; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -indvars -dce -S -indvars-predicate-loops=0 | FileCheck %s ; Provide legal integer types. target datalayout = "n8:16:32:64" @A = external global i32 ;; Convert a pre-increment check on the latch into a post increment check define i32 @pre_to_post_add() { ; CHECK-LABEL: @pre_to_post_add( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[I_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i32 [[I]], 1 ; CHECK-NEXT: store i32 [[I]], i32* @A, align 4 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[I_NEXT]], 1001 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[LOOPEXIT:%.*]] ; CHECK: loopexit: ; CHECK-NEXT: ret i32 1000 ; entry: br label %loop loop: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] %i.next = add i32 %i, 1 store i32 %i, i32* @A %c = icmp slt i32 %i, 1000 br i1 %c, label %loop, label %loopexit loopexit: ret i32 %i } ; TODO: we should be able to convert the subtract into a post-decrement check define i32 @pre_to_post_sub() { ; CHECK-LABEL: @pre_to_post_sub( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ 1000, [[ENTRY:%.*]] ], [ [[I_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[I_NEXT]] = sub nsw i32 [[I]], 1 ; CHECK-NEXT: store i32 [[I]], i32* @A, align 4 ; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 [[I]], 0 ; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[LOOPEXIT:%.*]] ; CHECK: loopexit: ; CHECK-NEXT: ret i32 0 ; entry: br label %loop loop: %i = phi i32 [ 1000, %entry ], [ %i.next, %loop ] %i.next = sub i32 %i, 1 store i32 %i, i32* @A %c = icmp sgt i32 %i, 0 br i1 %c, label %loop, label %loopexit loopexit: ret i32 %i } ; LFTR should eliminate the need for the computation of i*i completely. It ; is only used to compute the exit value. define i32 @quadratic_slt() { ; CHECK-LABEL: @quadratic_slt( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ 7, [[ENTRY:%.*]] ], [ [[I_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i32 [[I]], 1 ; CHECK-NEXT: store i32 [[I]], i32* @A, align 4 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[I_NEXT]], 33 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[LOOPEXIT:%.*]] ; CHECK: loopexit: ; CHECK-NEXT: ret i32 32 ; entry: br label %loop loop: %i = phi i32 [ 7, %entry ], [ %i.next, %loop ] %i.next = add i32 %i, 1 store i32 %i, i32* @A %i2 = mul i32 %i, %i %c = icmp slt i32 %i2, 1000 br i1 %c, label %loop, label %loopexit loopexit: ret i32 %i } ; Same as previous but with sle test define i32 @quadratic_sle() { ; CHECK-LABEL: @quadratic_sle( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ 7, [[ENTRY:%.*]] ], [ [[I_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i32 [[I]], 1 ; CHECK-NEXT: store i32 [[I]], i32* @A, align 4 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[I_NEXT]], 33 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[LOOPEXIT:%.*]] ; CHECK: loopexit: ; CHECK-NEXT: ret i32 32 ; entry: br label %loop loop: %i = phi i32 [ 7, %entry ], [ %i.next, %loop ] %i.next = add i32 %i, 1 store i32 %i, i32* @A %i2 = mul i32 %i, %i %c = icmp sle i32 %i2, 1000 br i1 %c, label %loop, label %loopexit loopexit: ret i32 %i } ; Same as previous but with ule test define i32 @quadratic_ule() { ; CHECK-LABEL: @quadratic_ule( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ 7, [[ENTRY:%.*]] ], [ [[I_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i32 [[I]], 1 ; CHECK-NEXT: store i32 [[I]], i32* @A, align 4 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[I_NEXT]], 33 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[LOOPEXIT:%.