#include "SPIRVModuleAnalysis.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "TargetInfo/SPIRVTargetInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
using namespace llvm;
#define DEBUG_TYPE "spirv-module-analysis"
static cl::opt<bool>
SPVDumpDeps("spv-dump-deps",
cl::desc("Dump MIR with SPIR-V dependencies info"),
cl::Optional, cl::init(false));
char llvm::SPIRVModuleAnalysis::ID = 0;
namespace llvm {
void initializeSPIRVModuleAnalysisPass(PassRegistry &);
}
INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
true)
static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
unsigned DefaultVal = 0) {
if (MdNode && OpIndex < MdNode->getNumOperands()) {
const auto &Op = MdNode->getOperand(OpIndex);
return mdconst::extract<ConstantInt>(Op)->getZExtValue();
}
return DefaultVal;
}
void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
MAI.MaxID = 0;
for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
MAI.MS[i].clear();
MAI.RegisterAliasTable.clear();
MAI.InstrsToDelete.clear();
MAI.FuncNameMap.clear();
MAI.GlobalVarList.clear();
MAI.ExtInstSetMap.clear();
if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
auto MemMD = MemModel->getOperand(0);
MAI.Addr = static_cast<SPIRV::AddressingModel>(getMetadataUInt(MemMD, 0));
MAI.Mem = static_cast<SPIRV::MemoryModel>(getMetadataUInt(MemMD, 1));
} else {
MAI.Mem = SPIRV::MemoryModel::OpenCL;
unsigned PtrSize = ST->getPointerSize();
MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
: PtrSize == 64 ? SPIRV::AddressingModel::Physical64
: SPIRV::AddressingModel::Logical;
}
if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
auto VersionMD = VerNode->getOperand(0);
unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
unsigned MinorNum = getMetadataUInt(VersionMD, 1);
unsigned RevNum = getMetadataUInt(VersionMD, 2);
MAI.SrcLangVersion = (MajorNum * 100 + MinorNum) * 1000 + RevNum;
} else {
MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
MAI.SrcLangVersion = 0;
}
if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
MDNode *MD = ExtNode->getOperand(I);
if (!MD || MD->getNumOperands() == 0)
continue;
for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
}
}
MAI.ExtInstSetMap[static_cast<unsigned>(SPIRV::InstructionSet::OpenCL_std)] =
Register::index2VirtReg(MAI.getNextID());
}
static void collectDefInstr(Register Reg, const MachineFunction *MF,
SPIRV::ModuleAnalysisInfo *MAI,
SPIRV::ModuleSectionType MSType,
bool DoInsert = true) {
assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
assert(MI && "There should be an instruction that defines the register");
MAI->setSkipEmission(MI);
if (DoInsert)
MAI->MS[MSType].push_back(MI);
}
void SPIRVModuleAnalysis::collectGlobalEntities(
const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
SPIRV::ModuleSectionType MSType,
std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
bool UsePreOrder = false) {
DenseSet<const SPIRV::DTSortableEntry *> Visited;
for (const auto *E : DepsGraph) {
std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
&RecHoistUtil](const SPIRV::DTSortableEntry *E) {
if (Visited.count(E) || !Pred(E))
return;
Visited.insert(E);
if (!UsePreOrder)
for (auto *S : E->getDeps())
RecHoistUtil(S);
Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
bool IsFirst = true;
for (auto &U : *E) {
const MachineFunction *MF = U.first;
Register Reg = U.second;
MAI.setRegisterAlias(MF, Reg, GlobalReg);
if (!MF->getRegInfo().getUniqueVRegDef(Reg))
continue;
collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
IsFirst = false;
if (E->getIsGV())
MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
}
if (UsePreOrder)
for (auto *S : E->getDeps())
RecHoistUtil(S);
};
RecHoistUtil(E);
}
}
void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
std::vector<SPIRV::DTSortableEntry *> DepsGraph;
GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);
collectGlobalEntities(
DepsGraph, SPIRV::MB_TypeConstVars,
[](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
collectGlobalEntities(
DepsGraph, SPIRV::MB_ExtFuncDecls,
[](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
}
static bool findSameInstrInMS(const MachineInstr &A,
SPIRV::ModuleSectionType MSType,
SPIRV::ModuleAnalysisInfo &MAI,
unsigned StartOpIndex = 0) {
for (const auto *B : MAI.MS[MSType]) {
