#include "llvm/CodeGen/Analysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
unsigned llvm::ComputeLinearIndex(Type *Ty,
const unsigned *Indices,
const unsigned *IndicesEnd,
unsigned CurIndex) {
if (Indices && Indices == IndicesEnd)
return CurIndex;
if (StructType *STy = dyn_cast<StructType>(Ty)) {
for (auto I : llvm::enumerate(STy->elements())) {
Type *ET = I.value();
if (Indices && *Indices == I.index())
return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex);
CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex);
}
assert(!Indices && "Unexpected out of bound");
return CurIndex;
}
else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Type *EltTy = ATy->getElementType();
unsigned NumElts = ATy->getNumElements();
unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
if (Indices) {
assert(*Indices < NumElts && "Unexpected out of bound");
CurIndex += EltLinearOffset* *Indices;
return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
}
CurIndex += EltLinearOffset*NumElts;
return CurIndex;
}
return CurIndex + 1;
}
void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<EVT> *MemVTs,
SmallVectorImpl<uint64_t> *Offsets,
uint64_t StartingOffset) {
if (StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
for (StructType::element_iterator EB = STy->element_begin(),
EI = EB,
EE = STy->element_end();
EI != EE; ++EI) {
uint64_t EltOffset = SL ? SL->getElementOffset(EI - EB) : 0;
ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
StartingOffset + EltOffset);
}
return;
}
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Type *EltTy = ATy->getElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
StartingOffset + i * EltSize);
return;
}
if (Ty->isVoidTy())
return;
ValueVTs.push_back(TLI.getValueType(DL, Ty));
if (MemVTs)
MemVTs->push_back(TLI.getMemValueType(DL, Ty));
if (Offsets)
Offsets->push_back(StartingOffset);
}
void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<uint64_t> *Offsets,
uint64_t StartingOffset) {
return ComputeValueVTs(TLI, DL, Ty, ValueVTs, nullptr, Offsets,
StartingOffset);
}
void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
SmallVectorImpl<LLT> &ValueTys,
SmallVectorImpl<uint64_t> *Offsets,
uint64_t StartingOffset) {
if (StructType *STy = dyn_cast<StructType>(&Ty)) {
const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0;
computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
StartingOffset + EltOffset);
}
return;
}
if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
Type *EltTy = ATy->getElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
StartingOffset + i * EltSize);
return;
}
if (Ty.isVoidTy())
return;
ValueTys.push_back(getLLTForType(Ty, DL));
if (Offsets != nullptr)
Offsets->push_back(StartingOffset * 8);
}
GlobalValue *llvm::ExtractTypeInfo(Value *V) {
V = V->stripPointerCasts();
GlobalValue *GV = dyn_cast<GlobalValue>(V);
GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
if (Var && Var->getName() == "llvm.eh.catch.all.value") {
assert(Var->hasInitializer() &&
"The EH catch-all value must have an initializer");
Value *Init = Var->getInitializer();
GV = dyn_cast<GlobalValue>(Init);
if (!GV) V = cast<ConstantPointerNull>(Init);
}
assert((GV || isa<ConstantPointerNull>(V)) &&
"TypeInfo must be a global variable or NULL");
return GV;
}
ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
switch (Pred) {
case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
case FCmpInst::FCMP_OGT: return ISD::SETOGT;
case FCmpInst::FCMP_OGE: return ISD::SETOGE;
case FCmpInst::FCMP_OLT: return ISD::SETOLT;
case FCmpInst::FCMP_OLE: return ISD::SETOLE;
case FCmpInst::FCMP_ONE: return ISD::SETONE;
case FCmpInst::FCMP_ORD: return ISD::SETO;
case FCmpInst::FCMP_UNO: return ISD::SETUO;
case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
case FCmpInst::FCMP_UGT: return ISD::SETUGT;
case FCmpInst::FCMP_UGE: return ISD::SETUGE;
case FCmpInst::FCMP_ULT: return ISD::SETULT;
case FCmpInst::FCMP_ULE: return ISD::SETULE;
case FCmpInst::FCMP_UNE: return ISD::SETUNE;
case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
default: llvm_unreachable("Invalid FCmp predicate opcode!");
}
}
ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
switch (CC) {
case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
default: return CC;
}
}
ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
switch (Pred) {
case ICmpInst::ICMP_EQ: return ISD::SETEQ;
case ICmpInst::ICMP_NE: return ISD::SETNE;
case ICmpInst::ICMP_SLE: return ISD::SETLE;
case ICmpInst::ICMP_ULE: return ISD::SETULE;
case ICmpInst::ICMP_SGE: return ISD::SETGE;
case ICmpInst::ICMP_UGE: return ISD::SETUGE;
case ICmpInst::ICMP_SLT: return ISD::SETLT;
case ICmpInst::ICMP_ULT: return ISD::SETULT;
case ICmpInst::ICMP_SGT: return ISD::SETGT;
case ICmpInst::ICMP_UGT: return ISD::SETUGT;
default:
llvm_unreachable("Invalid ICmp predicate opcode!");
}
}
ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) {
switch (Pred) {
case ISD::SETEQ:
return ICmpInst::ICMP_EQ;
case ISD::SETNE:
return ICmpInst::ICMP_NE;
case ISD::SETLE:
return ICmpInst::ICMP_SLE;
case ISD::SETULE:
return ICmpInst::ICMP_ULE;
case ISD::SETGE:
