N, Visited, Worklist);
}
void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
this->Flags.intersectWith(Flags);
}
SDValue
SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
ArrayRef<ISD::NodeType> CandidateBinOps,
bool AllowPartials) {
if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isNullConstant(Extract->getOperand(1)))
return SDValue();
SDValue Op = Extract->getOperand(0);
if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
return Op.getOpcode() == unsigned(BinOp);
}))
return SDValue();
unsigned CandidateBinOp = Op.getOpcode();
if (Op.getValueType().isFloatingPoint()) {
SDNodeFlags Flags = Op->getFlags();
switch (CandidateBinOp) {
case ISD::FADD:
if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
return SDValue();
break;
default:
llvm_unreachable("Unhandled FP opcode for binop reduction");
}
}
auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
if (!AllowPartials || !Op)
return SDValue();
EVT OpVT = Op.getValueType();
EVT OpSVT = OpVT.getScalarType();
EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
return SDValue();
BinOp = (ISD::NodeType)CandidateBinOp;
return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
getVectorIdxConstant(0, SDLoc(Op)));
};
unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
SDValue PrevOp;
for (unsigned i = 0; i < Stages; ++i) {
unsigned MaskEnd = (1 << i);
if (Op.getOpcode() != CandidateBinOp)
return PartialReduction(PrevOp, MaskEnd);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
if (Shuffle) {
Op = Op1;
} else {
Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
Op = Op0;
}
if (!Shuffle || Shuffle->getOperand(0) != Op)
return PartialReduction(PrevOp, MaskEnd);
for (int Index = 0; Index < (int)MaskEnd; ++Index)
if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
return PartialReduction(PrevOp, MaskEnd);
PrevOp = Op;
}
while (Op.getOpcode() == CandidateBinOp) {
unsigned NumElts = Op.getValueType().getVectorNumElements();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
Op0.getOperand(0) != Op1.getOperand(0))
break;
SDValue Src = Op0.getOperand(0);
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
if (NumSrcElts != (2 * NumElts))
break;
if (!(Op0.getConstantOperandAPInt(1) == 0 &&
Op1.getConstantOperandAPInt(1) == NumElts) &&
!(Op1.getConstantOperandAPInt(1) == 0 &&
Op0.getConstantOperandAPInt(1) == NumElts))
break;
Op = Src;
}
BinOp = (ISD::NodeType)CandidateBinOp;
return Op;
}
SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
assert(N->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");
EVT VT = N->getValueType(0);
unsigned NE = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDLoc dl(N);
SmallVector<SDValue, 8> Scalars;
SmallVector<SDValue, 4> Operands(N->getNumOperands());
if (ResNE == 0)
ResNE = NE;
else if (NE > ResNE)
NE = ResNE;
unsigned i;
for (i= 0; i != NE; ++i) {
for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
SDValue Operand = N->getOperand(j);
EVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
EVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
Operand, getVectorIdxConstant(i, dl));
} else {
Operands[j] = Operand;
}
}
switch (N->getOpcode()) {
default: {
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
N->getFlags()));
break;
}
case ISD::VSELECT:
Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
getShiftAmountOperand(Operands[0].getValueType(),
Operands[1])));
break;
case ISD::SIGN_EXTEND_INREG: {
EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
Operands[0],
getValueType(ExtVT)));
}
}
}
for (; i < ResNE; ++i)
Scalars.push_back(getUNDEF(EltVT));
EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
return getBuildVector(VecVT, dl, Scalars);
}
std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
SDNode *N, unsigned ResNE) {
unsigned Opcode = N->getOpcode();
assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
"Expected an overflow opcode");
EVT ResVT = N->getValueType(0);
EVT OvVT = N->getValueType(1);
EVT ResEltVT = ResVT.getVectorElementType();
EVT OvEltVT = OvVT.getVectorElementType();
SDLoc dl(N);
