//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECL_H
#define LLVM_CLANG_AST_DECL_H
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContextAllocate.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Type.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <string>
#include <utility>
namespace clang {
class ASTContext;
struct ASTTemplateArgumentListInfo;
class CompoundStmt;
class DependentFunctionTemplateSpecializationInfo;
class EnumDecl;
class Expr;
class FunctionTemplateDecl;
class FunctionTemplateSpecializationInfo;
class FunctionTypeLoc;
class LabelStmt;
class MemberSpecializationInfo;
class Module;
class NamespaceDecl;
class ParmVarDecl;
class RecordDecl;
class Stmt;
class StringLiteral;
class TagDecl;
class TemplateArgumentList;
class TemplateArgumentListInfo;
class TemplateParameterList;
class TypeAliasTemplateDecl;
class UnresolvedSetImpl;
class VarTemplateDecl;
/// The top declaration context.
class TranslationUnitDecl : public Decl,
public DeclContext,
public Redeclarable<TranslationUnitDecl> {
using redeclarable_base = Redeclarable<TranslationUnitDecl>;
TranslationUnitDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
TranslationUnitDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
TranslationUnitDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
ASTContext &Ctx;
/// The (most recently entered) anonymous namespace for this
/// translation unit, if one has been created.
NamespaceDecl *AnonymousNamespace = nullptr;
explicit TranslationUnitDecl(ASTContext &ctx);
virtual void anchor();
public:
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::isFirstDecl;
using redeclarable_base::redecls;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
ASTContext &getASTContext() const { return Ctx; }
NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
static TranslationUnitDecl *Create(ASTContext &C);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TranslationUnit; }
static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
}
static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents a `#pragma comment` line. Always a child of
/// TranslationUnitDecl.
class PragmaCommentDecl final
: public Decl,
private llvm::TrailingObjects<PragmaCommentDecl, char> {
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
PragmaMSCommentKind CommentKind;
PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
PragmaMSCommentKind CommentKind)
: Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
virtual void anchor();
public:
static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
SourceLocation CommentLoc,
PragmaMSCommentKind CommentKind,
StringRef Arg);
static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned ArgSize);
PragmaMSCommentKind getCommentKind() const { return CommentKind; }
StringRef getArg() const { return getTrailingObjects<char>(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == PragmaComment; }
};
/// Represents a `#pragma detect_mismatch` line. Always a child of
/// TranslationUnitDecl.
class PragmaDetectMismatchDecl final
: public Decl,
private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
size_t ValueStart;
PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
size_t ValueStart)
: Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
virtual void anchor();
public:
static PragmaDetectMismatchDecl *Create(const ASTContext &C,
TranslationUnitDecl *DC,
SourceLocation Loc, StringRef Name,
StringRef Value);
static PragmaDetectMismatchDecl *
CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
StringRef getName() const { return getTrailingObjects<char>(); }
StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
};
/// Declaration context for names declared as extern "C" in C++. This
/// is neither the semantic nor lexical context for such declarations, but is
/// used to check for conflicts with other extern "C" declarations. Example:
///
/// \code
/// namespace N { extern "C" void f(); } // #1
/// void N::f() {} // #2
/// namespace M { extern "C" void f(); } // #3
/// \endcode
///
/// The semantic context of #1 is namespace N and its lexical context is the
/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
/// context is the TU. However, both declarations are also visible in the
/// extern "C" context.
///
/// The declaration at #3 finds it is a redeclaration of \c N::f through
/// lookup in the extern "C" context.
class ExternCContextDecl : public Decl, public DeclContext {
explicit ExternCContextDecl(TranslationUnitDecl *TU)
: Decl(ExternCContext, TU, SourceLocation()),
DeclContext(ExternCContext) {}
virtual void anchor();
public:
static ExternCContextDecl *Create(const ASTContext &C,
TranslationUnitDecl *TU);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ExternCContext; }
static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
}
static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
}
};
/// This represents a decl that may have a name. Many decls have names such
/// as ObjCMethodDecl, but not \@class, etc.
///
/// Note that not every NamedDecl is actually named (e.g., a struct might
/// be anonymous), and not every name is an identifier.
class NamedDecl : public Decl {
/// The name of this declaration, which is typically a normal
/// identifier but may also be a special kind of name (C++
/// constructor, Objective-C selector, etc.)
DeclarationName Name;
virtual void anchor();
private:
NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
protected:
NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
: Decl(DK, DC, L), Name(N) {}
public:
/// Get the identifier that names this declaration, if there is one.
///
/// This will return NULL if this declaration has no name (e.g., for
/// an unnamed class) or if the name is a special name (C++ constructor,
/// Objective-C selector, etc.).
IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
/// Get the name of identifier for this declaration as a StringRef.
///
/// This requires that the declaration have a name and that it be a simple
/// identifier.
StringRef getName() const {
assert(Name.isIdentifier() && "Name is not a simple identifier");
return getIdentifier() ? getIdentifier()->getName() : "";
}
/// Get a human-readable name for the declaration, even if it is one of the
/// special kinds of names (C++ constructor, Objective-C selector, etc).
///
/// Creating this name requires expensive string manipulation, so it should
/// be called only when performance doesn't matter. For simple declarations,
/// getNameAsCString() should suffice.
//
// FIXME: This function should be renamed to indicate that it is not just an
// alternate form of getName(), and clients should move as appropriate.
//
// FIXME: Deprecated, move clients to getName().
std::string getNameAsString() const { return Name.getAsString(); }
/// Pretty-print the unqualified name of this declaration. Can be overloaded
/// by derived classes to provide a more user-friendly name when appropriate.
virtual void printName(raw_ostream &os) const;
/// Get the actual, stored name of the declaration, which may be a special
/// name.
///
/// Note that generally in diagnostics, the non-null \p NamedDecl* itself
/// should be sent into the diagnostic instead of using the result of
/// \p getDeclName().
///
/// A \p DeclarationName in a diagnostic will just be streamed to the output,
/// which will directly result in a call to \p DeclarationName::print.
///
/// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
/// \p DeclarationName::print, but with two customisation points along the
/// way (\p getNameForDiagnostic and \p printName). These are used to print
/// the template arguments if any, and to provide a user-friendly name for
/// some entities (such as unnamed variables and anonymous records).
DeclarationName getDeclName() const { return Name; }
/// Set the name of this declaration.
void setDeclName(DeclarationName N) { Name = N; }
/// Returns a human-readable qualified name for this declaration, like
/// A::B::i, for i being member of namespace A::B.
///
/// If the declaration is not a member of context which can be named (record,
/// namespace), it will return the same result as printName().
///
/// Creating this name is expensive, so it should be called only when
/// performance doesn't matter.
void printQualifiedName(raw_ostream &OS) const;
void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
/// Print only the nested name specifier part of a fully-qualified name,
/// including the '::' at the end. E.g.
/// when `printQualifiedName(D)` prints "A::B::i",
/// this function prints "A::B::".
void printNestedNameSpecifier(raw_ostream &OS) const;
void printNestedNameSpecifier(raw_ostream &OS,
const PrintingPolicy &Policy) const;
// FIXME: Remove string version.
std::string getQualifiedNameAsString() const;
/// Appends a human-readable name for this declaration into the given stream.
///
/// This is the method invoked by Sema when displaying a NamedDecl
/// in a diagnostic. It does not necessarily produce the same
/// result as printName(); for example, class template
/// specializations are printed with their template arguments.
virtual void getNameForDiagnostic(raw_ostream &OS,
const PrintingPolicy &Policy,
bool Qualified) const;
/// Determine whether this declaration, if known to be well-formed within
/// its context, will replace the declaration OldD if introduced into scope.
///
/// A declaration will replace another declaration if, for example, it is
/// a redeclaration of the same variable or function, but not if it is a
/// declaration of a different kind (function vs. class) or an overloaded
/// function.
///
/// \param IsKnownNewer \c true if this declaration is known to be newer
/// than \p OldD (for instance, if this declaration is newly-created).
bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
/// Determine whether this declaration has linkage.
bool hasLinkage() const;
using Decl::isModulePrivate;
using Decl::setModulePrivate;
/// Determine whether this declaration is a C++ class member.
bool isCXXClassMember() const {
const DeclContext *DC = getDeclContext();
// C++0x [class.mem]p1:
// The enumerators of an unscoped enumeration defined in
// the class are members of the class.
if (isa<EnumDecl>(DC))
DC = DC->getRedeclContext();
return DC->isRecord();
}
/// Determine whether the given declaration is an instance member of
/// a C++ class.
bool isCXXInstanceMember() const;
/// Determine if the declaration obeys the reserved identifier rules of the
/// given language.
ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
/// Determine what kind of linkage this entity has.
///
/// This is not the linkage as defined by the standard or the codegen notion
/// of linkage. It is just an implementation detail that is used to compute
/// those.
Linkage getLinkageInternal() const;
/// Get the linkage from a semantic point of view. Entities in
/// anonymous namespaces are external (in c++98).
Linkage getFormalLinkage() const {
return clang::getFormalLinkage(getLinkageInternal());
}
/// True if this decl has external linkage.
bool hasExternalFormalLinkage() const {
return isExternalFormalLinkage(getLinkageInternal());
}
bool isExternallyVisible() const {
return clang::isExternallyVisible(getLinkageInternal());
}
/// Determine whether this declaration can be redeclared in a
/// different translation unit.
bool isExternallyDeclarable() const {
return isExternallyVisible() && !getOwningModuleForLinkage();
}
/// Determines the visibility of this entity.
Visibility getVisibility() const {
return getLinkageAndVisibility().getVisibility();
}
/// Determines the linkage and visibility of this entity.
LinkageInfo getLinkageAndVisibility() const;
/// Kinds of explicit visibility.
enum ExplicitVisibilityKind {
/// Do an LV computation for, ultimately, a type.
/// Visibility may be restricted by type visibility settings and
/// the visibility of template arguments.
VisibilityForType,
/// Do an LV computation for, ultimately, a non-type declaration.
/// Visibility may be restricted by value visibility settings and
/// the visibility of template arguments.
VisibilityForValue
};
/// If visibility was explicitly specified for this
/// declaration, return that visibility.
Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const;
/// True if the computed linkage is valid. Used for consistency
/// checking. Should always return true.
bool isLinkageValid() const;
/// True if something has required us to compute the linkage
/// of this declaration.
///
/// Language features which can retroactively change linkage (like a
/// typedef name for linkage purposes) may need to consider this,
/// but hopefully only in transitory ways during parsing.
bool hasLinkageBeenComputed() const {
return hasCachedLinkage();
}
/// Looks through UsingDecls and ObjCCompatibleAliasDecls for
/// the underlying named decl.
NamedDecl *getUnderlyingDecl() {
// Fast-path the common case.
if (this->getKind() != UsingShadow &&
this->getKind() != ConstructorUsingShadow &&
this->getKind() != ObjCCompatibleAlias &&
this->getKind() != NamespaceAlias)
return this;
return getUnderlyingDeclImpl();
}
const NamedDecl *getUnderlyingDecl() const {
return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
}
NamedDecl *getMostRecentDecl() {
return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
}
const NamedDecl *getMostRecentDecl() const {
return const_cast<NamedDecl*>(this)->getMostRecentDecl();
}
ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
};
inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
ND.printName(OS);
return OS;
}
/// Represents the declaration of a label. Labels also have a
/// corresponding LabelStmt, which indicates the position that the label was
/// defined at. For normal labels, the location of the decl is the same as the
/// location of the statement. For GNU local labels (__label__), the decl
/// location is where the __label__ is.
class LabelDecl : public NamedDecl {
LabelStmt *TheStmt;
StringRef MSAsmName;
bool MSAsmNameResolved = false;
/// For normal labels, this is the same as the main declaration
/// label, i.e., the location of the identifier; for GNU local labels,
/// this is the location of the __label__ keyword.