*]] ; CHECK: loopexit: ; CHECK-NEXT: ret i32 32 ; entry: br label %loop loop: %i = phi i32 [ 7, %entry ], [ %i.next, %loop ] %i.next = add i32 %i, 1 store i32 %i, i32* @A %i2 = mul i32 %i, %i %c = icmp ule i32 %i2, 1000 br i1 %c, label %loop, label %loopexit loopexit: ret i32 %i } define i32 @quadratic_sgt_loopdec() { ; CHECK-LABEL: @quadratic_sgt_loopdec( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ 10, [[ENTRY:%.*]] ], [ [[I_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[I_NEXT]] = call i32 @llvm.loop.decrement.reg.i32(i32 [[I]], i32 1) ; CHECK-NEXT: store i32 [[I]], i32* @A, align 4 ; CHECK-NEXT: [[I2:%.*]] = mul i32 [[I]], [[I]] ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[I2]], 0 ; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[LOOPEXIT:%.*]] ; CHECK: loopexit: ; CHECK-NEXT: ret i32 0 ; entry: br label %loop loop: %i = phi i32 [ 10, %entry ], [ %i.next, %loop ] %i.next = call i32 @llvm.loop.decrement.reg.i32(i32 %i, i32 1) store i32 %i, i32* @A %i2 = mul i32 %i, %i %c = icmp sgt i32 %i2, 0 br i1 %c, label %loop, label %loopexit loopexit: ret i32 %i } @data = common global [240 x i8] zeroinitializer, align 16 define void @test_zext(i8* %a) #0 { ; CHECK-LABEL: @test_zext( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[P_0:%.*]] = phi i8* [ getelementptr inbounds ([240 x i8], [240 x i8]* @data, i64 0, i64 0), [[ENTRY:%.*]] ], [ [[T3:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[DOT0:%.*]] = phi i8* [ [[A:%.*]], [[ENTRY]] ], [ [[T:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[T]] = getelementptr inbounds i8, i8* [[DOT0]], i64 1 ; CHECK-NEXT: [[T2:%.*]] = load i8, i8* [[DOT0]], align 1 ; CHECK-NEXT: [[T3]] = getelementptr inbounds i8, i8* [[P_0]], i64 1 ; CHECK-NEXT: store i8 [[T2]], i8* [[P_0]], align 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i8* [[P_0]], getelementptr inbounds ([240 x i8], [240 x i8]* @data, i64 0, i64 239) ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %i.0 = phi i8 [ 0, %entry ], [ %t4, %loop ] %p.0 = phi i8* [ getelementptr inbounds ([240 x i8], [240 x i8]* @data, i64 0, i64 0), %entry ], [ %t3, %loop ] %.0 = phi i8* [ %a, %entry ], [ %t, %loop ] %t = getelementptr inbounds i8, i8* %.0, i64 1 %t2 = load i8, i8* %.0, align 1 %t3 = getelementptr inbounds i8, i8* %p.0, i64 1 store i8 %t2, i8* %p.0, align 1 %t4 = add i8 %i.0, 1 %t5 = icmp ult i8 %t4, -16 br i1 %t5, label %loop, label %exit exit: ret void } ; It is okay to do LFTR on this loop even though the trip count is a ; division because in this case the division can be optimized to a ; shift. define void @test_udiv_as_shift(i8* %a, i8 %n) nounwind uwtable ssp { ; CHECK-LABEL: @test_udiv_as_shift( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[E:%.*]] = icmp sgt i8 [[N:%.*]], 3 ; CHECK-NEXT: br i1 [[E]], label [[LOOP_PREHEADER:%.*]], label [[EXIT:%.*]] ; CHECK: loop.preheader: ; CHECK-NEXT: [[TMP0:%.*]] = add i8 [[N]], 3 ; CHECK-NEXT: [[TMP1:%.*]] = lshr i8 [[TMP0]], 2 ; CHECK-NEXT: [[TMP2:%.*]] = add nuw nsw i8 [[TMP1]], 1 ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[I1:%.*]] = phi i8 [ [[I1_INC:%.*]], [[LOOP]] ], [ 0, [[LOOP_PREHEADER]] ] ; CHECK-NEXT: [[I1_INC]] = add nuw nsw i8 [[I1]], 1 ; CHECK-NEXT: store volatile i8 0, i8* [[A:%.*]], align 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i8 [[I1_INC]], [[TMP2]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT_LOOPEXIT:%.