return ICmpInst::ICMP_SGE;
case ISD::SETUGE:
return ICmpInst::ICMP_UGE;
case ISD::SETLT:
return ICmpInst::ICMP_SLT;
case ISD::SETULT:
return ICmpInst::ICMP_ULT;
case ISD::SETGT:
return ICmpInst::ICMP_SGT;
case ISD::SETUGT:
return ICmpInst::ICMP_UGT;
default:
llvm_unreachable("Invalid ISD integer condition code!");
}
}
static bool isNoopBitcast(Type *T1, Type *T2,
const TargetLoweringBase& TLI) {
return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
(isa<VectorType>(T1) && isa<VectorType>(T2) &&
TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
}
static const Value *getNoopInput(const Value *V,
SmallVectorImpl<unsigned> &ValLoc,
unsigned &DataBits,
const TargetLoweringBase &TLI,
const DataLayout &DL) {
while (true) {
const Instruction *I = dyn_cast<Instruction>(V);
if (!I || I->getNumOperands() == 0) return V;
const Value *NoopInput = nullptr;
Value *Op = I->getOperand(0);
if (isa<BitCastInst>(I)) {
if (isNoopBitcast(Op->getType(), I->getType(), TLI))
NoopInput = Op;
} else if (isa<GetElementPtrInst>(I)) {
if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
NoopInput = Op;
} else if (isa<IntToPtrInst>(I)) {
if (!isa<VectorType>(I->getType()) &&
DL.getPointerSizeInBits() ==
cast<IntegerType>(Op->getType())->getBitWidth())
NoopInput = Op;
} else if (isa<PtrToIntInst>(I)) {
if (!isa<VectorType>(I->getType()) &&
DL.getPointerSizeInBits() ==
cast<IntegerType>(I->getType())->getBitWidth())
NoopInput = Op;
} else if (isa<TruncInst>(I) &&
TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
DataBits = std::min((uint64_t)DataBits,
I->getType()->getPrimitiveSizeInBits().getFixedSize());
NoopInput = Op;
} else if (auto *CB = dyn_cast<CallBase>(I)) {
const Value *ReturnedOp = CB->getReturnedArgOperand();
if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
NoopInput = ReturnedOp;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
ArrayRef<unsigned> InsertLoc = IVI->getIndices();
if (ValLoc.size() >= InsertLoc.size() &&
std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
ValLoc.resize(ValLoc.size() - InsertLoc.size());
NoopInput = IVI->getInsertedValueOperand();
} else {
NoopInput = Op;
}
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
NoopInput = Op;
}
if (!NoopInput)
return V;
V = NoopInput;
}
}
static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
SmallVectorImpl<unsigned> &RetIndices,
SmallVectorImpl<unsigned> &CallIndices,
bool AllowDifferingSizes,
const TargetLoweringBase &TLI,
const DataLayout &DL) {
unsigned BitsRequired = UINT_MAX;
RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
if (isa<UndefValue>(RetVal))
return true;
unsigned BitsProvided = UINT_MAX;
CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
if (CallVal != RetVal || CallIndices != RetIndices)
return false;
if (BitsProvided < BitsRequired ||
(!AllowDifferingSizes && BitsProvided != BitsRequired))
return false;
return true;
}
static bool indexReallyValid(Type *T, unsigned Idx) {
if (ArrayType *AT = dyn_cast<ArrayType>(T))
return Idx < AT->getNumElements();
return Idx < cast<StructType>(T)->getNumElements();
}
static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
SmallVectorImpl<unsigned> &Path) {
while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
Path.pop_back();
SubTypes.pop_back();
}
if (Path.empty())
return false;
++Path.back();
Type *DeeperType =
ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
while (DeeperType->isAggregateType()) {
if (!indexReallyValid(DeeperType, 0))
return true;
SubTypes.push_back(DeeperType);
Path.push_back(0);
DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
}
return true;
}
static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
SmallVectorImpl<unsigned> &Path) {
while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
SubTypes.push_back(Next);
Path.push_back(0);
Next = FirstInner;
}
if (Path.empty())
return true;
while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
->isAggregateType()) {
if (!advanceToNextLeafType(SubTypes, Path))
return false;
}
return true;
}
static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
SmallVectorImpl<unsigned> &Path) {
do {
if (!advanceToNextLeafType(SubTypes, Path))
return false;
assert(!Path.empty() && "found a leaf but didn't set the path?");
} while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
->isAggregateType());
return true;
}
bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) {
const BasicBlock *ExitBB = Call.getParent();
const Instruction *Term = ExitBB->getTerminator();
const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
if (!Ret && ((!TM.Options.GuaranteedTailCallOpt &&
Call.getCallingConv() != CallingConv::Tail &&
Call.getCallingConv() != CallingConv::SwiftTail) ||
!isa<UnreachableInst>(Term)))
return false;
for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
if (&*BBI == &Call)
break;
if (BBI->isDebugOrPseudoInst())
continue;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
II->getIntrinsicID() == Intrinsic::assume ||
II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl)
continue;
if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
!isSafeToSpeculativelyExecute(&*BBI))
return false;