SourceLocation LocStart;
LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
LabelStmt *S, SourceLocation StartL)
: NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
void anchor() override;
public:
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II);
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II,
SourceLocation GnuLabelL);
static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
LabelStmt *getStmt() const { return TheStmt; }
void setStmt(LabelStmt *T) { TheStmt = T; }
bool isGnuLocal() const { return LocStart != getLocation(); }
void setLocStart(SourceLocation L) { LocStart = L; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(LocStart, getLocation());
}
bool isMSAsmLabel() const { return !MSAsmName.empty(); }
bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
void setMSAsmLabel(StringRef Name);
StringRef getMSAsmLabel() const { return MSAsmName; }
void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Label; }
};
/// Represent a C++ namespace.
class NamespaceDecl : public NamedDecl, public DeclContext,
public Redeclarable<NamespaceDecl>
{
/// The starting location of the source range, pointing
/// to either the namespace or the inline keyword.
SourceLocation LocStart;
/// The ending location of the source range.
SourceLocation RBraceLoc;
/// A pointer to either the anonymous namespace that lives just inside
/// this namespace or to the first namespace in the chain (the latter case
/// only when this is not the first in the chain), along with a
/// boolean value indicating whether this is an inline namespace.
llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, NamespaceDecl *PrevDecl);
using redeclarable_base = Redeclarable<NamespaceDecl>;
NamespaceDecl *getNextRedeclarationImpl() override;
NamespaceDecl *getPreviousDeclImpl() override;
NamespaceDecl *getMostRecentDeclImpl() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
bool Inline, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl);
static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
/// Returns true if this is an anonymous namespace declaration.
///
/// For example:
/// \code
/// namespace {
/// ...
/// };
/// \endcode
/// q.v. C++ [namespace.unnamed]
bool isAnonymousNamespace() const {
return !getIdentifier();
}
/// Returns true if this is an inline namespace declaration.
bool isInline() const {
return AnonOrFirstNamespaceAndInline.getInt();
}
/// Set whether this is an inline namespace declaration.
void setInline(bool Inline) {
AnonOrFirstNamespaceAndInline.setInt(Inline);
}
/// Returns true if the inline qualifier for \c Name is redundant.
bool isRedundantInlineQualifierFor(DeclarationName Name) const {
if (!isInline())
return false;
auto X = lookup(Name);
// We should not perform a lookup within a transparent context, so find a
// non-transparent parent context.
auto Y = getParent()->getNonTransparentContext()->lookup(Name);
return std::distance(X.begin(), X.end()) ==
std::distance(Y.begin(), Y.end());
}
/// Get the original (first) namespace declaration.
NamespaceDecl *getOriginalNamespace();
/// Get the original (first) namespace declaration.
const NamespaceDecl *getOriginalNamespace() const;
/// Return true if this declaration is an original (first) declaration
/// of the namespace. This is false for non-original (subsequent) namespace
/// declarations and anonymous namespaces.
bool isOriginalNamespace() const;
/// Retrieve the anonymous namespace nested inside this namespace,
/// if any.
NamespaceDecl *getAnonymousNamespace() const {
return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
}
void setAnonymousNamespace(NamespaceDecl *D) {
getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
}
/// Retrieves the canonical declaration of this namespace.
NamespaceDecl *getCanonicalDecl() override {
return getOriginalNamespace();
}
const NamespaceDecl *getCanonicalDecl() const {
return getOriginalNamespace();
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(LocStart, RBraceLoc);
}
SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setLocStart(SourceLocation L) { LocStart = L; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Namespace; }
static DeclContext *castToDeclContext(const NamespaceDecl *D) {
return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
}
static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represent the declaration of a variable (in which case it is
/// an lvalue) a function (in which case it is a function designator) or
/// an enum constant.
class ValueDecl : public NamedDecl {
QualType DeclType;
void anchor() override;
protected:
ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T)
: NamedDecl(DK, DC, L, N), DeclType(T) {}
public:
QualType getType() const { return DeclType; }
void setType(QualType newType) { DeclType = newType; }
/// Determine whether this symbol is weakly-imported,
/// or declared with the weak or weak-ref attr.
bool isWeak() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
};
/// A struct with extended info about a syntactic
/// name qualifier, to be used for the case of out-of-line declarations.
struct QualifierInfo {
NestedNameSpecifierLoc QualifierLoc;
/// The number of "outer" template parameter lists.
/// The count includes all of the template parameter lists that were matched
/// against the template-ids occurring into the NNS and possibly (in the
/// case of an explicit specialization) a final "template <>".
unsigned NumTemplParamLists = 0;
/// A new-allocated array of size NumTemplParamLists,
/// containing pointers to the "outer" template parameter lists.
/// It includes all of the template parameter lists that were matched
/// against the template-ids occurring into the NNS and possibly (in the
/// case of an explicit specialization) a final "template <>".
TemplateParameterList** TemplParamLists = nullptr;
QualifierInfo() = default;
QualifierInfo(const QualifierInfo &) = delete;
QualifierInfo& operator=(const QualifierInfo &) = delete;
/// Sets info about "outer" template parameter lists.
void setTemplateParameterListsInfo(ASTContext &Context,
ArrayRef<TemplateParameterList *> TPLists);
};
/// Represents a ValueDecl that came out of a declarator.
/// Contains type source information through TypeSourceInfo.
class DeclaratorDecl : public ValueDecl {
// A struct representing a TInfo, a trailing requires-clause and a syntactic
// qualifier, to be used for the (uncommon) case of out-of-line declarations
// and constrained function decls.
struct ExtInfo : public QualifierInfo {
TypeSourceInfo *TInfo;
Expr *TrailingRequiresClause = nullptr;
};
llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
/// The start of the source range for this declaration,
/// ignoring outer template declarations.
SourceLocation InnerLocStart;
bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
protected:
DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
SourceLocation StartL)
: ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
TypeSourceInfo *getTypeSourceInfo() const {
return hasExtInfo()
? getExtInfo()->TInfo
: DeclInfo.get<TypeSourceInfo*>();
}
void setTypeSourceInfo(TypeSourceInfo *TI) {
if (hasExtInfo())
getExtInfo()->TInfo = TI;
else
DeclInfo = TI;
}
/// Return start of source range ignoring outer template declarations.
SourceLocation getInnerLocStart() const { return InnerLocStart; }
void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
/// Return start of source range taking into account any outer template
/// declarations.
SourceLocation getOuterLocStart() const;
SourceRange getSourceRange() const override LLVM_READONLY;
SourceLocation getBeginLoc() const LLVM_READONLY {
return getOuterLocStart();
}
/// Retrieve the nested-name-specifier that qualifies the name of this
/// declaration, if it was present in the source.
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
: nullptr;
}
/// Retrieve the nested-name-specifier (with source-location
/// information) that qualifies the name of this declaration, if it was
/// present in the source.
NestedNameSpecifierLoc getQualifierLoc() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc
: NestedNameSpecifierLoc();
}
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
/// \brief Get the constraint-expression introduced by the trailing
/// requires-clause in the function/member declaration, or null if no
/// requires-clause was provided.
Expr *getTrailingRequiresClause() {
return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
: nullptr;
}
const Expr *getTrailingRequiresClause() const {
return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
: nullptr;
}
void setTrailingRequiresClause(Expr *TrailingRequiresClause);
unsigned getNumTemplateParameterLists() const {
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
}
TemplateParameterList *getTemplateParameterList(unsigned index) const {
assert(index < getNumTemplateParameterLists());
return getExtInfo()->TemplParamLists[index];
}
void setTemplateParameterListsInfo(ASTContext &Context,
ArrayRef<TemplateParameterList *> TPLists);
SourceLocation getTypeSpecStartLoc() const;
SourceLocation getTypeSpecEndLoc() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstDeclarator && K <= lastDeclarator;
}
};
/// Structure used to store a statement, the constant value to
/// which it was evaluated (if any), and whether or not the statement
/// is an integral constant expression (if known).
struct EvaluatedStmt {
/// Whether this statement was already evaluated.
bool WasEvaluated : 1;
/// Whether this statement is being evaluated.
bool IsEvaluating : 1;
/// Whether this variable is known to have constant initialization. This is
/// currently only computed in C++, for static / thread storage duration
/// variables that might have constant initialization and for variables that
/// are usable in constant expressions.
bool HasConstantInitialization : 1;
/// Whether this variable is known to have constant destruction. That is,
/// whether running the destructor on the initial value is a side-effect
/// (and doesn't inspect any state that might have changed during program
/// execution). This is currently only computed if the destructor is
/// non-trivial.
bool HasConstantDestruction : 1;
/// In C++98, whether the initializer is an ICE. This affects whether the
/// variable is usable in constant expressions.
bool HasICEInit : 1;
bool CheckedForICEInit : 1;
Stmt *Value;
APValue Evaluated;
EvaluatedStmt()
: WasEvaluated(false), IsEvaluating(false),
HasConstantInitialization(false), HasConstantDestruction(false),
HasICEInit(false), CheckedForICEInit(false) {}
};
/// Represents a variable declaration or definition.
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
public:
/// Initialization styles.
enum InitializationStyle {
/// C-style initialization with assignment
CInit,
/// Call-style initialization (C++98)
CallInit,
/// Direct list-initialization (C++11)
ListInit
};
/// Kinds of thread-local storage.
enum TLSKind {
/// Not a TLS variable.
TLS_None,
/// TLS with a known-constant initializer.
TLS_Static,
/// TLS with a dynamic initializer.
TLS_Dynamic
};
/// Return the string used to specify the storage class \p SC.
///
/// It is illegal to call this function with SC == None.
static const char *getStorageClassSpecifierString(StorageClass SC);
protected:
// A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
// have allocated the auxiliary struct of information there.