*]] ; CHECK: exit.loopexit: ; CHECK-NEXT: br label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: %e = icmp sgt i8 %n, 3 br i1 %e, label %loop, label %exit loop: %i = phi i8 [ 0, %entry ], [ %i.inc, %loop ] %i1 = phi i8 [ 0, %entry ], [ %i1.inc, %loop ] %i.inc = add nsw i8 %i, 4 %i1.inc = add i8 %i1, 1 store volatile i8 0, i8* %a %c = icmp slt i8 %i, %n br i1 %c, label %loop, label %exit exit: ret void } ; Don't RAUW the loop's original comparison instruction if it has other uses ; which aren't dominated by the new comparison instruction (which we insert ; at the branch user). define void @use_before_branch() { ; CHECK-LABEL: @use_before_branch( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOPENTRY_0:%.*]] ; CHECK: loopentry.0: ; CHECK-NEXT: [[MB_Y_0:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[T152:%.*]], [[LOOPENTRY_1:%.*]] ] ; CHECK-NEXT: [[T14:%.*]] = icmp ule i32 [[MB_Y_0]], 3 ; CHECK-NEXT: br i1 [[T14]], label [[LOOPENTRY_1]], label [[LOOPEXIT_0:%.*]] ; CHECK: loopentry.1: ; CHECK-NEXT: [[T152]] = add nuw nsw i32 [[MB_Y_0]], 2 ; CHECK-NEXT: br label [[LOOPENTRY_0]] ; CHECK: loopexit.0: ; CHECK-NEXT: unreachable ; entry: br label %loopentry.0 loopentry.0: %mb_y.0 = phi i32 [ 0, %entry ], [ %t152, %loopentry.1 ] %t14 = icmp sle i32 %mb_y.0, 3 %t15 = zext i1 %t14 to i32 br i1 %t14, label %loopentry.1, label %loopexit.0 loopentry.1: %t152 = add i32 %mb_y.0, 2 br label %loopentry.0 loopexit.0: ; preds = %loopentry.0 unreachable } @.str3 = private constant [6 x i8] c"%lld\0A\00", align 1 declare i32 @printf(i8* noalias nocapture, ...) nounwind ; PR13371: indvars pass incorrectly substitutes 'undef' values ; ; LFTR should not user %undef as the loop counter. define i64 @no_undef_counter() nounwind { ; CHECK-LABEL: @no_undef_counter( ; CHECK-NEXT: func_start: ; CHECK-NEXT: br label [[BLOCK9:%.*]] ; CHECK: block9: ; CHECK-NEXT: [[UNDEF:%.*]] = phi i64 [ [[NEXT_UNDEF:%.*]], [[BLOCK9]] ], [ undef, [[FUNC_START:%.*]] ] ; CHECK-NEXT: [[ITER:%.*]] = phi i64 [ [[NEXT_ITER:%.*]], [[BLOCK9]] ], [ 1, [[FUNC_START]] ] ; CHECK-NEXT: [[NEXT_ITER]] = add nuw nsw i64 [[ITER]], 1 ; CHECK-NEXT: [[TMP0:%.*]] = tail call i32 (i8*, ...) @printf(i8* noalias nocapture getelementptr inbounds ([6 x i8], [6 x i8]* @.str3, i64 0, i64 0), i64 [[NEXT_ITER]], i64 [[UNDEF]]) ; CHECK-NEXT: [[NEXT_UNDEF]] = add nsw i64 [[UNDEF]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[NEXT_ITER]], 100 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[BLOCK9]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret i64 0 ; func_start: br label %block9 block9: ; preds = %block9,%func_start %undef = phi i64 [ %next_undef, %block9 ], [ undef, %func_start ] %iter = phi i64 [ %next_iter, %block9 ], [ 1, %func_start ] %next_iter = add nsw i64 %iter, 1 %0 = tail call i32 (i8*, ...) @printf(i8* noalias nocapture getelementptr inbounds ([6 x i8], [6 x i8]* @.str3, i64 0, i64 0), i64 %next_iter, i64 %undef) %next_undef = add nsw i64 %undef, 1 %_tmp_3 = icmp slt i64 %next_iter, 100 br i1 %_tmp_3, label %block9, label %exit exit: ; preds = %block9 ret i64 0 } define void @extend_const() #0 { ; CHECK-LABEL: @extend_const( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i32 [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: call void @bar(i32 [[INDVARS_IV]]) #[[ATTR2:[0-9]+]] ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i32 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[INDVARS_IV_NEXT]], 512 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_BODY]], label [[FOR_END:%.