}
const Function *F = ExitBB->getParent();
return returnTypeIsEligibleForTailCall(
F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
}
bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
const ReturnInst *Ret,
const TargetLoweringBase &TLI,
bool *AllowDifferingSizes) {
bool DummyADS;
bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
ADS = true;
AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs());
AttrBuilder CalleeAttrs(F->getContext(),
cast<CallInst>(I)->getAttributes().getRetAttrs());
for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
Attribute::DereferenceableOrNull, Attribute::NoAlias,
Attribute::NonNull, Attribute::NoUndef}) {
CallerAttrs.removeAttribute(Attr);
CalleeAttrs.removeAttribute(Attr);
}
if (CallerAttrs.contains(Attribute::ZExt)) {
if (!CalleeAttrs.contains(Attribute::ZExt))
return false;
ADS = false;
CallerAttrs.removeAttribute(Attribute::ZExt);
CalleeAttrs.removeAttribute(Attribute::ZExt);
} else if (CallerAttrs.contains(Attribute::SExt)) {
if (!CalleeAttrs.contains(Attribute::SExt))
return false;
ADS = false;
CallerAttrs.removeAttribute(Attribute::SExt);
CalleeAttrs.removeAttribute(Attribute::SExt);
}
if (I->use_empty()) {
CalleeAttrs.removeAttribute(Attribute::SExt);
CalleeAttrs.removeAttribute(Attribute::ZExt);
}
return CallerAttrs == CalleeAttrs;
}
static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
assert(A && B && "Expected non-null inputs!");
auto *BitCastIn = dyn_cast<BitCastInst>(B);
if (!BitCastIn)
return false;
if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
return false;
return A == BitCastIn->getOperand(0);
}
bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
const Instruction *I,
const ReturnInst *Ret,
const TargetLoweringBase &TLI) {
if (!Ret || Ret->getNumOperands() == 0) return true;
if (isa<UndefValue>(Ret->getOperand(0))) return true;
bool AllowDifferingSizes;
if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
return false;
const Value *RetVal = Ret->getOperand(0), *CallVal = I;
const CallInst *Call = cast<CallInst>(I);
if (Function *F = Call->getCalledFunction()) {
Intrinsic::ID IID = F->getIntrinsicID();
if (((IID == Intrinsic::memcpy &&
TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
(IID == Intrinsic::memmove &&
TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
(IID == Intrinsic::memset &&
TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
(RetVal == Call->getArgOperand(0) ||
isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
return true;
}
SmallVector<unsigned, 4> RetPath, CallPath;
SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
if (RetEmpty)
return true;
do {
if (CallEmpty) {
Type *SlotType =
ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
CallVal = UndefValue::get(SlotType);
}
SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(RetPath));
SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(CallPath));
if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
AllowDifferingSizes, TLI,
F->getParent()->getDataLayout()))
return false;
CallEmpty = !nextRealType(CallSubTypes, CallPath);
} while(nextRealType(RetSubTypes, RetPath));
return true;
}
static void collectEHScopeMembers(
DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
const MachineBasicBlock *MBB) {
SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
while (!Worklist.empty()) {
const MachineBasicBlock *Visiting = Worklist.pop_back_val();
if (Visiting->isEHPad() && Visiting != MBB)
continue;
auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
if (!P.second) {
assert(P.first->second == EHScope && "MBB is part of two scopes!");
continue;
}
if (Visiting->isEHScopeReturnBlock())
continue;
append_range(Worklist, Visiting->successors());
}
}
DenseMap<const MachineBasicBlock *, int>
llvm::getEHScopeMembership(const MachineFunction &MF) {
DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
if (!MF.hasEHScopes())
return EHScopeMembership;
int EntryBBNumber = MF.front().getNumber();
bool IsSEH = isAsynchronousEHPersonality(
classifyEHPersonality(MF.getFunction().getPersonalityFn()));
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
for (const MachineBasicBlock &MBB : MF) {
if (MBB.isEHScopeEntry()) {
EHScopeBlocks.push_back(&MBB);
} else if (IsSEH && MBB.isEHPad()) {
SEHCatchPads.push_back(&MBB);
} else if (MBB.pred_empty()) {
UnreachableBlocks.push_back(&MBB);
}
MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
continue;
const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
CatchRetSuccessors.push_back(
{Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
}
if (EHScopeBlocks.empty())
return EHScopeMembership;
collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
for (const MachineBasicBlock *MBB : UnreachableBlocks)
collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
for (const MachineBasicBlock *MBB : EHScopeBlocks)
collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
for (const MachineBasicBlock *MBB : SEHCatchPads)
collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
CatchRetSuccessors)
collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
CatchRetPair.first);
return EHScopeMembership;
}