//
// TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
// this as *many* VarDecls are ParmVarDecls that don't have default
// arguments. We could save some space by moving this pointer union to be
// allocated in trailing space when necessary.
using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
/// The initializer for this variable or, for a ParmVarDecl, the
/// C++ default argument.
mutable InitType Init;
private:
friend class ASTDeclReader;
friend class ASTNodeImporter;
friend class StmtIteratorBase;
class VarDeclBitfields {
friend class ASTDeclReader;
friend class VarDecl;
unsigned SClass : 3;
unsigned TSCSpec : 2;
unsigned InitStyle : 2;
/// Whether this variable is an ARC pseudo-__strong variable; see
/// isARCPseudoStrong() for details.
unsigned ARCPseudoStrong : 1;
};
enum { NumVarDeclBits = 8 };
protected:
enum { NumParameterIndexBits = 8 };
enum DefaultArgKind {
DAK_None,
DAK_Unparsed,
DAK_Uninstantiated,
DAK_Normal
};
enum { NumScopeDepthOrObjCQualsBits = 7 };
class ParmVarDeclBitfields {
friend class ASTDeclReader;
friend class ParmVarDecl;
unsigned : NumVarDeclBits;
/// Whether this parameter inherits a default argument from a
/// prior declaration.
unsigned HasInheritedDefaultArg : 1;
/// Describes the kind of default argument for this parameter. By default
/// this is none. If this is normal, then the default argument is stored in
/// the \c VarDecl initializer expression unless we were unable to parse
/// (even an invalid) expression for the default argument.
unsigned DefaultArgKind : 2;
/// Whether this parameter undergoes K&R argument promotion.
unsigned IsKNRPromoted : 1;
/// Whether this parameter is an ObjC method parameter or not.
unsigned IsObjCMethodParam : 1;
/// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
/// Otherwise, the number of function parameter scopes enclosing
/// the function parameter scope in which this parameter was
/// declared.
unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
/// The number of parameters preceding this parameter in the
/// function parameter scope in which it was declared.
unsigned ParameterIndex : NumParameterIndexBits;
};
class NonParmVarDeclBitfields {
friend class ASTDeclReader;
friend class ImplicitParamDecl;
friend class VarDecl;
unsigned : NumVarDeclBits;
// FIXME: We need something similar to CXXRecordDecl::DefinitionData.
/// Whether this variable is a definition which was demoted due to
/// module merge.
unsigned IsThisDeclarationADemotedDefinition : 1;
/// Whether this variable is the exception variable in a C++ catch
/// or an Objective-C @catch statement.
unsigned ExceptionVar : 1;
/// Whether this local variable could be allocated in the return
/// slot of its function, enabling the named return value optimization
/// (NRVO).
unsigned NRVOVariable : 1;
/// Whether this variable is the for-range-declaration in a C++0x
/// for-range statement.
unsigned CXXForRangeDecl : 1;
/// Whether this variable is the for-in loop declaration in Objective-C.
unsigned ObjCForDecl : 1;
/// Whether this variable is (C++1z) inline.
unsigned IsInline : 1;
/// Whether this variable has (C++1z) inline explicitly specified.
unsigned IsInlineSpecified : 1;
/// Whether this variable is (C++0x) constexpr.
unsigned IsConstexpr : 1;
/// Whether this variable is the implicit variable for a lambda
/// init-capture.
unsigned IsInitCapture : 1;
/// Whether this local extern variable's previous declaration was
/// declared in the same block scope. This controls whether we should merge
/// the type of this declaration with its previous declaration.
unsigned PreviousDeclInSameBlockScope : 1;
/// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
/// something else.
unsigned ImplicitParamKind : 3;
unsigned EscapingByref : 1;
};
union {
unsigned AllBits;
VarDeclBitfields VarDeclBits;
ParmVarDeclBitfields ParmVarDeclBits;
NonParmVarDeclBitfields NonParmVarDeclBits;
};
VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, StorageClass SC);
using redeclarable_base = Redeclarable<VarDecl>;
VarDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
VarDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
VarDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
static VarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
const IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, StorageClass S);
static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Returns the storage class as written in the source. For the
/// computed linkage of symbol, see getLinkage.
StorageClass getStorageClass() const {
return (StorageClass) VarDeclBits.SClass;
}
void setStorageClass(StorageClass SC);
void setTSCSpec(ThreadStorageClassSpecifier TSC) {
VarDeclBits.TSCSpec = TSC;
assert(VarDeclBits.TSCSpec == TSC && "truncation");
}
ThreadStorageClassSpecifier getTSCSpec() const {
return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
}
TLSKind getTLSKind() const;
/// Returns true if a variable with function scope is a non-static local
/// variable.
bool hasLocalStorage() const {
if (getStorageClass() == SC_None) {
// OpenCL v1.2 s6.5.3: The __constant or constant address space name is
// used to describe variables allocated in global memory and which are
// accessed inside a kernel(s) as read-only variables. As such, variables
// in constant address space cannot have local storage.
if (getType().getAddressSpace() == LangAS::opencl_constant)
return false;
// Second check is for C++11 [dcl.stc]p4.
return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
}
// Global Named Register (GNU extension)
if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
return false;
// Return true for: Auto, Register.
// Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
return getStorageClass() >= SC_Auto;
}
/// Returns true if a variable with function scope is a static local
/// variable.
bool isStaticLocal() const {
return (getStorageClass() == SC_Static ||
// C++11 [dcl.stc]p4
(getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
&& !isFileVarDecl();
}
/// Returns true if a variable has extern or __private_extern__
/// storage.
bool hasExternalStorage() const {
return getStorageClass() == SC_Extern ||
getStorageClass() == SC_PrivateExtern;
}
/// Returns true for all variables that do not have local storage.
///
/// This includes all global variables as well as static variables declared
/// within a function.
bool hasGlobalStorage() const { return !hasLocalStorage(); }
/// Get the storage duration of this variable, per C++ [basic.stc].
StorageDuration getStorageDuration() const {
return hasLocalStorage() ? SD_Automatic :
getTSCSpec() ? SD_Thread : SD_Static;
}
/// Compute the language linkage.
LanguageLinkage getLanguageLinkage() const;
/// Determines whether this variable is a variable with external, C linkage.
bool isExternC() const;
/// Determines whether this variable's context is, or is nested within,
/// a C++ extern "C" linkage spec.
bool isInExternCContext() const;
/// Determines whether this variable's context is, or is nested within,
/// a C++ extern "C++" linkage spec.
bool isInExternCXXContext() const;
/// Returns true for local variable declarations other than parameters.
/// Note that this includes static variables inside of functions. It also
/// includes variables inside blocks.
///
/// void foo() { int x; static int y; extern int z; }
bool isLocalVarDecl() const {
if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
return false;
if (const DeclContext *DC = getLexicalDeclContext())
return DC->getRedeclContext()->isFunctionOrMethod();
return false;
}
/// Similar to isLocalVarDecl but also includes parameters.
bool isLocalVarDeclOrParm() const {
return isLocalVarDecl() || getKind() == Decl::ParmVar;
}
/// Similar to isLocalVarDecl, but excludes variables declared in blocks.
bool isFunctionOrMethodVarDecl() const {
if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
return false;
const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
}
/// Determines whether this is a static data member.
///
/// This will only be true in C++, and applies to, e.g., the
/// variable 'x' in:
/// \code
/// struct S {
/// static int x;
/// };
/// \endcode
bool isStaticDataMember() const {
// If it wasn't static, it would be a FieldDecl.
return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
}
VarDecl *getCanonicalDecl() override;
const VarDecl *getCanonicalDecl() const {
return const_cast<VarDecl*>(this)->getCanonicalDecl();
}
enum DefinitionKind {
/// This declaration is only a declaration.
DeclarationOnly,
/// This declaration is a tentative definition.
TentativeDefinition,
/// This declaration is definitely a definition.
Definition
};
/// Check whether this declaration is a definition. If this could be
/// a tentative definition (in C), don't check whether there's an overriding
/// definition.
DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
DefinitionKind isThisDeclarationADefinition() const {
return isThisDeclarationADefinition(getASTContext());
}
/// Check whether this variable is defined in this translation unit.
DefinitionKind hasDefinition(ASTContext &) const;
DefinitionKind hasDefinition() const {
return hasDefinition(getASTContext());
}
/// Get the tentative definition that acts as the real definition in a TU.
/// Returns null if there is a proper definition available.
VarDecl *getActingDefinition();
const VarDecl *getActingDefinition() const {
return const_cast<VarDecl*>(this)->getActingDefinition();
}
/// Get the real (not just tentative) definition for this declaration.
VarDecl *getDefinition(ASTContext &);
const VarDecl *getDefinition(ASTContext &C) const {
return const_cast<VarDecl*>(this)->getDefinition(C);
}
VarDecl *getDefinition() {
return getDefinition(getASTContext());
}
const VarDecl *getDefinition() const {
return const_cast<VarDecl*>(this)->getDefinition();
}
/// Determine whether this is or was instantiated from an out-of-line
/// definition of a static data member.
bool isOutOfLine() const override;
/// Returns true for file scoped variable declaration.
bool isFileVarDecl() const {
Kind K = getKind();
if (K == ParmVar || K == ImplicitParam)
return false;
if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
return true;
if (isStaticDataMember())
return true;
return false;
}
/// Get the initializer for this variable, no matter which
/// declaration it is attached to.
const Expr *getAnyInitializer() const {
const VarDecl *D;
return getAnyInitializer(D);
}
/// Get the initializer for this variable, no matter which
/// declaration it is attached to. Also get that declaration.
const Expr *getAnyInitializer(const VarDecl *&D) const;
bool hasInit() const;
const Expr *getInit() const {
return const_cast<VarDecl *>(this)->getInit();
}
Expr *getInit();
/// Retrieve the address of the initializer expression.
Stmt **getInitAddress();
void setInit(Expr *I);
/// Get the initializing declaration of this variable, if any. This is
/// usually the definition, except that for a static data member it can be
/// the in-class declaration.
VarDecl *getInitializingDeclaration();
const VarDecl *getInitializingDeclaration() const {
return const_cast<VarDecl *>(this)->getInitializingDeclaration();
}
/// Determine whether this variable's value might be usable in a
/// constant expression, according to the relevant language standard.
/// This only checks properties of the declaration, and does not check
/// whether the initializer is in fact a constant expression.
///
/// This corresponds to C++20 [expr.const]p3's notion of a
/// "potentially-constant" variable.
bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
/// Determine whether this variable's value can be used in a
/// constant expression, according to the relevant language standard,
/// including checking whether it was initialized by a constant expression.
bool isUsableInConstantExpressions(const ASTContext &C) const;
EvaluatedStmt *ensureEvaluatedStmt() const;
EvaluatedStmt *getEvaluatedStmt() const;
/// Attempt to evaluate the value of the initializer attached to this
/// declaration, and produce notes explaining why it cannot be evaluated.
/// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
APValue *evaluateValue() const;
private:
APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
bool IsConstantInitialization) const;
public:
/// Return the already-evaluated value of this variable's
/// initializer, or NULL if the value is not yet known. Returns pointer
/// to untyped APValue if the value could not be evaluated.
APValue *getEvaluatedValue() const;
/// Evaluate the destruction of this variable to determine if it constitutes
/// constant destruction.
///
/// \pre hasConstantInitialization()
/// \return \c true if this variable has constant destruction, \c false if
/// not.
bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
/// Determine whether this variable has constant initialization.
///
/// This is only set in two cases: when the language semantics require
/// constant initialization (globals in C and some globals in C++), and when
/// the variable is usable in constant expressions (constexpr, const int, and
/// reference variables in C++).
bool hasConstantInitialization() const;
/// Determine whether the initializer of this variable is an integer constant
/// expression. For use in C++98, where this affects whether the variable is
/// usable in constant expressions.
bool hasICEInitializer(const ASTContext &Context) const;
/// Evaluate the initializer of this variable to determine whether it's a
/// constant initializer. Should only be called once, after completing the
/// definition of the variable.
bool checkForConstantInitialization(
SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
void setInitStyle(InitializationStyle Style) {
VarDeclBits.InitStyle = Style;
}
/// The style of initialization for this declaration.
///
/// C-style initialization is "int x = 1;". Call-style initialization is
/// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
/// the expression inside the parens or a "ClassType(a,b,c)" class constructor
/// expression for class types. List-style initialization is C++11 syntax,
/// e.g. "int x{1};". Clients can distinguish between different forms of
/// initialization by checking this value. In particular, "int x = {1};" is
/// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
/// Init expression in all three cases is an InitListExpr.