*]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; entry: br label %for.body for.body: ; preds = %entry, %for.body %i.01 = phi i16 [ 0, %entry ], [ %inc, %for.body ] %conv2 = sext i16 %i.01 to i32 call void @bar(i32 %conv2) #1 %inc = add i16 %i.01, 1 %cmp = icmp slt i16 %inc, 512 br i1 %cmp, label %for.body, label %for.end for.end: ; preds = %for.body ret void } ; Check that post-incrementing the backedge taken count does not overflow. define i32 @extend_const_postinc() #0 { ; CHECK-LABEL: @extend_const_postinc( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[DO_BODY:%.*]] ; CHECK: do.body: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i32 [ [[INDVARS_IV_NEXT:%.*]], [[DO_BODY]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: call void @bar(i32 [[INDVARS_IV]]) #[[ATTR2]] ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[INDVARS_IV]], 255 ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i32 [[INDVARS_IV]], 1 ; CHECK-NEXT: br i1 [[CMP]], label [[DO_END:%.*]], label [[DO_BODY]] ; CHECK: do.end: ; CHECK-NEXT: ret i32 0 ; entry: br label %do.body do.body: ; preds = %do.body, %entry %first.0 = phi i8 [ 0, %entry ], [ %inc, %do.body ] %conv = zext i8 %first.0 to i32 call void @bar(i32 %conv) #1 %inc = add i8 %first.0, 1 %cmp = icmp eq i8 %first.0, -1 br i1 %cmp, label %do.end, label %do.body do.end: ; preds = %do.body ret i32 0 } declare void @bar(i32) attributes #0 = { nounwind uwtable } attributes #1 = { nounwind } ; With the given initial value for IV, it is not legal to widen ; trip count to IV size define void @wide_trip_count_test1(float* %autoc, ; CHECK-LABEL: @wide_trip_count_test1( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[SUB:%.*]] = sub i32 [[DATA_LEN:%.*]], [[SAMPLE:%.*]] ; CHECK-NEXT: [[CMP4:%.*]] = icmp eq i32 [[DATA_LEN]], [[SAMPLE]] ; CHECK-NEXT: br i1 [[CMP4]], label [[FOR_END:%.*]], label [[FOR_BODY_PREHEADER:%.*]] ; CHECK: for.body.preheader: ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ], [ 68719476736, [[FOR_BODY_PREHEADER]] ] ; CHECK-NEXT: [[TEMP:%.*]] = trunc i64 [[INDVARS_IV]] to i32 ; CHECK-NEXT: [[ADD:%.*]] = add i32 [[TEMP]], [[SAMPLE]] ; CHECK-NEXT: [[IDXPROM:%.*]] = zext i32 [[ADD]] to i64 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds float, float* [[DATA:%.*]], i64 [[IDXPROM]] ; CHECK-NEXT: [[TEMP1:%.*]] = load float, float* [[ARRAYIDX]], align 4 ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[TEMP1]], [[D:%.*]] ; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds float, float* [[AUTOC:%.*]], i64 [[INDVARS_IV]] ; CHECK-NEXT: [[TEMP2:%.*]] = load float, float* [[ARRAYIDX2]], align 4 ; CHECK-NEXT: [[ADD3:%.*]] = fadd float [[TEMP2]], [[MUL]] ; CHECK-NEXT: store float [[ADD3]], float* [[ARRAYIDX2]], align 4 ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[LFTR_WIDEIV:%.*]] = trunc i64 [[INDVARS_IV_NEXT]] to i32 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[LFTR_WIDEIV]], [[SUB]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; float* %data, float %d, i32 %data_len, i32 %sample) nounwind { entry: %sub = sub i32 %data_len, %sample %cmp4 = icmp eq i32 %data_len, %sample br i1 %cmp4, label %for.end, label %for.body for.body: ; preds = %entry, %for.body %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 68719476736, %entry ] %temp = trunc i64 %indvars.iv to i32 %add = add i32 %temp, %sample %idxprom = zext i32 %add to i64 %arrayidx = getelementptr inbounds float, float* %data, i64 %idxprom %temp1 = load float, float* %arrayidx, align 4 %mul = fmul float %temp1, %d %arrayidx2 = getelementptr inbounds float, float* %autoc, i64 %indvars.iv %temp2 = load float, float* %arrayidx2, align 4 %add3 = fadd float %temp2, %mul store float %add3, float* %arrayidx2, align 4 %indvars.iv.next = add i64 %indvars.iv, 1 %temp3 = trunc i64 %indvars.iv.next to i32 %cmp = icmp ult i32 %temp3, %sub br i1 %cmp, label %for.body, label %for.end for.end: ; preds = %for.body, %entry ret void } ; Trip count should be widened and LFTR should canonicalize the condition define float @wide_trip_count_test2(float* %a, ; CHECK-LABEL: @wide_trip_count_test2( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP5:%.