; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=correlated-propagation -S | FileCheck %s target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" define void @test0(i32 %n) { ; CHECK-LABEL: @test0( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_COND:%.*]] ; CHECK: for.cond: ; CHECK-NEXT: [[J_0:%.*]] = phi i32 [ [[N:%.*]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[FOR_BODY:%.*]] ] ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[J_0]], 1 ; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[DIV1]] = udiv i32 [[J_0]], 2 ; CHECK-NEXT: br label [[FOR_COND]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; entry: br label %for.cond for.cond: ; preds = %for.body, %entry %j.0 = phi i32 [ %n, %entry ], [ %div, %for.body ] %cmp = icmp sgt i32 %j.0, 1 br i1 %cmp, label %for.body, label %for.end for.body: ; preds = %for.cond %div = sdiv i32 %j.0, 2 br label %for.cond for.end: ; preds = %for.cond ret void } define void @test1(i32 %n) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_COND:%.*]] ; CHECK: for.cond: ; CHECK-NEXT: [[J_0:%.*]] = phi i32 [ [[N:%.*]], [[ENTRY:%.*]] ], [ [[DIV:%.*]], [[FOR_BODY:%.*]] ] ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[J_0]], -2 ; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[DIV]] = sdiv i32 [[J_0]], 2 ; CHECK-NEXT: br label [[FOR_COND]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; entry: br label %for.cond for.cond: ; preds = %for.body, %entry %j.0 = phi i32 [ %n, %entry ], [ %div, %for.body ] %cmp = icmp sgt i32 %j.0, -2 br i1 %cmp, label %for.body, label %for.end for.body: ; preds = %for.cond %div = sdiv i32 %j.0, 2 br label %for.cond for.end: ; preds = %for.cond ret void } define void @test2(i32 %n) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 1 ; CHECK-NEXT: br i1 [[CMP]], label [[BB:%.*]], label [[EXIT:%.*]] ; CHECK: bb: ; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[N]], 2 ; CHECK-NEXT: br label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: %cmp = icmp sgt i32 %n, 1 br i1 %cmp, label %bb, label %exit bb: %div = sdiv i32 %n, 2 br label %exit exit: ret void } ; looping case where loop has exactly one block ; at the point of sdiv, we know that %a is always greater than 0, ; because of the guard before it, so we can transform it to udiv. declare void @llvm.experimental.guard(i1,...) define void @test4(i32 %n) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0 ; CHECK-NEXT: br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[COND:%.*]] = icmp sgt i32 [[A]], 4 ; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND]]) [ "deopt"() ] ; CHECK-NEXT: [[DIV1]] = udiv i32 [[A]], 6 ; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: %cmp = icmp sgt i32 %n, 0 br i1 %cmp, label %loop, label %exit loop: %a = phi i32 [ %n, %entry ], [ %div, %loop ] %cond = icmp sgt i32 %a, 4 call void(i1,...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] %div = sdiv i32 %a, 6 br i1 %cond, label %loop, label %exit exit: ret void } ; same test as above with assume instead of guard. declare void @llvm.assume(i1) define void @test5(i32 %n) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0 ; CHECK-NEXT: br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[COND:%.*]] = icmp ugt i32 [[A]], 4 ; CHECK-NEXT: call void @llvm.assume(i1 [[COND]]) ; CHECK-NEXT: [[DIV1]] = udiv i32 [[A]], 6 ; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp ugt i32 [[DIV1]], 8 ; CHECK-NEXT: br i1 [[LOOPCOND]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: %cmp = icmp sgt i32 %n, 0 br i1 %cmp, label %loop, label %exit loop: %a = phi i32 [ %n, %entry ], [ %div, %loop ] %cond = icmp sgt i32 %a, 4 call void @llvm.assume(i1 %cond) %div = sdiv i32 %a, 6 %loopcond = icmp sgt i32 %div, 8 br i1 %loopcond, label %loop, label %exit exit: ret void } ; Now, let's try various domain combinations for operands. define i32 @test6_pos_pos(i32 %x, i32 %y) { ; CHECK-LABEL: @test6_pos_pos( ; CHECK-NEXT: [[C0:%.*]] = icmp sge i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i32 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X]], [[Y]] ; CHECK-NEXT: ret i32 [[DIV1]] ; %c0 = icmp sge i32 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sge i32 %y, 0 call void @llvm.assume(i1 %c1) %div = sdiv i32 %x, %y ret i32 %div } define i32 @test7_pos_neg(i32 %x, i32 %y) { ; CHECK-LABEL: @test7_pos_neg( ; CHECK-NEXT: [[C0:%.