const unsigned NumAOps = A.getNumOperands();
if (NumAOps != B->getNumOperands() || A.getNumDefs() != B->getNumDefs())
continue;
bool AllOpsMatch = true;
for (unsigned i = StartOpIndex; i < NumAOps && AllOpsMatch; ++i) {
if (A.getOperand(i).isReg() && B->getOperand(i).isReg()) {
Register RegA = A.getOperand(i).getReg();
Register RegB = B->getOperand(i).getReg();
AllOpsMatch = MAI.getRegisterAlias(A.getMF(), RegA) ==
MAI.getRegisterAlias(B->getMF(), RegB);
} else {
AllOpsMatch = A.getOperand(i).isIdenticalTo(B->getOperand(i));
}
}
if (AllOpsMatch)
return true;
}
return false;
}
void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
const Function &F) {
if (MI.getOpcode() == SPIRV::OpDecorate) {
auto Dec = MI.getOperand(1).getImm();
if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
std::string Name = getStringImm(MI, 2);
Register Target = MI.getOperand(0).getReg();
MAI.FuncNameMap[Name] = MAI.getRegisterAlias(MI.getMF(), Target);
}
}
} else if (MI.getOpcode() == SPIRV::OpFunction) {
Register Reg = MI.defs().begin()->getReg();
Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
assert(GlobalReg.isValid());
MAI.FuncNameMap[F.getGlobalIdentifier()] = GlobalReg;
}
}
static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
SPIRV::ModuleSectionType MSType,
bool Append = true) {
MAI.setSkipEmission(&MI);
if (findSameInstrInMS(MI, MSType, MAI))
return; if (Append)
MAI.MS[MSType].push_back(&MI);
else
MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
}
void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
for (MachineBasicBlock &MBB : *MF)
for (MachineInstr &MI : MBB) {
if (MAI.getSkipEmission(&MI))
continue;
const unsigned OpCode = MI.getOpcode();
if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames);
} else if (OpCode == SPIRV::OpEntryPoint) {
collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints);
} else if (TII->isDecorationInstr(MI)) {
collectOtherInstr(MI, MAI, SPIRV::MB_Annotations);
collectFuncNames(MI, *F);
} else if (TII->isConstantInstr(MI)) {
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars);
} else if (OpCode == SPIRV::OpFunction) {
collectFuncNames(MI, *F);
} else if (OpCode == SPIRV::OpTypeForwardPointer) {
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, false);
}
}
}
}
void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
for (MachineOperand &Op : MI.operands()) {
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
if (MAI.hasRegisterAlias(MF, Reg))
continue;
Register NewReg = Register::index2VirtReg(MAI.getNextID());
MAI.setRegisterAlias(MF, Reg, NewReg);
}
if (MI.getOpcode() != SPIRV::OpExtInst)
continue;
auto Set = MI.getOperand(2).getImm();
if (MAI.ExtInstSetMap.find(Set) == MAI.ExtInstSetMap.end())
MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
}
}
}
}
static void processSwitches(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
MachineModuleInfo *MMI) {
DenseSet<Register> SwitchRegs;
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
MachineFunction *MF = MMI->getMachineFunction(*F);
if (!MF)
continue;
for (MachineBasicBlock &MBB : *MF)
for (MachineInstr &MI : MBB) {
if (MAI.getSkipEmission(&MI))
continue;
if (MI.getOpcode() == SPIRV::OpSwitch) {
assert(MI.getOperand(0).isReg());
SwitchRegs.insert(MI.getOperand(0).getReg());
}
if (MI.getOpcode() != SPIRV::OpIEqual || !MI.getOperand(2).isReg() ||
!SwitchRegs.contains(MI.getOperand(2).getReg()))
continue;
Register CmpReg = MI.getOperand(0).getReg();
MachineInstr *CBr = MI.getNextNode();
assert(CBr && CBr->getOpcode() == SPIRV::OpBranchConditional &&
CBr->getOperand(0).isReg() &&
CBr->getOperand(0).getReg() == CmpReg);
MAI.setSkipEmission(&MI);
MAI.setSkipEmission(CBr);
if (&MBB.front() == &MI && &MBB.back() == CBr)
MAI.MBBsToSkip.insert(&MBB);
}
}
}
struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.addRequired<MachineModuleInfoWrapperPass>();
}
bool SPIRVModuleAnalysis::runOnModule(Module &M) {
SPIRVTargetMachine &TM =
getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
ST = TM.getSubtargetImpl();
GR = ST->getSPIRVGlobalRegistry();
TII = ST->getInstrInfo();
MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
setBaseInfo(M);
processSwitches(M, MAI, MMI);
processDefInstrs(M);
numberRegistersGlobally(M);
processOtherInstrs(M);
return false;
}