*]] = icmp ugt i32 [[M:%.*]], 500 ; CHECK-NEXT: br i1 [[CMP5]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_END:%.*]] ; CHECK: for.body.preheader: ; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[M]] to i64 ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ], [ 500, [[FOR_BODY_PREHEADER]] ] ; CHECK-NEXT: [[SUM_07:%.*]] = phi float [ [[ADD:%.*]], [[FOR_BODY]] ], [ 0.000000e+00, [[FOR_BODY_PREHEADER]] ] ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds float, float* [[B:%.*]], i64 [[INDVARS_IV]] ; CHECK-NEXT: [[TEMP:%.*]] = load float, float* [[ARRAYIDX]], align 4 ; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds float, float* [[A:%.*]], i64 [[INDVARS_IV]] ; CHECK-NEXT: [[TEMP1:%.*]] = load float, float* [[ARRAYIDX2]], align 4 ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[TEMP]], [[TEMP1]] ; CHECK-NEXT: [[ADD]] = fadd float [[SUM_07]], [[MUL]] ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: [[ADD_LCSSA:%.*]] = phi float [ [[ADD]], [[FOR_BODY]] ] ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: [[SUM_0_LCSSA:%.*]] = phi float [ 0.000000e+00, [[ENTRY:%.*]] ], [ [[ADD_LCSSA]], [[FOR_END_LOOPEXIT]] ] ; CHECK-NEXT: ret float [[SUM_0_LCSSA]] ; float* %b, i32 zeroext %m) local_unnamed_addr #0 { entry: %cmp5 = icmp ugt i32 %m, 500 br i1 %cmp5, label %for.body.preheader, label %for.end for.body.preheader: ; preds = %entry br label %for.body for.body: ; preds = %for.body.preheader, %for.body %sum.07 = phi float [ %add, %for.body ], [ 0.000000e+00, %for.body.preheader ] %i.06 = phi i32 [ %inc, %for.body ], [ 500, %for.body.preheader ] %idxprom = zext i32 %i.06 to i64 %arrayidx = getelementptr inbounds float, float* %b, i64 %idxprom %temp = load float, float* %arrayidx, align 4 %arrayidx2 = getelementptr inbounds float, float* %a, i64 %idxprom %temp1 = load float, float* %arrayidx2, align 4 %mul = fmul float %temp, %temp1 %add = fadd float %sum.07, %mul %inc = add i32 %i.06, 1 %cmp = icmp ult i32 %inc, %m br i1 %cmp, label %for.body, label %for.end.loopexit for.end.loopexit: ; preds = %for.body br label %for.end for.end: ; preds = %for.end.loopexit, %entry %sum.0.lcssa = phi float [ 0.000000e+00, %entry ], [ %add, %for.end.loopexit ] ret float %sum.0.lcssa } ; Trip count should be widened and LFTR should canonicalize the condition define float @wide_trip_count_test3(float* %b, ; CHECK-LABEL: @wide_trip_count_test3( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP5:%.*]] = icmp sgt i32 [[M:%.*]], -10 ; CHECK-NEXT: br i1 [[CMP5]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_END:%.*]] ; CHECK: for.body.preheader: ; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = sext i32 [[M]] to i64 ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ], [ -10, [[FOR_BODY_PREHEADER]] ] ; CHECK-NEXT: [[SUM_07:%.*]] = phi float [ [[ADD1:%.*]], [[FOR_BODY]] ], [ 0.000000e+00, [[FOR_BODY_PREHEADER]] ] ; CHECK-NEXT: [[TMP0:%.*]] = add nsw i64 [[INDVARS_IV]], 20 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds float, float* [[B:%.*]], i64 [[TMP0]] ; CHECK-NEXT: [[TEMP:%.