unsigned NE = ResVT.getVectorNumElements();
if (ResNE == 0)
ResNE = NE;
else if (NE > ResNE)
NE = ResNE;
SmallVector<SDValue, 8> LHSScalars;
SmallVector<SDValue, 8> RHSScalars;
ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
SDVTList VTs = getVTList(ResEltVT, SVT);
SmallVector<SDValue, 8> ResScalars;
SmallVector<SDValue, 8> OvScalars;
for (unsigned i = 0; i < NE; ++i) {
SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
SDValue Ov =
getSelect(dl, OvEltVT, Res.getValue(1),
getBoolConstant(true, dl, OvEltVT, ResVT),
getConstant(0, dl, OvEltVT));
ResScalars.push_back(Res);
OvScalars.push_back(Ov);
}
ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
getBuildVector(NewOvVT, dl, OvScalars));
}
bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
LoadSDNode *Base,
unsigned Bytes,
int Dist) const {
if (LD->isVolatile() || Base->isVolatile())
return false;
if (!LD->isSimple())
return false;
if (LD->isIndexed() || Base->isIndexed())
return false;
if (LD->getChain() != Base->getChain())
return false;
EVT VT = LD->getValueType(0);
if (VT.getSizeInBits() / 8 != Bytes)
return false;
auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
auto LocDecomp = BaseIndexOffset::match(LD, *this);
int64_t Offset = 0;
if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
return (Dist * Bytes == Offset);
return false;
}
MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
const GlobalValue *GV = nullptr;
int64_t GVOffset = 0;
if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
KnownBits Known(PtrWidth);
llvm::computeKnownBits(GV, Known, getDataLayout());
unsigned AlignBits = Known.countMinTrailingZeros();
if (AlignBits)
return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
}
int FrameIdx = INT_MIN;
int64_t FrameOffset = 0;
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
FrameIdx = FI->getIndex();
} else if (isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
FrameOffset = Ptr.getConstantOperandVal(1);
}
if (FrameIdx != INT_MIN) {
const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
}
return None;
}
std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
EVT LoVT, HiVT;
if (!VT.isVector())
LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
else
LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
return std::make_pair(LoVT, HiVT);
}
std::pair<EVT, EVT>
SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
bool *HiIsEmpty) const {
EVT EltTp = VT.getVectorElementType();
ElementCount VTNumElts = VT.getVectorElementCount();
ElementCount EnvNumElts = EnvVT.getVectorElementCount();
assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
"Mixing fixed width and scalable vectors when enveloping a type");
EVT LoVT, HiVT;
if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
*HiIsEmpty = false;
} else {
LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
*HiIsEmpty = true;
}
return std::make_pair(LoVT, HiVT);
}
std::pair<SDValue, SDValue>
SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
const EVT &HiVT) {
assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
"Splitting vector with an invalid mixture of fixed and scalable "
"vector types");
assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
N.getValueType().getVectorMinNumElements() &&
"More vector elements requested than available!");
SDValue Lo, Hi;
Lo =
getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
return std::make_pair(Lo, Hi);
}
std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
const SDLoc &DL) {
EVT VT = N.getValueType();
assert(VecVT.getVectorElementCount().isKnownEven() &&
"Expecting the mask to be an evenly-sized vector");
unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
SDValue HalfNumElts =
VecVT.isFixedLengthVector()
? getConstant(HalfMinNumElts, DL, VT)
: getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
return std::make_pair(Lo, Hi);
}
SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
EVT VT = N.getValueType();
EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
NextPowerOf2(VT.getVectorNumElements()));