InitializationStyle getInitStyle() const {
return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
}
/// Whether the initializer is a direct-initializer (list or call).
bool isDirectInit() const {
return getInitStyle() != CInit;
}
/// If this definition should pretend to be a declaration.
bool isThisDeclarationADemotedDefinition() const {
return isa<ParmVarDecl>(this) ? false :
NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
}
/// This is a definition which should be demoted to a declaration.
///
/// In some cases (mostly module merging) we can end up with two visible
/// definitions one of which needs to be demoted to a declaration to keep
/// the AST invariants.
void demoteThisDefinitionToDeclaration() {
assert(isThisDeclarationADefinition() && "Not a definition!");
assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
}
/// Determine whether this variable is the exception variable in a
/// C++ catch statememt or an Objective-C \@catch statement.
bool isExceptionVariable() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
}
void setExceptionVariable(bool EV) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.ExceptionVar = EV;
}
/// Determine whether this local variable can be used with the named
/// return value optimization (NRVO).
///
/// The named return value optimization (NRVO) works by marking certain
/// non-volatile local variables of class type as NRVO objects. These
/// locals can be allocated within the return slot of their containing
/// function, in which case there is no need to copy the object to the
/// return slot when returning from the function. Within the function body,
/// each return that returns the NRVO object will have this variable as its
/// NRVO candidate.
bool isNRVOVariable() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
}
void setNRVOVariable(bool NRVO) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.NRVOVariable = NRVO;
}
/// Determine whether this variable is the for-range-declaration in
/// a C++0x for-range statement.
bool isCXXForRangeDecl() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
}
void setCXXForRangeDecl(bool FRD) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.CXXForRangeDecl = FRD;
}
/// Determine whether this variable is a for-loop declaration for a
/// for-in statement in Objective-C.
bool isObjCForDecl() const {
return NonParmVarDeclBits.ObjCForDecl;
}
void setObjCForDecl(bool FRD) {
NonParmVarDeclBits.ObjCForDecl = FRD;
}
/// Determine whether this variable is an ARC pseudo-__strong variable. A
/// pseudo-__strong variable has a __strong-qualified type but does not
/// actually retain the object written into it. Generally such variables are
/// also 'const' for safety. There are 3 cases where this will be set, 1) if
/// the variable is annotated with the objc_externally_retained attribute, 2)
/// if its 'self' in a non-init method, or 3) if its the variable in an for-in
/// loop.
bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
/// Whether this variable is (C++1z) inline.
bool isInline() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
}
bool isInlineSpecified() const {
return isa<ParmVarDecl>(this) ? false
: NonParmVarDeclBits.IsInlineSpecified;
}
void setInlineSpecified() {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsInline = true;
NonParmVarDeclBits.IsInlineSpecified = true;
}
void setImplicitlyInline() {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsInline = true;
}
/// Whether this variable is (C++11) constexpr.
bool isConstexpr() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
}
void setConstexpr(bool IC) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsConstexpr = IC;
}
/// Whether this variable is the implicit variable for a lambda init-capture.
bool isInitCapture() const {
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
}
void setInitCapture(bool IC) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.IsInitCapture = IC;
}
/// Determine whether this variable is actually a function parameter pack or
/// init-capture pack.
bool isParameterPack() const;
/// Whether this local extern variable declaration's previous declaration
/// was declared in the same block scope. Only correct in C++.
bool isPreviousDeclInSameBlockScope() const {
return isa<ParmVarDecl>(this)
? false
: NonParmVarDeclBits.PreviousDeclInSameBlockScope;
}
void setPreviousDeclInSameBlockScope(bool Same) {
assert(!isa<ParmVarDecl>(this));
NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
}
/// Indicates the capture is a __block variable that is captured by a block
/// that can potentially escape (a block for which BlockDecl::doesNotEscape
/// returns false).
bool isEscapingByref() const;
/// Indicates the capture is a __block variable that is never captured by an
/// escaping block.
bool isNonEscapingByref() const;
void setEscapingByref() {
NonParmVarDeclBits.EscapingByref = true;
}
/// Determines if this variable's alignment is dependent.
bool hasDependentAlignment() const;
/// Retrieve the variable declaration from which this variable could
/// be instantiated, if it is an instantiation (rather than a non-template).
VarDecl *getTemplateInstantiationPattern() const;
/// If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
VarDecl *getInstantiatedFromStaticDataMember() const;
/// If this variable is an instantiation of a variable template or a
/// static data member of a class template, determine what kind of
/// template specialization or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// Get the template specialization kind of this variable for the purposes of
/// template instantiation. This differs from getTemplateSpecializationKind()
/// for an instantiation of a class-scope explicit specialization.
TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const;
/// If this variable is an instantiation of a variable template or a
/// static data member of a class template, determine its point of
/// instantiation.
SourceLocation getPointOfInstantiation() const;
/// If this variable is an instantiation of a static data member of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// For a static data member that was instantiated from a static
/// data member of a class template, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// Specify that this variable is an instantiation of the
/// static data member VD.
void setInstantiationOfStaticDataMember(VarDecl *VD,
TemplateSpecializationKind TSK);
/// Retrieves the variable template that is described by this
/// variable declaration.
///
/// Every variable template is represented as a VarTemplateDecl and a
/// VarDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
/// VarDecl that from a VarTemplateDecl, while
/// getDescribedVarTemplate() retrieves the VarTemplateDecl from
/// a VarDecl.
VarTemplateDecl *getDescribedVarTemplate() const;
void setDescribedVarTemplate(VarTemplateDecl *Template);
// Is this variable known to have a definition somewhere in the complete
// program? This may be true even if the declaration has internal linkage and
// has no definition within this source file.
bool isKnownToBeDefined() const;
/// Is destruction of this variable entirely suppressed? If so, the variable
/// need not have a usable destructor at all.
bool isNoDestroy(const ASTContext &) const;
/// Would the destruction of this variable have any effect, and if so, what
/// kind?
QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
/// Whether this variable has a flexible array member initialized with one
/// or more elements. This can only be called for declarations where
/// hasInit() is true.
///
/// (The standard doesn't allow initializing flexible array members; this is
/// a gcc/msvc extension.)
bool hasFlexibleArrayInit(const ASTContext &Ctx) const;
/// If hasFlexibleArrayInit is true, compute the number of additional bytes
/// necessary to store those elements. Otherwise, returns zero.
///
/// This can only be called for declarations where hasInit() is true.
CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
};
class ImplicitParamDecl : public VarDecl {
void anchor() override;
public:
/// Defines the kind of the implicit parameter: is this an implicit parameter
/// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
/// context or something else.
enum ImplicitParamKind : unsigned {
/// Parameter for Objective-C 'self' argument
ObjCSelf,
/// Parameter for Objective-C '_cmd' argument
ObjCCmd,
/// Parameter for C++ 'this' argument
CXXThis,
/// Parameter for C++ virtual table pointers
CXXVTT,
/// Parameter for captured context
CapturedContext,
/// Parameter for Thread private variable
ThreadPrivateVar,
/// Other implicit parameter
Other,
};
/// Create implicit parameter.
static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, ImplicitParamKind ParamKind);
static ImplicitParamDecl *Create(ASTContext &C, QualType T,
ImplicitParamKind ParamKind);
static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
IdentifierInfo *Id, QualType Type,
ImplicitParamKind ParamKind)
: VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
/*TInfo=*/nullptr, SC_None) {
NonParmVarDeclBits.ImplicitParamKind = ParamKind;
setImplicit();
}
ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
: VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
SourceLocation(), /*Id=*/nullptr, Type,
/*TInfo=*/nullptr, SC_None) {
NonParmVarDeclBits.ImplicitParamKind = ParamKind;
setImplicit();
}
/// Returns the implicit parameter kind.
ImplicitParamKind getParameterKind() const {
return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ImplicitParam; }
};
/// Represents a parameter to a function.
class ParmVarDecl : public VarDecl {
public:
enum { MaxFunctionScopeDepth = 255 };
enum { MaxFunctionScopeIndex = 255 };
protected:
ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
: VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
assert(ParmVarDeclBits.IsKNRPromoted == false);
assert(ParmVarDeclBits.IsObjCMethodParam == false);
setDefaultArg(DefArg);
}
public:
static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg);
static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
void setObjCMethodScopeInfo(unsigned parameterIndex) {
ParmVarDeclBits.IsObjCMethodParam = true;
setParameterIndex(parameterIndex);
}
void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
assert(!ParmVarDeclBits.IsObjCMethodParam);
ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
&& "truncation!");
setParameterIndex(parameterIndex);
}
bool isObjCMethodParameter() const {
return ParmVarDeclBits.IsObjCMethodParam;
}
/// Determines whether this parameter is destroyed in the callee function.
bool isDestroyedInCallee() const;
unsigned getFunctionScopeDepth() const {
if (ParmVarDeclBits.IsObjCMethodParam) return 0;
return ParmVarDeclBits.ScopeDepthOrObjCQuals;
}
static constexpr unsigned getMaxFunctionScopeDepth() {
return (1u << NumScopeDepthOrObjCQualsBits) - 1;
}
/// Returns the index of this parameter in its prototype or method scope.
unsigned getFunctionScopeIndex() const {
return getParameterIndex();
}
ObjCDeclQualifier getObjCDeclQualifier() const {
if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
}
void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
assert(ParmVarDeclBits.IsObjCMethodParam);
ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
}
/// True if the value passed to this parameter must undergo
/// K&R-style default argument promotion:
///
/// C99 6.5.2.2.
/// If the expression that denotes the called function has a type
/// that does not include a prototype, the integer promotions are
/// performed on each argument, and arguments that have type float
/// are promoted to double.
bool isKNRPromoted() const {
return ParmVarDeclBits.IsKNRPromoted;
}
void setKNRPromoted(bool promoted) {
ParmVarDeclBits.IsKNRPromoted = promoted;
}
Expr *getDefaultArg();
const Expr *getDefaultArg() const {
return const_cast<ParmVarDecl *>(this)->getDefaultArg();
}
void setDefaultArg(Expr *defarg);
/// Retrieve the source range that covers the entire default
/// argument.
SourceRange getDefaultArgRange() const;
void setUninstantiatedDefaultArg(Expr *arg);
Expr *getUninstantiatedDefaultArg();
const Expr *getUninstantiatedDefaultArg() const {
return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
}
/// Determines whether this parameter has a default argument,
/// either parsed or not.
bool hasDefaultArg() const;
/// Determines whether this parameter has a default argument that has not
/// yet been parsed. This will occur during the processing of a C++ class
/// whose member functions have default arguments, e.g.,
/// @code
/// class X {
/// public:
/// void f(int x = 17); // x has an unparsed default argument now
/// }; // x has a regular default argument now
/// @endcode
bool hasUnparsedDefaultArg() const {
return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
}
bool hasUninstantiatedDefaultArg() const {
return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
}
/// Specify that this parameter has an unparsed default argument.