*]] = load float, float* [[ARRAYIDX]], align 4 ; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[INDVARS_IV]] to i32 ; CHECK-NEXT: [[CONV:%.*]] = sitofp i32 [[TMP1]] to float ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[CONV]], [[TEMP]] ; CHECK-NEXT: [[ADD1]] = fadd float [[SUM_07]], [[MUL]] ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nsw i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: [[ADD1_LCSSA:%.*]] = phi float [ [[ADD1]], [[FOR_BODY]] ] ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: [[SUM_0_LCSSA:%.*]] = phi float [ 0.000000e+00, [[ENTRY:%.*]] ], [ [[ADD1_LCSSA]], [[FOR_END_LOOPEXIT]] ] ; CHECK-NEXT: ret float [[SUM_0_LCSSA]] ; i32 signext %m) local_unnamed_addr #0 { entry: %cmp5 = icmp sgt i32 %m, -10 br i1 %cmp5, label %for.body.preheader, label %for.end for.body.preheader: ; preds = %entry br label %for.body for.body: ; preds = %for.body.preheader, %for.body %sum.07 = phi float [ %add1, %for.body ], [ 0.000000e+00, %for.body.preheader ] %i.06 = phi i32 [ %inc, %for.body ], [ -10, %for.body.preheader ] %add = add nsw i32 %i.06, 20 %idxprom = sext i32 %add to i64 %arrayidx = getelementptr inbounds float, float* %b, i64 %idxprom %temp = load float, float* %arrayidx, align 4 %conv = sitofp i32 %i.06 to float %mul = fmul float %conv, %temp %add1 = fadd float %sum.07, %mul %inc = add nsw i32 %i.06, 1 %cmp = icmp slt i32 %inc, %m br i1 %cmp, label %for.body, label %for.end.loopexit for.end.loopexit: ; preds = %for.body br label %for.end for.end: ; preds = %for.end.loopexit, %entry %sum.0.lcssa = phi float [ 0.000000e+00, %entry ], [ %add1, %for.end.loopexit ] ret float %sum.0.lcssa } ; Trip count should be widened and LFTR should canonicalize the condition define float @wide_trip_count_test4(float* %b, ; CHECK-LABEL: @wide_trip_count_test4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP5:%.*]] = icmp sgt i32 [[M:%.*]], 10 ; CHECK-NEXT: br i1 [[CMP5]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_END:%.*]] ; CHECK: for.body.preheader: ; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[M]] to i64 ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ], [ 10, [[FOR_BODY_PREHEADER]] ] ; CHECK-NEXT: [[SUM_07:%.*]] = phi float [ [[ADD1:%.*]], [[FOR_BODY]] ], [ 0.000000e+00, [[FOR_BODY_PREHEADER]] ] ; CHECK-NEXT: [[TMP0:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 20 ; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds float, float* [[B:%.*]], i64 [[TMP0]] ; CHECK-NEXT: [[TEMP:%.*]] = load float, float* [[ARRAYIDX]], align 4 ; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[INDVARS_IV]] to i32 ; CHECK-NEXT: [[CONV:%.*]] = sitofp i32 [[TMP1]] to float ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[CONV]], [[TEMP]] ; CHECK-NEXT: [[ADD1]] = fadd float [[SUM_07]], [[MUL]] ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: [[ADD1_LCSSA:%.*]] = phi float [ [[ADD1]], [[FOR_BODY]] ] ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: [[SUM_0_LCSSA:%.*]] = phi float [ 0.000000e+00, [[ENTRY:%.