; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 -fp-contract=fast | FileCheck %s --check-prefix=FAST ; RUN: llc < %s -march=nvptx64 -mcpu=sm_30 | FileCheck %s --check-prefix=DEFAULT ; RUN: %if ptxas %{ llc < %s -march=nvptx64 -mcpu=sm_20 -fp-contract=fast | %ptxas-verify %} ; RUN: %if ptxas %{ llc < %s -march=nvptx64 -mcpu=sm_30 | %ptxas-verify %if !ptxas-11.0 %{-arch=sm_30%} %} target triple = "nvptx64-unknown-cuda" ;; Make sure we are generating proper instruction sequences for fused ops ;; If fusion is allowed, we try to form fma.rn at the PTX level, and emit ;; add.f32 otherwise. Without an explicit rounding mode on add.f32, ptxas ;; is free to fuse with a multiply if it is able. If fusion is not allowed, ;; we do not form fma.rn at the PTX level and explicitly generate add.rn ;; for all adds to prevent ptxas from fusion the ops. ;; FAST-LABEL: @t0 ;; DEFAULT-LABEL: @t0 define float @t0(float %a, float %b, float %c) { ;; FAST: fma.rn.f32 ;; DEFAULT: mul.rn.f32 ;; DEFAULT: add.rn.f32 %v0 = fmul float %a, %b %v1 = fadd float %v0, %c ret float %v1 } ;; FAST-LABEL: @t1 ;; DEFAULT-LABEL: @t1 define float @t1(float %a, float %b) { ;; We cannot form an fma here, but make sure we explicitly emit add.rn.f32 ;; to prevent ptxas from fusing this with anything else. ;; FAST: add.f32 ;; DEFAULT: add.rn.f32 %v1 = fadd float %a, %b ret float %v1 }