/// The argument will be replaced with a real default argument via
/// setDefaultArg when the class definition enclosing the function
/// declaration that owns this default argument is completed.
void setUnparsedDefaultArg() {
ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
}
bool hasInheritedDefaultArg() const {
return ParmVarDeclBits.HasInheritedDefaultArg;
}
void setHasInheritedDefaultArg(bool I = true) {
ParmVarDeclBits.HasInheritedDefaultArg = I;
}
QualType getOriginalType() const;
/// Sets the function declaration that owns this
/// ParmVarDecl. Since ParmVarDecls are often created before the
/// FunctionDecls that own them, this routine is required to update
/// the DeclContext appropriately.
void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ParmVar; }
private:
enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
void setParameterIndex(unsigned parameterIndex) {
if (parameterIndex >= ParameterIndexSentinel) {
setParameterIndexLarge(parameterIndex);
return;
}
ParmVarDeclBits.ParameterIndex = parameterIndex;
assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
}
unsigned getParameterIndex() const {
unsigned d = ParmVarDeclBits.ParameterIndex;
return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
}
void setParameterIndexLarge(unsigned parameterIndex);
unsigned getParameterIndexLarge() const;
};
enum class MultiVersionKind {
None,
Target,
CPUSpecific,
CPUDispatch,
TargetClones
};
/// Represents a function declaration or definition.
///
/// Since a given function can be declared several times in a program,
/// there may be several FunctionDecls that correspond to that
/// function. Only one of those FunctionDecls will be found when
/// traversing the list of declarations in the context of the
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
/// contains all of the information known about the function. Other,
/// previous declarations of the function are available via the
/// getPreviousDecl() chain.
class FunctionDecl : public DeclaratorDecl,
public DeclContext,
public Redeclarable<FunctionDecl> {
// This class stores some data in DeclContext::FunctionDeclBits
// to save some space. Use the provided accessors to access it.
public:
/// The kind of templated function a FunctionDecl can be.
enum TemplatedKind {
// Not templated.
TK_NonTemplate,
// The pattern in a function template declaration.
TK_FunctionTemplate,
// A non-template function that is an instantiation or explicit
// specialization of a member of a templated class.
TK_MemberSpecialization,
// An instantiation or explicit specialization of a function template.
// Note: this might have been instantiated from a templated class if it
// is a class-scope explicit specialization.
TK_FunctionTemplateSpecialization,
// A function template specialization that hasn't yet been resolved to a
// particular specialized function template.
TK_DependentFunctionTemplateSpecialization,
// A non-template function which is in a dependent scope.
TK_DependentNonTemplate
};
/// Stashed information about a defaulted function definition whose body has
/// not yet been lazily generated.
class DefaultedFunctionInfo final
: llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
friend TrailingObjects;
unsigned NumLookups;
public:
static DefaultedFunctionInfo *Create(ASTContext &Context,
ArrayRef<DeclAccessPair> Lookups);
/// Get the unqualified lookup results that should be used in this
/// defaulted function definition.
ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
return {getTrailingObjects<DeclAccessPair>(), NumLookups};
}
};
private:
/// A new[]'d array of pointers to VarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo = nullptr;
/// The active member of this union is determined by
/// FunctionDeclBits.HasDefaultedFunctionInfo.
union {
/// The body of the function.
LazyDeclStmtPtr Body;
/// Information about a future defaulted function definition.
DefaultedFunctionInfo *DefaultedInfo;
};
unsigned ODRHash;
/// End part of this FunctionDecl's source range.
///
/// We could compute the full range in getSourceRange(). However, when we're
/// dealing with a function definition deserialized from a PCH/AST file,
/// we can only compute the full range once the function body has been
/// de-serialized, so it's far better to have the (sometimes-redundant)
/// EndRangeLoc.
SourceLocation EndRangeLoc;
/// The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates this value will be NULL, unless this declaration was
/// declared directly inside of a function template, in which case it will
/// have a pointer to a FunctionDecl, stored in the NamedDecl. For function
/// declarations that describe a function template, this will be a pointer to
/// a FunctionTemplateDecl, stored in the NamedDecl. For member functions of
/// class template specializations, this will be a MemberSpecializationInfo
/// pointer containing information about the specialization.
/// For function template specializations, this will be a
/// FunctionTemplateSpecializationInfo, which contains information about
/// the template being specialized and the template arguments involved in
/// that specialization.
llvm::PointerUnion<NamedDecl *, MemberSpecializationInfo *,
FunctionTemplateSpecializationInfo *,
DependentFunctionTemplateSpecializationInfo *>
TemplateOrSpecialization;
/// Provides source/type location info for the declaration name embedded in
/// the DeclaratorDecl base class.
DeclarationNameLoc DNLoc;
/// Specify that this function declaration is actually a function
/// template specialization.
///
/// \param C the ASTContext.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
///
/// \param TemplateArgsAsWritten location info of template arguments.
///
/// \param PointOfInstantiation point at which the function template
/// specialization was first instantiated.
void setFunctionTemplateSpecialization(ASTContext &C,
FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK,
const TemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation PointOfInstantiation);
/// Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
TemplateSpecializationKind TSK);
void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
// This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
// need to access this bit but we want to avoid making ASTDeclWriter
// a friend of FunctionDeclBitfields just for this.
bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
/// Whether an ODRHash has been stored.
bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
/// State that an ODRHash has been stored.
void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
protected:
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
Expr *TrailingRequiresClause = nullptr);
using redeclarable_base = Redeclarable<FunctionDecl>;
FunctionDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
FunctionDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
FunctionDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
static FunctionDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation NLoc, DeclarationName N, QualType T,
TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
bool isInlineSpecified = false, bool hasWrittenPrototype = true,
ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
Expr *TrailingRequiresClause = nullptr) {
DeclarationNameInfo NameInfo(N, NLoc);
return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
UsesFPIntrin, isInlineSpecified,
hasWrittenPrototype, ConstexprKind,
TrailingRequiresClause);
}
static FunctionDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified,
bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
Expr *TrailingRequiresClause);
static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
bool Qualified) const override;
void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
/// Returns the location of the ellipsis of a variadic function.
SourceLocation getEllipsisLoc() const {
const auto *FPT = getType()->getAs<FunctionProtoType>();
if (FPT && FPT->isVariadic())
return FPT->getEllipsisLoc();
return SourceLocation();
}
SourceRange getSourceRange() const override LLVM_READONLY;
// Function definitions.
//
// A function declaration may be:
// - a non defining declaration,
// - a definition. A function may be defined because:
// - it has a body, or will have it in the case of late parsing.
// - it has an uninstantiated body. The body does not exist because the
// function is not used yet, but the declaration is considered a
// definition and does not allow other definition of this function.
// - it does not have a user specified body, but it does not allow
// redefinition, because it is deleted/defaulted or is defined through
// some other mechanism (alias, ifunc).
/// Returns true if the function has a body.
///
/// The function body might be in any of the (re-)declarations of this
/// function. The variant that accepts a FunctionDecl pointer will set that
/// function declaration to the actual declaration containing the body (if
/// there is one).
bool hasBody(const FunctionDecl *&Definition) const;
bool hasBody() const override {
const FunctionDecl* Definition;
return hasBody(Definition);
}
/// Returns whether the function has a trivial body that does not require any
/// specific codegen.
bool hasTrivialBody() const;
/// Returns true if the function has a definition that does not need to be
/// instantiated.
///
/// The variant that accepts a FunctionDecl pointer will set that function
/// declaration to the declaration that is a definition (if there is one).
///
/// \param CheckForPendingFriendDefinition If \c true, also check for friend
/// declarations that were instantiataed from function definitions.
/// Such a declaration behaves as if it is a definition for the
/// purpose of redefinition checking, but isn't actually a "real"
/// definition until its body is instantiated.
bool isDefined(const FunctionDecl *&Definition,
bool CheckForPendingFriendDefinition = false) const;
bool isDefined() const {
const FunctionDecl* Definition;
return isDefined(Definition);
}
/// Get the definition for this declaration.
FunctionDecl *getDefinition() {
const FunctionDecl *Definition;
if (isDefined(Definition))
return const_cast<FunctionDecl *>(Definition);
return nullptr;
}
const FunctionDecl *getDefinition() const {
return const_cast<FunctionDecl *>(this)->getDefinition();
}
/// Retrieve the body (definition) of the function. The function body might be
/// in any of the (re-)declarations of this function. The variant that accepts
/// a FunctionDecl pointer will set that function declaration to the actual
/// declaration containing the body (if there is one).
/// NOTE: For checking if there is a body, use hasBody() instead, to avoid
/// unnecessary AST de-serialization of the body.
Stmt *getBody(const FunctionDecl *&Definition) const;
Stmt *getBody() const override {
const FunctionDecl* Definition;
return getBody(Definition);
}
/// Returns whether this specific declaration of the function is also a
/// definition that does not contain uninstantiated body.
///
/// This does not determine whether the function has been defined (e.g., in a
/// previous definition); for that information, use isDefined.
///
/// Note: the function declaration does not become a definition until the
/// parser reaches the definition, if called before, this function will return
/// `false`.
bool isThisDeclarationADefinition() const {
return isDeletedAsWritten() || isDefaulted() ||
doesThisDeclarationHaveABody() || hasSkippedBody() ||
willHaveBody() || hasDefiningAttr();
}
/// Determine whether this specific declaration of the function is a friend
/// declaration that was instantiated from a function definition. Such
/// declarations behave like definitions in some contexts.
bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
/// Returns whether this specific declaration of the function has a body.
bool doesThisDeclarationHaveABody() const {
return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
isLateTemplateParsed();
}
void setBody(Stmt *B);
void setLazyBody(uint64_t Offset) {
FunctionDeclBits.HasDefaultedFunctionInfo = false;
Body = LazyDeclStmtPtr(Offset);
}
void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
/// Whether this function is variadic.
bool isVariadic() const;
/// Whether this function is marked as virtual explicitly.
bool isVirtualAsWritten() const {
return FunctionDeclBits.IsVirtualAsWritten;
}
/// State that this function is marked as virtual explicitly.
void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
/// Whether this virtual function is pure, i.e. makes the containing class
/// abstract.
bool isPure() const { return FunctionDeclBits.IsPure; }
void setPure(bool P = true);
/// Whether this templated function will be late parsed.
bool isLateTemplateParsed() const {
return FunctionDeclBits.IsLateTemplateParsed;
}
/// State that this templated function will be late parsed.
void setLateTemplateParsed(bool ILT = true) {
FunctionDeclBits.IsLateTemplateParsed = ILT;
}
/// Whether this function is "trivial" in some specialized C++ senses.
/// Can only be true for default constructors, copy constructors,
/// copy assignment operators, and destructors. Not meaningful until
/// the class has been fully built by Sema.
bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
/// Whether this function is defaulted. Valid for e.g.
/// special member functions, defaulted comparisions (not methods!).
bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
/// Whether this function is explicitly defaulted.
bool isExplicitlyDefaulted() const {
return FunctionDeclBits.IsExplicitlyDefaulted;
}
/// State that this function is explicitly defaulted.
void setExplicitlyDefaulted(bool ED = true) {
FunctionDeclBits.IsExplicitlyDefaulted = ED;
}
/// True if this method is user-declared and was not
/// deleted or defaulted on its first declaration.
bool isUserProvided() const {
auto *DeclAsWritten = this;
if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
DeclAsWritten = Pattern;
return !(DeclAsWritten->isDeleted() ||
DeclAsWritten->getCanonicalDecl()->isDefaulted());
}
bool isIneligibleOrNotSelected() const {
return FunctionDeclBits.IsIneligibleOrNotSelected;
}
void setIneligibleOrNotSelected(bool II) {
FunctionDeclBits.IsIneligibleOrNotSelected = II;
}
/// Whether falling off this function implicitly returns null/zero.