*]] ], [ [[ADD1_LCSSA]], [[FOR_END_LOOPEXIT]] ] ; CHECK-NEXT: ret float [[SUM_0_LCSSA]] ; i32 signext %m) local_unnamed_addr #0 { entry: %cmp5 = icmp sgt i32 %m, 10 br i1 %cmp5, label %for.body.preheader, label %for.end for.body.preheader: ; preds = %entry br label %for.body for.body: ; preds = %for.body.preheader, %for.body %sum.07 = phi float [ %add1, %for.body ], [ 0.000000e+00, %for.body.preheader ] %i.06 = phi i32 [ %inc, %for.body ], [ 10, %for.body.preheader ] %add = add nsw i32 %i.06, 20 %idxprom = sext i32 %add to i64 %arrayidx = getelementptr inbounds float, float* %b, i64 %idxprom %temp = load float, float* %arrayidx, align 4 %conv = sitofp i32 %i.06 to float %mul = fmul float %conv, %temp %add1 = fadd float %sum.07, %mul %inc = add nsw i32 %i.06, 1 %cmp = icmp slt i32 %inc, %m br i1 %cmp, label %for.body, label %for.end.loopexit for.end.loopexit: ; preds = %for.body %add1.lcssa = phi float [ %add1, %for.body ] br label %for.end for.end: ; preds = %for.end.loopexit, %entry %sum.0.lcssa = phi float [ 0.000000e+00, %entry ], [ %add1.lcssa, %for.end.loopexit ] ret float %sum.0.lcssa } define void @ptr_non_cmp_exit_test() { ; CHECK-LABEL: @ptr_non_cmp_exit_test( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_BODY29:%.*]] ; CHECK: for.body29: ; CHECK-NEXT: [[IV:%.*]] = phi i8* [ null, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY29]] ] ; CHECK-NEXT: [[TMP0:%.*]] = load volatile i8, i8* [[IV]], align 1 ; CHECK-NEXT: [[IV_NEXT]] = getelementptr inbounds i8, i8* [[IV]], i64 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i8* [[IV]], inttoptr (i64 10 to i8*) ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_BODY29]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %for.body29 for.body29: %iv = phi i8* [ null, %entry ], [ %iv.next, %for.body29 ] load volatile i8, i8* %iv, align 1 %iv.next = getelementptr inbounds i8, i8* %iv, i64 1 %cmp = icmp ne i8* %iv.next, inttoptr (i64 11 to i8*) %and = and i1 %cmp, %cmp br i1 %and, label %for.body29, label %exit exit: ret void } define void @PR49993() { ; CHECK-LABEL: @PR49993( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[IF_END:%.*]] ; CHECK: d: ; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ [[ADD:%.*]], [[D:%.*]] ], [ [[REM10:%.*]], [[IF_END]] ] ; CHECK-NEXT: [[ADD]] = add nsw i32 [[PHI]], 1 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[PHI]], 3 ; CHECK-NEXT: br i1 [[CMP]], label [[D]], label [[IF_END_LOOPEXIT:%.*]] ; CHECK: if.end.loopexit: ; CHECK-NEXT: br label [[IF_END]] ; CHECK: if.end: ; CHECK-NEXT: [[REM1:%.*]] = urem i32 undef, undef ; CHECK-NEXT: [[REM2:%.*]] = urem i32 [[REM1]], undef ; CHECK-NEXT: [[REM3:%.*]] = urem i32 [[REM2]], undef ; CHECK-NEXT: [[REM4:%.*]] = urem i32 [[REM3]], undef ; CHECK-NEXT: [[REM5:%.*]] = urem i32 [[REM4]], undef ; CHECK-NEXT: [[REM6:%.*]] = urem i32 [[REM5]], undef ; CHECK-NEXT: [[REM7:%.*]] = urem i32 [[REM6]], undef ; CHECK-NEXT: [[REM8:%.*]] = urem i32 [[REM7]], undef ; CHECK-NEXT: [[REM9:%.*]] = urem i32 [[REM8]], undef ; CHECK-NEXT: [[REM10]] = urem i32 [[REM9]], undef ; CHECK-NEXT: br label [[D]] ; entry: br label %if.end d: %phi = phi i32 [ %add, %d ], [ %rem10, %if.end ] %add = add nsw i32 %phi, 1 %cmp = icmp slt i32 %phi, 3 br i1 %cmp, label %d, label %if.end if.end: %rem1 = urem i32 undef, undef %rem2 = urem i32 %rem1, undef %rem3 = urem i32 %rem2, undef %rem4 = urem i32 %rem3, undef %rem5 = urem i32 %rem4, undef %rem6 = urem i32 %rem5, undef %rem7 = urem i32 %rem6, undef %rem8 = urem i32 %rem7, undef %rem9 = urem i32 %rem8, undef %rem10 = urem i32 %rem9, undef br label %d } declare i32 @llvm.loop.decrement.reg.i32(i32, i32) ; This used to crash, we're basically just checking that it doesn't. define void @switch_preheader() { ; CHECK-LABEL: @switch_preheader( ; CHECK-NEXT: switch i32 -1, label [[X:%.*]] [ ; CHECK-NEXT: ] ; CHECK: x: ; CHECK-NEXT: br i1 false, label [[X]], label [[BB:%.*]] ; CHECK: BB: ; CHECK-NEXT: ret void ; switch i32 -1, label %x [] x: ; preds = %x, %0 br i1 false, label %x, label %BB BB: ; preds = %x ret void }