*]] = icmp sge i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sle i32 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[Y_NONNEG:%.*]] = sub i32 0, [[Y]] ; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X]], [[Y_NONNEG]] ; CHECK-NEXT: [[DIV1_NEG:%.*]] = sub i32 0, [[DIV1]] ; CHECK-NEXT: ret i32 [[DIV1_NEG]] ; %c0 = icmp sge i32 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sle i32 %y, 0 call void @llvm.assume(i1 %c1) %div = sdiv i32 %x, %y ret i32 %div } define i32 @test8_neg_pos(i32 %x, i32 %y) { ; CHECK-LABEL: @test8_neg_pos( ; CHECK-NEXT: [[C0:%.*]] = icmp sle i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i32 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[X_NONNEG:%.*]] = sub i32 0, [[X]] ; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X_NONNEG]], [[Y]] ; CHECK-NEXT: [[DIV1_NEG:%.*]] = sub i32 0, [[DIV1]] ; CHECK-NEXT: ret i32 [[DIV1_NEG]] ; %c0 = icmp sle i32 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sge i32 %y, 0 call void @llvm.assume(i1 %c1) %div = sdiv i32 %x, %y ret i32 %div } define i32 @test9_neg_neg(i32 %x, i32 %y) { ; CHECK-LABEL: @test9_neg_neg( ; CHECK-NEXT: [[C0:%.*]] = icmp sle i32 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sle i32 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[X_NONNEG:%.*]] = sub i32 0, [[X]] ; CHECK-NEXT: [[Y_NONNEG:%.*]] = sub i32 0, [[Y]] ; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X_NONNEG]], [[Y_NONNEG]] ; CHECK-NEXT: ret i32 [[DIV1]] ; %c0 = icmp sle i32 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sle i32 %y, 0 call void @llvm.assume(i1 %c1) %div = sdiv i32 %x, %y ret i32 %div } ; After making division unsigned, can we narrow it? define i32 @test10_narrow(i32 %x, i32 %y) { ; CHECK-LABEL: @test10_narrow( ; CHECK-NEXT: [[C0:%.*]] = icmp ult i32 [[X:%.*]], 128 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp ult i32 [[Y:%.*]], 128 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[DIV1_LHS_TRUNC:%.*]] = trunc i32 [[X]] to i8 ; CHECK-NEXT: [[DIV1_RHS_TRUNC:%.*]] = trunc i32 [[Y]] to i8 ; CHECK-NEXT: [[DIV12:%.*]] = udiv i8 [[DIV1_LHS_TRUNC]], [[DIV1_RHS_TRUNC]] ; CHECK-NEXT: [[DIV1_ZEXT:%.*]] = zext i8 [[DIV12]] to i32 ; CHECK-NEXT: ret i32 [[DIV1_ZEXT]] ; %c0 = icmp ult i32 %x, 128 call void @llvm.assume(i1 %c0) %c1 = icmp ult i32 %y, 128 call void @llvm.assume(i1 %c1) %div = sdiv i32 %x, %y ret i32 %div } ; Ok, but what about narrowing sdiv in general? ; If both operands are i15, it's uncontroversial - we can truncate to i16 define i64 @test11_i15_i15(i64 %x, i64 %y) { ; CHECK-LABEL: @test11_i15_i15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 16383 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -16384 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 16383 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -16384 call void @llvm.assume(i1 %c3) %div = sdiv i64 %x, %y ret i64 %div } ; But if operands are i16, we can only truncate to i32, because we can't ; rule out UB of i16 INT_MIN s/ i16 -1 define i64 @test12_i16_i16(i64 %x, i64 %y) { ; CHECK-LABEL: @test12_i16_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 32767 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -32768 call void @llvm.assume(i1 %c3) %div = sdiv i64 %x, %y ret i64 %div } ; But if divident is i16, and divisor is u15, then we know that i16 is UB-safe. define i64 @test13_i16_u15(i64 %x, i64 %y) { ; CHECK-LABEL: @test13_i16_u15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp ule i64 %y, 32767 call void @llvm.assume(i1 %c2) %div = sdiv i64 %x, %y ret i64 %div } ; And likewise, if we know that if the divident is never i16 INT_MIN, ; we can truncate to i16. define i64 @test14_i16safe_i16(i64 %x, i64 %y) { ; CHECK-LABEL: @test14_i16safe_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sgt i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 32767 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -32768 call void @llvm.assume(i1 %c3) %div = sdiv i64 %x, %y ret i64 %div } ; Of course, both of the conditions can happen at once. define i64 @test15_i16safe_u15(i64 %x, i64 %y) { ; CHECK-LABEL: @test15_i16safe_u15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sgt i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp ule i64 %y, 32767 call