/// If a more specific implicit return value is required, front-ends
/// should synthesize the appropriate return statements.
bool hasImplicitReturnZero() const {
return FunctionDeclBits.HasImplicitReturnZero;
}
/// State that falling off this function implicitly returns null/zero.
/// If a more specific implicit return value is required, front-ends
/// should synthesize the appropriate return statements.
void setHasImplicitReturnZero(bool IRZ) {
FunctionDeclBits.HasImplicitReturnZero = IRZ;
}
/// Whether this function has a prototype, either because one
/// was explicitly written or because it was "inherited" by merging
/// a declaration without a prototype with a declaration that has a
/// prototype.
bool hasPrototype() const {
return hasWrittenPrototype() || hasInheritedPrototype();
}
/// Whether this function has a written prototype.
bool hasWrittenPrototype() const {
return FunctionDeclBits.HasWrittenPrototype;
}
/// State that this function has a written prototype.
void setHasWrittenPrototype(bool P = true) {
FunctionDeclBits.HasWrittenPrototype = P;
}
/// Whether this function inherited its prototype from a
/// previous declaration.
bool hasInheritedPrototype() const {
return FunctionDeclBits.HasInheritedPrototype;
}
/// State that this function inherited its prototype from a
/// previous declaration.
void setHasInheritedPrototype(bool P = true) {
FunctionDeclBits.HasInheritedPrototype = P;
}
/// Whether this is a (C++11) constexpr function or constexpr constructor.
bool isConstexpr() const {
return getConstexprKind() != ConstexprSpecKind::Unspecified;
}
void setConstexprKind(ConstexprSpecKind CSK) {
FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
}
ConstexprSpecKind getConstexprKind() const {
return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
}
bool isConstexprSpecified() const {
return getConstexprKind() == ConstexprSpecKind::Constexpr;
}
bool isConsteval() const {
return getConstexprKind() == ConstexprSpecKind::Consteval;
}
/// Whether the instantiation of this function is pending.
/// This bit is set when the decision to instantiate this function is made
/// and unset if and when the function body is created. That leaves out
/// cases where instantiation did not happen because the template definition
/// was not seen in this TU. This bit remains set in those cases, under the
/// assumption that the instantiation will happen in some other TU.
bool instantiationIsPending() const {
return FunctionDeclBits.InstantiationIsPending;
}
/// State that the instantiation of this function is pending.
/// (see instantiationIsPending)
void setInstantiationIsPending(bool IC) {
FunctionDeclBits.InstantiationIsPending = IC;
}
/// Indicates the function uses __try.
bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
/// Whether this function has been deleted.
///
/// A function that is "deleted" (via the C++0x "= delete" syntax)
/// acts like a normal function, except that it cannot actually be
/// called or have its address taken. Deleted functions are
/// typically used in C++ overload resolution to attract arguments
/// whose type or lvalue/rvalue-ness would permit the use of a
/// different overload that would behave incorrectly. For example,
/// one might use deleted functions to ban implicit conversion from
/// a floating-point number to an Integer type:
///
/// @code
/// struct Integer {
/// Integer(long); // construct from a long
/// Integer(double) = delete; // no construction from float or double
/// Integer(long double) = delete; // no construction from long double
/// };
/// @endcode
// If a function is deleted, its first declaration must be.
bool isDeleted() const {
return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
}
bool isDeletedAsWritten() const {
return FunctionDeclBits.IsDeleted && !isDefaulted();
}
void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
/// Determines whether this function is "main", which is the
/// entry point into an executable program.
bool isMain() const;
/// Determines whether this function is a MSVCRT user defined entry
/// point.
bool isMSVCRTEntryPoint() const;
/// Determines whether this operator new or delete is one
/// of the reserved global placement operators:
/// void *operator new(size_t, void *);
/// void *operator new[](size_t, void *);
/// void operator delete(void *, void *);
/// void operator delete[](void *, void *);
/// These functions have special behavior under [new.delete.placement]:
/// These functions are reserved, a C++ program may not define
/// functions that displace the versions in the Standard C++ library.
/// The provisions of [basic.stc.dynamic] do not apply to these
/// reserved placement forms of operator new and operator delete.
///
/// This function must be an allocation or deallocation function.
bool isReservedGlobalPlacementOperator() const;
/// Determines whether this function is one of the replaceable
/// global allocation functions:
/// void *operator new(size_t);
/// void *operator new(size_t, const std::nothrow_t &) noexcept;
/// void *operator new[](size_t);
/// void *operator new[](size_t, const std::nothrow_t &) noexcept;
/// void operator delete(void *) noexcept;
/// void operator delete(void *, std::size_t) noexcept; [C++1y]
/// void operator delete(void *, const std::nothrow_t &) noexcept;
/// void operator delete[](void *) noexcept;
/// void operator delete[](void *, std::size_t) noexcept; [C++1y]
/// void operator delete[](void *, const std::nothrow_t &) noexcept;
/// These functions have special behavior under C++1y [expr.new]:
/// An implementation is allowed to omit a call to a replaceable global
/// allocation function. [...]
///
/// If this function is an aligned allocation/deallocation function, return
/// the parameter number of the requested alignment through AlignmentParam.
///
/// If this function is an allocation/deallocation function that takes
/// the `std::nothrow_t` tag, return true through IsNothrow,
bool isReplaceableGlobalAllocationFunction(
Optional<unsigned> *AlignmentParam = nullptr,
bool *IsNothrow = nullptr) const;
/// Determine if this function provides an inline implementation of a builtin.
bool isInlineBuiltinDeclaration() const;
/// Determine whether this is a destroying operator delete.
bool isDestroyingOperatorDelete() const;
/// Compute the language linkage.
LanguageLinkage getLanguageLinkage() const;
/// Determines whether this function is a function with
/// external, C linkage.
bool isExternC() const;
/// Determines whether this function's context is, or is nested within,
/// a C++ extern "C" linkage spec.
bool isInExternCContext() const;
/// Determines whether this function's context is, or is nested within,
/// a C++ extern "C++" linkage spec.
bool isInExternCXXContext() const;
/// Determines whether this is a global function.
bool isGlobal() const;
/// Determines whether this function is known to be 'noreturn', through
/// an attribute on its declaration or its type.
bool isNoReturn() const;
/// True if the function was a definition but its body was skipped.
bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
void setHasSkippedBody(bool Skipped = true) {
FunctionDeclBits.HasSkippedBody = Skipped;
}
/// True if this function will eventually have a body, once it's fully parsed.
bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
/// True if this function is considered a multiversioned function.
bool isMultiVersion() const {
return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
}
/// Sets the multiversion state for this declaration and all of its
/// redeclarations.
void setIsMultiVersion(bool V = true) {
getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
}
/// Gets the kind of multiversioning attribute this declaration has. Note that
/// this can return a value even if the function is not multiversion, such as
/// the case of 'target'.
MultiVersionKind getMultiVersionKind() const;
/// True if this function is a multiversioned dispatch function as a part of
/// the cpu_specific/cpu_dispatch functionality.
bool isCPUDispatchMultiVersion() const;
/// True if this function is a multiversioned processor specific function as a
/// part of the cpu_specific/cpu_dispatch functionality.
bool isCPUSpecificMultiVersion() const;
/// True if this function is a multiversioned dispatch function as a part of
/// the target functionality.
bool isTargetMultiVersion() const;
/// True if this function is a multiversioned dispatch function as a part of
/// the target-clones functionality.
bool isTargetClonesMultiVersion() const;
/// \brief Get the associated-constraints of this function declaration.
/// Currently, this will either be a vector of size 1 containing the
/// trailing-requires-clause or an empty vector.
///
/// Use this instead of getTrailingRequiresClause for concepts APIs that
/// accept an ArrayRef of constraint expressions.
void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
if (auto *TRC = getTrailingRequiresClause())
AC.push_back(TRC);
}
void setPreviousDeclaration(FunctionDecl * PrevDecl);
FunctionDecl *getCanonicalDecl() override;
const FunctionDecl *getCanonicalDecl() const {
return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
}
unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
// ArrayRef interface to parameters.
ArrayRef<ParmVarDecl *> parameters() const {
return {ParamInfo, getNumParams()};
}
MutableArrayRef<ParmVarDecl *> parameters() {
return {ParamInfo, getNumParams()};
}
// Iterator access to formal parameters.
using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
bool param_empty() const { return parameters().empty(); }
param_iterator param_begin() { return parameters().begin(); }
param_iterator param_end() { return parameters().end(); }
param_const_iterator param_begin() const { return parameters().begin(); }
param_const_iterator param_end() const { return parameters().end(); }
size_t param_size() const { return parameters().size(); }
/// Return the number of parameters this function must have based on its
/// FunctionType. This is the length of the ParamInfo array after it has been
/// created.
unsigned getNumParams() const;
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
setParams(getASTContext(), NewParamInfo);
}
/// Returns the minimum number of arguments needed to call this function. This
/// may be fewer than the number of function parameters, if some of the
/// parameters have default arguments (in C++).
unsigned getMinRequiredArguments() const;
/// Determine whether this function has a single parameter, or multiple
/// parameters where all but the first have default arguments.
///
/// This notion is used in the definition of copy/move constructors and
/// initializer list constructors. Note that, unlike getMinRequiredArguments,
/// parameter packs are not treated specially here.
bool hasOneParamOrDefaultArgs() const;
/// Find the source location information for how the type of this function
/// was written. May be absent (for example if the function was declared via
/// a typedef) and may contain a different type from that of the function
/// (for example if the function type was adjusted by an attribute).
FunctionTypeLoc getFunctionTypeLoc() const;
QualType getReturnType() const {
return getType()->castAs<FunctionType>()->getReturnType();
}
/// Attempt to compute an informative source range covering the
/// function return type. This may omit qualifiers and other information with
/// limited representation in the AST.
SourceRange getReturnTypeSourceRange() const;
/// Attempt to compute an informative source range covering the
/// function parameters, including the ellipsis of a variadic function.
/// The source range excludes the parentheses, and is invalid if there are
/// no parameters and no ellipsis.
SourceRange getParametersSourceRange() const;
/// Get the declared return type, which may differ from the actual return
/// type if the return type is deduced.
QualType getDeclaredReturnType() const {
auto *TSI = getTypeSourceInfo();
QualType T = TSI ? TSI->getType() : getType();
return T->castAs<FunctionType>()->getReturnType();
}
/// Gets the ExceptionSpecificationType as declared.
ExceptionSpecificationType getExceptionSpecType() const {
auto *TSI = getTypeSourceInfo();
QualType T = TSI ? TSI->getType() : getType();
const auto *FPT = T->getAs<FunctionProtoType>();
return FPT ? FPT->getExceptionSpecType() : EST_None;
}
/// Attempt to compute an informative source range covering the
/// function exception specification, if any.
SourceRange getExceptionSpecSourceRange() const;
/// Determine the type of an expression that calls this function.
QualType getCallResultType() const {
return getType()->castAs<FunctionType>()->getCallResultType(
getASTContext());
}
/// Returns the storage class as written in the source. For the
/// computed linkage of symbol, see getLinkage.