return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
getVectorIdxConstant(0, DL));
}
void SelectionDAG::ExtractVectorElements(SDValue Op,
SmallVectorImpl<SDValue> &Args,
unsigned Start, unsigned Count,
EVT EltVT) {
EVT VT = Op.getValueType();
if (Count == 0)
Count = VT.getVectorNumElements();
if (EltVT == EVT())
EltVT = VT.getVectorElementType();
SDLoc SL(Op);
for (unsigned i = Start, e = Start + Count; i != e; ++i) {
Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
getVectorIdxConstant(i, SL)));
}
}
unsigned GlobalAddressSDNode::getAddressSpace() const {
return getGlobal()->getType()->getAddressSpace();
}
Type *ConstantPoolSDNode::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
unsigned &SplatBitSize,
bool &HasAnyUndefs,
unsigned MinSplatBits,
bool IsBigEndian) const {
EVT VT = getValueType(0);
assert(VT.isVector() && "Expected a vector type");
unsigned VecWidth = VT.getSizeInBits();
if (MinSplatBits > VecWidth)
return false;
SplatValue = APInt(VecWidth, 0);
SplatUndef = APInt(VecWidth, 0);
unsigned int NumOps = getNumOperands();
assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
unsigned EltWidth = VT.getScalarSizeInBits();
for (unsigned j = 0; j < NumOps; ++j) {
unsigned i = IsBigEndian ? NumOps - 1 - j : j;
SDValue OpVal = getOperand(i);
unsigned BitPos = j * EltWidth;
if (OpVal.isUndef())
SplatUndef.setBits(BitPos, BitPos + EltWidth);
else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
else
return false;
}
HasAnyUndefs = (SplatUndef != 0);
while (VecWidth > 8) {
unsigned HalfSize = VecWidth / 2;
APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
APInt LowValue = SplatValue.extractBits(HalfSize, 0);
APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
MinSplatBits > HalfSize)
break;
SplatValue = HighValue | LowValue;
SplatUndef = HighUndef & LowUndef;
VecWidth = HalfSize;
}
SplatBitSize = VecWidth;
return true;
}
SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
BitVector *UndefElements) const {
unsigned NumOps = getNumOperands();
if (UndefElements) {
UndefElements->clear();
UndefElements->resize(NumOps);
}
assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
if (!DemandedElts)
return SDValue();
SDValue Splatted;
for (unsigned i = 0; i != NumOps; ++i) {
if (!DemandedElts[i])
continue;
SDValue Op = getOperand(i);
if (Op.isUndef()) {
if (UndefElements)
(*UndefElements)[i] = true;
} else if (!Splatted) {
Splatted = Op;
} else if (Splatted != Op) {
return SDValue();
}
}
if (!Splatted) {
unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
assert(getOperand(FirstDemandedIdx).isUndef() &&
"Can only have a splat without a constant for all undefs.");
return getOperand(FirstDemandedIdx);
}
return Splatted;
}
SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
APInt DemandedElts = APInt::getAllOnes(getNumOperands());
return getSplatValue(DemandedElts, UndefElements);
}
bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
SmallVectorImpl<SDValue> &Sequence,
BitVector *UndefElements) const {
unsigned NumOps = getNumOperands();
Sequence.clear();
if (UndefElements) {
UndefElements->clear();
UndefElements->resize(NumOps);
}
assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
return false;
if (UndefElements)
for (unsigned I = 0; I != NumOps; ++I)
if (DemandedElts[I] && getOperand(I).isUndef())
(*UndefElements)[I] = true;
for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
Sequence.append(SeqLen, SDValue());
for (unsigned I = 0; I != NumOps; ++I) {
if (!DemandedElts[I])
continue;
SDValue &SeqOp = Sequence[I % SeqLen];
SDValue Op = getOperand(I);
if (Op.isUndef()) {
if (!SeqOp)
SeqOp = Op;
continue;
}
if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
Sequence.clear();
break;
}
SeqOp = Op;
}
if (!Sequence.empty())
return true;
}
assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
return false;
}
bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
BitVector *UndefElements) const {
APInt DemandedElts = APInt::getAllOnes(getNumOperands());
return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
}
ConstantSDNode *
BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantSDNode>(
getSplatValue(DemandedElts, UndefElements));
}
ConstantSDNode *
BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
}
ConstantFPSDNode *
BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantFPSDNode>(
getSplatValue(DemandedElts, UndefElements));
}
ConstantFPSDNode *
BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
}
int32_t
BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
uint32_t BitWidth) const {
if (ConstantFPSDNode *CN =
dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
bool IsExact;
APSInt IntVal(BitWidth);
const APFloat &APF = CN->getValueAPF();
if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
APFloat::opOK ||
!IsExact)
return -1;
return IntVal.exactLogBase2();
}
return -1;
}
bool BuildVectorSDNode::getConstantRawBits(
bool IsLittleEndian, unsigned DstEltSizeInBits,
SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
if (!isConstant())
return false;
unsigned NumSrcOps = getNumOperands();
unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
"Invalid bitcast scale");
SmallVector<APInt> SrcBitElements(NumSrcOps,
APInt::getNullValue(SrcEltSizeInBits));
BitVector SrcUndeElements(NumSrcOps, false);
for (unsigned I = 0; I != NumSrcOps; ++I) {
SDValue Op = getOperand(I);
if (Op.isUndef()) {
SrcUndeElements.set(I);
continue;
}
auto *CInt = dyn_cast<ConstantSDNode>(Op);
auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
assert((CInt || CFP) && "Unknown constant");
SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
: CFP->getValueAPF().bitcastToAPInt();
}
recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
SrcBitElements, UndefElements, SrcUndeElements);
return true;
}
void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
unsigned DstEltSizeInBits,
SmallVectorImpl<APInt> &DstBitElements,
ArrayRef<APInt> SrcBitElements,
BitVector &DstUndefElements,
const BitVector &SrcUndefElements) {
unsigned NumSrcOps = SrcBitElements.size();
unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
"Invalid bitcast scale");
assert(NumSrcOps == SrcUndefElements.size() &&
"Vector size mismatch");
unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
DstUndefElements.clear();
DstUndefElements.resize(NumDstOps, false);
DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
if (SrcEltSizeInBits <= DstEltSizeInBits) {
unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
for (unsigned I = 0; I != NumDstOps; ++I) {
DstUndefElements.set(I);
APInt &DstBits = DstBitElements[I];
for (unsigned J = 0; J != Scale; ++J) {
unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
if (SrcUndefElements[Idx])
continue;
DstUndefElements.reset(I);
const APInt &SrcBits = SrcBitElements[Idx];
assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
"Illegal constant bitwidths");
DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
}
}
return;
}
unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
for (unsigned I = 0; I != NumSrcOps; ++I) {
if (SrcUndefElements[I]) {
DstUndefElements.set(I * Scale, (I + 1) * Scale);
continue;
}
const APInt &SrcBits = SrcBitElements[I];
for (unsigned J = 0; J != Scale; ++J) {
unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
APInt &DstBits = DstBitElements[Idx];
DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
}
}
}
bool BuildVectorSDNode::isConstant() const {
for (const SDValue &Op : op_values()) {
unsigned Opc = Op.getOpcode();
if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
return false;
}
return true;
}
Optional<std::pair<APInt, APInt>>
BuildVectorSDNode::isConstantSequence() const {
unsigned NumOps = getNumOperands();
if (NumOps < 2)
return None;
if (!isa<ConstantSDNode>(getOperand(0)) ||
!isa<ConstantSDNode>(getOperand(1)))
return None;
unsigned EltSize = getValueType(0).getScalarSizeInBits();
APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
if (Stride.isZero())
return None;
for (unsigned i = 2; i < NumOps; ++i) {
if (!isa<ConstantSDNode>(getOperand(i)))
return None;
APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