void @llvm.assume(i1 %c2) %div = sdiv i64 %x, %y ret i64 %div } ; We at most truncate to i8 define i64 @test16_i4_i4(i64 %x, i64 %y) { ; CHECK-LABEL: @test16_i4_i4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 3 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -4 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 3 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -4 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i8 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i8 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i8 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i8 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 3 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -4 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 3 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -4 call void @llvm.assume(i1 %c3) %div = sdiv i64 %x, %y ret i64 %div } ; And we round up to the powers of two define i64 @test17_i9_i9(i64 %x, i64 %y) { ; CHECK-LABEL: @test17_i9_i9( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 255 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -256 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 255 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -256 call void @llvm.assume(i1 %c3) %div = sdiv i64 %x, %y ret i64 %div } ; Don't widen the operation to the next power of two if it wasn't a power of two. define i9 @test18_i9_i9(i9 %x, i9 %y) { ; CHECK-LABEL: @test18_i9_i9( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i9 [[X:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i9 [[X]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i9 [[Y:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i9 [[Y]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV:%.*]] = sdiv i9 [[X]], [[Y]] ; CHECK-NEXT: ret i9 [[DIV]] ; entry: %c0 = icmp sle i9 %x, 255 call void @llvm.assume(i1 %c0) %c1 = icmp sge i9 %x, -256 call void @llvm.assume(i1 %c1) %c2 = icmp sle i9 %y, 255 call void @llvm.assume(i1 %c2) %c3 = icmp sge i9 %y, -256 call void @llvm.assume(i1 %c3) %div = sdiv i9 %x, %y ret i9 %div } define i10 @test19_i10_i10(i10 %x, i10 %y) { ; CHECK-LABEL: @test19_i10_i10( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i10 [[X:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i10 [[X]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i10 [[Y:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i10 [[Y]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV:%.*]] = sdiv i10 [[X]], [[Y]] ; CHECK-NEXT: ret i10 [[DIV]] ; entry: %c0 = icmp sle i10 %x, 255 call void @llvm.assume(i1 %c0) %c1 = icmp sge i10 %x, -256 call void @llvm.assume(i1 %c1) %c2 = icmp sle i10 %y, 255 call void @llvm.assume(i1 %c2) %c3 = icmp sge i10 %y, -256 call void @llvm.assume(i1 %c3) %div = sdiv i10 %x, %y ret i10 %div } ; Note that we need to take the maximal bitwidth, in which both of the operands are representable! define i64 @test20_i16_i18(i64 %x, i64 %y) { ; CHECK-LABEL: @test20_i16_i18( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 65535 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -65536 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 16383 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -16384 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 65535 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -65536 call void @llvm.assume(i1 %c3) %div = sdiv i64 %x, %y ret i64 %div } define i64 @test21_i18_i16(i64 %x, i64 %y) { ; CHECK-LABEL: @test21_i18_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 65535 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -65536 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 65535 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -65536 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 16383 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -16384 call void @llvm.assume(i1 %c3) %div = sdiv i64 %x, %y ret i64 %div } ; Ensure that we preserve exact-ness define i64 @test22_i16_i16(i64 %x, i64 %y) { ; CHECK-LABEL: @test22_i16_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32 ; CHECK-NEXT: [[DIV1:%.*]] = sdiv exact i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 32767 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -32768 call void @llvm.assume(i1 %c3) %div = sdiv exact i64 %x, %y ret i64 %div }