StorageClass getStorageClass() const {
return static_cast<StorageClass>(FunctionDeclBits.SClass);
}
/// Sets the storage class as written in the source.
void setStorageClass(StorageClass SClass) {
FunctionDeclBits.SClass = SClass;
}
/// Determine whether the "inline" keyword was specified for this
/// function.
bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
/// Set whether the "inline" keyword was specified for this function.
void setInlineSpecified(bool I) {
FunctionDeclBits.IsInlineSpecified = I;
FunctionDeclBits.IsInline = I;
}
/// Determine whether the function was declared in source context
/// that requires constrained FP intrinsics
bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
/// Set whether the function was declared in source context
/// that requires constrained FP intrinsics
void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
/// Flag that this function is implicitly inline.
void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
/// Determine whether this function should be inlined, because it is
/// either marked "inline" or "constexpr" or is a member function of a class
/// that was defined in the class body.
bool isInlined() const { return FunctionDeclBits.IsInline; }
bool isInlineDefinitionExternallyVisible() const;
bool isMSExternInline() const;
bool doesDeclarationForceExternallyVisibleDefinition() const;
bool isStatic() const { return getStorageClass() == SC_Static; }
/// Whether this function declaration represents an C++ overloaded
/// operator, e.g., "operator+".
bool isOverloadedOperator() const {
return getOverloadedOperator() != OO_None;
}
OverloadedOperatorKind getOverloadedOperator() const;
const IdentifierInfo *getLiteralIdentifier() const;
/// If this function is an instantiation of a member function
/// of a class template specialization, retrieves the function from
/// which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// functions of class templates and for instantiations of function
/// templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// void f(T);
/// };
/// \endcode
///
/// The declaration for X<int>::f is a (non-templated) FunctionDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromFunction() will return
/// the FunctionDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberFunction().
FunctionDecl *getInstantiatedFromMemberFunction() const;
/// What kind of templated function this is.
TemplatedKind getTemplatedKind() const;
/// If this function is an instantiation of a member function of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(FunctionDecl *FD,
TemplateSpecializationKind TSK) {
setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
}
/// Specify that this function declaration was instantiated from a
/// FunctionDecl FD. This is only used if this is a function declaration
/// declared locally inside of a function template.
void setInstantiatedFromDecl(FunctionDecl *FD);
FunctionDecl *getInstantiatedFromDecl() const;
/// Retrieves the function template that is described by this
/// function declaration.
///
/// Every function template is represented as a FunctionTemplateDecl
/// and a FunctionDecl (or something derived from FunctionDecl). The
/// former contains template properties (such as the template
/// parameter lists) while the latter contains the actual
/// description of the template's
/// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
/// FunctionDecl that describes the function template,
/// getDescribedFunctionTemplate() retrieves the
/// FunctionTemplateDecl from a FunctionDecl.
FunctionTemplateDecl *getDescribedFunctionTemplate() const;
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
/// Determine whether this function is a function template
/// specialization.
bool isFunctionTemplateSpecialization() const {
return getPrimaryTemplate() != nullptr;
}
/// If this function is actually a function template specialization,
/// retrieve information about this function template specialization.
/// Otherwise, returns NULL.
FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
/// Determines whether this function is a function template
/// specialization or a member of a class template specialization that can
/// be implicitly instantiated.
bool isImplicitlyInstantiable() const;
/// Determines if the given function was instantiated from a
/// function template.
bool isTemplateInstantiation() const;
/// Retrieve the function declaration from which this function could
/// be instantiated, if it is an instantiation (rather than a non-template
/// or a specialization, for example).
///
/// If \p ForDefinition is \c false, explicit specializations will be treated
/// as if they were implicit instantiations. This will then find the pattern
/// corresponding to non-definition portions of the declaration, such as
/// default arguments and the exception specification.
FunctionDecl *
getTemplateInstantiationPattern(bool ForDefinition = true) const;
/// Retrieve the primary template that this function template
/// specialization either specializes or was instantiated from.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
FunctionTemplateDecl *getPrimaryTemplate() const;
/// Retrieve the template arguments used to produce this function
/// template specialization from the primary template.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
const TemplateArgumentList *getTemplateSpecializationArgs() const;
/// Retrieve the template argument list as written in the sources,
/// if any.
///
/// If this function declaration is not a function template specialization
/// or if it had no explicit template argument list, returns NULL.
/// Note that it an explicit template argument list may be written empty,
/// e.g., template<> void foo<>(char* s);
const ASTTemplateArgumentListInfo*
getTemplateSpecializationArgsAsWritten() const;
/// Specify that this function declaration is actually a function
/// template specialization.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
///
/// \param TemplateArgsAsWritten location info of template arguments.
///
/// \param PointOfInstantiation point at which the function template
/// specialization was first instantiated.
void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
SourceLocation PointOfInstantiation = SourceLocation()) {
setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
InsertPos, TSK, TemplateArgsAsWritten,
PointOfInstantiation);
}
/// Specifies that this function declaration is actually a
/// dependent function template specialization.
void setDependentTemplateSpecialization(ASTContext &Context,
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs);
DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const;
/// Determine what kind of template instantiation this function
/// represents.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// Determine the kind of template specialization this function represents
/// for the purpose of template instantiation.
TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const;
/// Determine what kind of template instantiation this function
/// represents.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// Retrieve the (first) point of instantiation of a function template
/// specialization or a member of a class template specialization.
///
/// \returns the first point of instantiation, if this function was
/// instantiated from a template; otherwise, returns an invalid source
/// location.
SourceLocation getPointOfInstantiation() const;
/// Determine whether this is or was instantiated from an out-of-line
/// definition of a member function.
bool isOutOfLine() const override;
/// Identify a memory copying or setting function.
/// If the given function is a memory copy or setting function, returns
/// the corresponding Builtin ID. If the function is not a memory function,
/// returns 0.
unsigned getMemoryFunctionKind() const;
/// Returns ODRHash of the function. This value is calculated and
/// stored on first call, then the stored value returned on the other calls.
unsigned getODRHash();
/// Returns cached ODRHash of the function. This must have been previously
/// computed and stored.
unsigned getODRHash() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstFunction && K <= lastFunction;
}
static DeclContext *castToDeclContext(const FunctionDecl *D) {
return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
}
static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents a member of a struct/union/class.
class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
unsigned BitField : 1;
unsigned Mutable : 1;
mutable unsigned CachedFieldIndex : 30;
/// The kinds of value we can store in InitializerOrBitWidth.
///
/// Note that this is compatible with InClassInitStyle except for
/// ISK_CapturedVLAType.
enum InitStorageKind {
/// If the pointer is null, there's nothing special. Otherwise,
/// this is a bitfield and the pointer is the Expr* storing the
/// bit-width.
ISK_NoInit = (unsigned) ICIS_NoInit,
/// The pointer is an (optional due to delayed parsing) Expr*
/// holding the copy-initializer.
ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
/// The pointer is an (optional due to delayed parsing) Expr*
/// holding the list-initializer.
ISK_InClassListInit = (unsigned) ICIS_ListInit,
/// The pointer is a VariableArrayType* that's been captured;
/// the enclosing context is a lambda or captured statement.
ISK_CapturedVLAType,
};
/// If this is a bitfield with a default member initializer, this
/// structure is used to represent the two expressions.
struct InitAndBitWidth {
Expr *Init;
Expr *BitWidth;
};
/// Storage for either the bit-width, the in-class initializer, or
/// both (via InitAndBitWidth), or the captured variable length array bound.
///
/// If the storage kind is ISK_InClassCopyInit or
/// ISK_InClassListInit, but the initializer is null, then this
/// field has an in-class initializer that has not yet been parsed
/// and attached.
// FIXME: Tail-allocate this to reduce the size of FieldDecl in the
// overwhelmingly common case that we have none of these things.
llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
protected:
FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
InClassInitStyle InitStyle)
: DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
BitField(false), Mutable(Mutable), CachedFieldIndex(0),
InitStorage(nullptr, (InitStorageKind) InitStyle) {
if (BW)
setBitWidth(BW);
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
InClassInitStyle InitStyle);
static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Returns the index of this field within its record,
/// as appropriate for passing to ASTRecordLayout::getFieldOffset.
unsigned getFieldIndex() const;
/// Determines whether this field is mutable (C++ only).
bool isMutable() const { return Mutable; }
/// Determines whether this field is a bitfield.
bool isBitField() const { return BitField; }
/// Determines whether this is an unnamed bitfield.
bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
/// Determines whether this field is a
/// representative for an anonymous struct or union. Such fields are
/// unnamed and are implicitly generated by the implementation to
/// store the data for the anonymous union or struct.
bool isAnonymousStructOrUnion() const;
Expr *getBitWidth() const {
if (!BitField)
return nullptr;
void *Ptr = InitStorage.getPointer();
if (getInClassInitStyle())
return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
return static_cast<Expr*>(Ptr);
}
unsigned getBitWidthValue(const ASTContext &Ctx) const;
/// Set the bit-field width for this member.
// Note: used by some clients (i.e., do not remove it).
void setBitWidth(Expr *Width) {
assert(!hasCapturedVLAType() && !BitField &&
"bit width or captured type already set");
assert(Width && "no bit width specified");
InitStorage.setPointer(
InitStorage.getInt()
? new (getASTContext())
InitAndBitWidth{getInClassInitializer(), Width}
: static_cast<void*>(Width));
BitField = true;
}
/// Remove the bit-field width from this member.
// Note: used by some clients (i.e., do not remove it).
void removeBitWidth() {
assert(isBitField() && "no bitfield width to remove");
InitStorage.setPointer(getInClassInitializer());
BitField = false;
}
/// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
/// at all and instead act as a separator between contiguous runs of other
/// bit-fields.
bool isZeroLengthBitField(const ASTContext &Ctx) const;
/// Determine if this field is a subobject of zero size, that is, either a
/// zero-length bit-field or a field of empty class type with the
/// [[no_unique_address]] attribute.
bool isZeroSize(const ASTContext &Ctx) const;
/// Get the kind of (C++11) default member initializer that this field has.
InClassInitStyle getInClassInitStyle() const {
InitStorageKind storageKind = InitStorage.getInt();
return (storageKind == ISK_CapturedVLAType
? ICIS_NoInit : (InClassInitStyle) storageKind);
}
/// Determine whether this member has a C++11 default member initializer.
bool hasInClassInitializer() const {
return getInClassInitStyle() != ICIS_NoInit;
}
/// Get the C++11 default member initializer for this member, or null if one
/// has not been set. If a valid declaration has a default member initializer,
/// but this returns null, then we have not parsed and attached it yet.
Expr *getInClassInitializer() const {
if (!hasInClassInitializer())
return nullptr;
void *Ptr = InitStorage.getPointer();
if (BitField)
return static_cast<InitAndBitWidth*>(Ptr)->Init;
return static_cast<Expr*>(Ptr);
}
/// Set the C++11 in-class initializer for this member.
void setInClassInitializer(Expr *Init) {
assert(hasInClassInitializer() && !getInClassInitializer());
if (BitField)
static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
else
InitStorage.setPointer(Init);
}
/// Remove the C++11 in-class initializer from this member.
void removeInClassInitializer() {
assert(hasInClassInitializer() && "no initializer to remove");
InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
}
/// Determine whether this member captures the variable length array
/// type.
bool hasCapturedVLAType() const {
return InitStorage.getInt() == ISK_CapturedVLAType;
}
/// Get the captured variable length array type.
const VariableArrayType *getCapturedVLAType() const {
return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
InitStorage.getPointer())
: nullptr;
}
/// Set the captured variable length array type for this field.
void setCapturedVLAType(const VariableArrayType *VLAType);
/// Returns the parent of this field declaration, which
/// is the struct in which this field is defined.