if (Val != (Start + (Stride * i)))
return None;
}
return std::make_pair(Start, Stride);
}
bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
unsigned i, e;
for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
;
if (i == e)
return true;
for (int Idx = Mask[i]; i != e; ++i)
if (Mask[i] >= 0 && Mask[i] != Idx)
return false;
return true;
}
SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
if (isa<ConstantSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
return N.getNode();
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
if (GA->getOpcode() == ISD::GlobalAddress &&
TLI->isOffsetFoldingLegal(GA))
return GA;
if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
isa<ConstantSDNode>(N.getOperand(0)))
return N.getNode();
return nullptr;
}
SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
if (isa<ConstantFPSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
return N.getNode();
if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
isa<ConstantFPSDNode>(N.getOperand(0)))
return N.getNode();
return nullptr;
}
void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
assert(!Node->OperandList && "Node already has operands");
assert(SDNode::getMaxNumOperands() >= Vals.size() &&
"too many operands to fit into SDNode");
SDUse *Ops = OperandRecycler.allocate(
ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
bool IsDivergent = false;
for (unsigned I = 0; I != Vals.size(); ++I) {
Ops[I].setUser(Node);
Ops[I].setInitial(Vals[I]);
if (Ops[I].Val.getValueType() != MVT::Other) IsDivergent |= Ops[I].getNode()->isDivergent();
}
Node->NumOperands = Vals.size();
Node->OperandList = Ops;
if (!TLI->isSDNodeAlwaysUniform(Node)) {
IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
Node->SDNodeBits.IsDivergent = IsDivergent;
}
checkForCycles(Node);
}
SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
SmallVectorImpl<SDValue> &Vals) {
size_t Limit = SDNode::getMaxNumOperands();
while (Vals.size() > Limit) {
unsigned SliceIdx = Vals.size() - Limit;
auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
Vals.erase(Vals.begin() + SliceIdx, Vals.end());
Vals.emplace_back(NewTF);
}
return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
}
SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
EVT VT, SDNodeFlags Flags) {
switch (Opcode) {
default:
return SDValue();
case ISD::ADD:
case ISD::OR:
case ISD::XOR:
case ISD::UMAX:
return getConstant(0, DL, VT);
case ISD::MUL:
return getConstant(1, DL, VT);
case ISD::AND:
case ISD::UMIN:
return getAllOnesConstant(DL, VT);
case ISD::SMAX:
return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
case ISD::SMIN:
return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
case ISD::FADD:
return getConstantFP(-0.0, DL, VT);
case ISD::FMUL:
return getConstantFP(1.0, DL, VT);
case ISD::FMINNUM:
case ISD::FMAXNUM: {
const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
!Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
APFloat::getLargest(Semantics);
if (Opcode == ISD::FMAXNUM)
NeutralAF.changeSign();
return getConstantFP(NeutralAF, DL, VT);
}
}
}
#ifndef NDEBUG
static void checkForCyclesHelper(const SDNode *N,
SmallPtrSetImpl<const SDNode*> &Visited,
SmallPtrSetImpl<const SDNode*> &Checked,
const llvm::SelectionDAG *DAG) {
if (Checked.count(N))
return;
if (!Visited.insert(N).second) {
errs() << "Detected cycle in SelectionDAG\n";
dbgs() << "Offending node:\n";
N->dumprFull(DAG); dbgs() << "\n";
abort();
}
for (const SDValue &Op : N->op_values())
checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
Checked.insert(N);
Visited.erase(N);
}
#endif
void llvm::checkForCycles(const llvm::SDNode *N,
const llvm::SelectionDAG *DAG,
bool force) {
#ifndef NDEBUG
bool check = force;
#ifdef EXPENSIVE_CHECKS
check = true;
#endif if (check) {
assert(N && "Checking nonexistent SDNode");
SmallPtrSet<const SDNode*, 32> visited;
SmallPtrSet<const SDNode*, 32> checked;
checkForCyclesHelper(N, visited, checked, DAG);
}
#endif }
void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
checkForCycles(DAG->getRoot().getNode(), DAG, force);
}