///
/// Returns null if this is not a normal class/struct field declaration, e.g.
/// ObjCAtDefsFieldDecl, ObjCIvarDecl.
const RecordDecl *getParent() const {
return dyn_cast<RecordDecl>(getDeclContext());
}
RecordDecl *getParent() {
return dyn_cast<RecordDecl>(getDeclContext());
}
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this field.
FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
};
/// An instance of this object exists for each enum constant
/// that is defined. For example, in "enum X {a,b}", each of a/b are
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
/// TagType for the X EnumDecl.
class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
Stmt *Init; // an integer constant expression
llvm::APSInt Val; // The value.
protected:
EnumConstantDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, Expr *E,
const llvm::APSInt &V)
: ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
public:
friend class StmtIteratorBase;
static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, Expr *E,
const llvm::APSInt &V);
static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
const Expr *getInitExpr() const { return (const Expr*) Init; }
Expr *getInitExpr() { return (Expr*) Init; }
const llvm::APSInt &getInitVal() const { return Val; }
void setInitExpr(Expr *E) { Init = (Stmt*) E; }
void setInitVal(const llvm::APSInt &V) { Val = V; }
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this enumerator.
EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == EnumConstant; }
};
/// Represents a field injected from an anonymous union/struct into the parent
/// scope. These are always implicit.
class IndirectFieldDecl : public ValueDecl,
public Mergeable<IndirectFieldDecl> {
NamedDecl **Chaining;
unsigned ChainingSize;
IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T,
MutableArrayRef<NamedDecl *> CH);
void anchor() override;
public:
friend class ASTDeclReader;
static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
ArrayRef<NamedDecl *> chain() const {
return llvm::makeArrayRef(Chaining, ChainingSize);
}
chain_iterator chain_begin() const { return chain().begin(); }
chain_iterator chain_end() const { return chain().end(); }
unsigned getChainingSize() const { return ChainingSize; }
FieldDecl *getAnonField() const {
assert(chain().size() >= 2);
return cast<FieldDecl>(chain().back());
}
VarDecl *getVarDecl() const {
assert(chain().size() >= 2);
return dyn_cast<VarDecl>(chain().front());
}
IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == IndirectField; }
};
/// Represents a declaration of a type.
class TypeDecl : public NamedDecl {
friend class ASTContext;
/// This indicates the Type object that represents
/// this TypeDecl. It is a cache maintained by
/// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
/// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
mutable const Type *TypeForDecl = nullptr;
/// The start of the source range for this declaration.
SourceLocation LocStart;
void anchor() override;
protected:
TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
SourceLocation StartL = SourceLocation())
: NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
public:
// Low-level accessor. If you just want the type defined by this node,
// check out ASTContext::getTypeDeclType or one of
// ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
// already know the specific kind of node this is.
const Type *getTypeForDecl() const { return TypeForDecl; }
void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
void setLocStart(SourceLocation L) { LocStart = L; }
SourceRange getSourceRange() const override LLVM_READONLY {
if (LocStart.isValid())
return SourceRange(LocStart, getLocation());
else
return SourceRange(getLocation());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
};
/// Base class for declarations which introduce a typedef-name.
class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
struct alignas(8) ModedTInfo {
TypeSourceInfo *first;
QualType second;
};
/// If int part is 0, we have not computed IsTransparentTag.
/// Otherwise, IsTransparentTag is (getInt() >> 1).
mutable llvm::PointerIntPair<
llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
MaybeModedTInfo;
void anchor() override;
protected:
TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
MaybeModedTInfo(TInfo, 0) {}
using redeclarable_base = Redeclarable<TypedefNameDecl>;
TypedefNameDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
TypedefNameDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
TypedefNameDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
public:
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
bool isModed() const {
return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
}
TypeSourceInfo *getTypeSourceInfo() const {
return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
: MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
}
QualType getUnderlyingType() const {
return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
: MaybeModedTInfo.getPointer()
.get<TypeSourceInfo *>()
->getType();
}
void setTypeSourceInfo(TypeSourceInfo *newType) {
MaybeModedTInfo.setPointer(newType);
}
void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
MaybeModedTInfo.setPointer(new (getASTContext(), 8)
ModedTInfo({unmodedTSI, modedTy}));
}
/// Retrieves the canonical declaration of this typedef-name.
TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
/// Retrieves the tag declaration for which this is the typedef name for
/// linkage purposes, if any.
///
/// \param AnyRedecl Look for the tag declaration in any redeclaration of
/// this typedef declaration.
TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
/// Determines if this typedef shares a name and spelling location with its
/// underlying tag type, as is the case with the NS_ENUM macro.
bool isTransparentTag() const {
if (MaybeModedTInfo.getInt())
return MaybeModedTInfo.getInt() & 0x2;
return isTransparentTagSlow();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstTypedefName && K <= lastTypedefName;
}
private:
bool isTransparentTagSlow() const;
};
/// Represents the declaration of a typedef-name via the 'typedef'
/// type specifier.
class TypedefDecl : public TypedefNameDecl {
TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
public:
static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo);
static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Typedef; }
};
/// Represents the declaration of a typedef-name via a C++11
/// alias-declaration.
class TypeAliasDecl : public TypedefNameDecl {
/// The template for which this is the pattern, if any.
TypeAliasTemplateDecl *Template;
TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
Template(nullptr) {}
public:
static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo);
static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TypeAlias; }
};
/// Represents the declaration of a struct/union/class/enum.
class TagDecl : public TypeDecl,
public DeclContext,
public Redeclarable<TagDecl> {
// This class stores some data in DeclContext::TagDeclBits
// to save some space. Use the provided accessors to access it.
public:
// This is really ugly.
using TagKind = TagTypeKind;
private:
SourceRange BraceRange;
// A struct representing syntactic qualifier info,
// to be used for the (uncommon) case of out-of-line declarations.
using ExtInfo = QualifierInfo;
/// If the (out-of-line) tag declaration name
/// is qualified, it points to the qualifier info (nns and range);
/// otherwise, if the tag declaration is anonymous and it is part of
/// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
/// otherwise, if the tag declaration is anonymous and it is used as a
/// declaration specifier for variables, it points to the first VarDecl (used
/// for mangling);
/// otherwise, it is a null (TypedefNameDecl) pointer.
llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
const ExtInfo *getExtInfo() const {
return TypedefNameDeclOrQualifier.get<ExtInfo *>();
}
protected:
TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
SourceLocation StartL);
using redeclarable_base = Redeclarable<TagDecl>;
TagDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
TagDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
TagDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
/// Completes the definition of this tag declaration.
///
/// This is a helper function for derived classes.
void completeDefinition();
/// True if this decl is currently being defined.
void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
/// Indicates whether it is possible for declarations of this kind
/// to have an out-of-date definition.
///
/// This option is only enabled when modules are enabled.
void setMayHaveOutOfDateDef(bool V = true) {
TagDeclBits.MayHaveOutOfDateDef = V;
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
SourceRange getBraceRange() const { return BraceRange; }
void setBraceRange(SourceRange R) { BraceRange = R; }
/// Return SourceLocation representing start of source
/// range ignoring outer template declarations.
SourceLocation getInnerLocStart() const { return getBeginLoc(); }
/// Return SourceLocation representing start of source
/// range taking into account any outer template declarations.
SourceLocation getOuterLocStart() const;
SourceRange getSourceRange() const override LLVM_READONLY;
TagDecl *getCanonicalDecl() override;
const TagDecl *getCanonicalDecl() const {
return const_cast<TagDecl*>(this)->getCanonicalDecl();
}
/// Return true if this declaration is a completion definition of the type.
/// Provided for consistency.
bool isThisDeclarationADefinition() const {
return isCompleteDefinition();
}
/// Return true if this decl has its body fully specified.
bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
/// True if this decl has its body fully specified.
void setCompleteDefinition(bool V = true) {
TagDeclBits.IsCompleteDefinition = V;
}
/// Return true if this complete decl is
/// required to be complete for some existing use.
bool isCompleteDefinitionRequired() const {
return TagDeclBits.IsCompleteDefinitionRequired;
}
/// True if this complete decl is
/// required to be complete for some existing use.
void setCompleteDefinitionRequired(bool V = true) {
TagDeclBits.IsCompleteDefinitionRequired = V;
}
/// Return true if this decl is currently being defined.
bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
/// True if this tag declaration is "embedded" (i.e., defined or declared
/// for the very first time) in the syntax of a declarator.
bool isEmbeddedInDeclarator() const {
return TagDeclBits.IsEmbeddedInDeclarator;
}
/// True if this tag declaration is "embedded" (i.e., defined or declared
/// for the very first time) in the syntax of a declarator.
void setEmbeddedInDeclarator(bool isInDeclarator) {
TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
}
/// True if this tag is free standing, e.g. "struct foo;".
bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
/// True if this tag is free standing, e.g. "struct foo;".
void setFreeStanding(bool isFreeStanding = true) {
TagDeclBits.IsFreeStanding = isFreeStanding;
}
/// Indicates whether it is possible for declarations of this kind
/// to have an out-of-date definition.
///
/// This option is only enabled when modules are enabled.
bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
/// Whether this declaration declares a type that is
/// dependent, i.e., a type that somehow depends on template
/// parameters.
bool isDependentType() const { return isDependentContext(); }
/// Whether this declaration was a definition in some module but was forced
/// to be a declaration.
///
/// Useful for clients checking if a module has a definition of a specific
/// symbol and not interested in the final AST with deduplicated definitions.
bool isThisDeclarationADemotedDefinition() const {
return TagDeclBits.IsThisDeclarationADemotedDefinition;
}
/// Mark a definition as a declaration and maintain information it _was_
/// a definition.
void demoteThisDefinitionToDeclaration() {
assert(isCompleteDefinition() &&
"Should demote definitions only, not forward declarations");
setCompleteDefinition(false);
TagDeclBits.IsThisDeclarationADemotedDefinition = true;
}
/// Starts the definition of this tag declaration.
///
/// This method should be invoked at the beginning of the definition
/// of this tag declaration. It will set the tag type into a state
/// where it is in the process of being defined.
void startDefinition();
/// Returns the TagDecl that actually defines this
/// struct/union/class/enum. When determining whether or not a
/// struct/union/class/enum has a definition, one should use this
/// method as opposed to 'isDefinition'. 'isDefinition' indicates
/// whether or not a specific TagDecl is defining declaration, not
/// whether or not the struct/union/class/enum type is defined.
/// This method returns NULL if there is no TagDecl that defines
/// the struct/union/class/enum.
TagDecl *getDefinition() const;
StringRef getKindName() const {
return TypeWithKeyword::getTagTypeKindName(getTagKind());
}
TagKind getTagKind() const {
return static_cast<TagKind>(TagDeclBits.TagDeclKind);
}
void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
bool isStruct() const { return getTagKind() == TTK_Struct; }
bool isInterface() const { return getTagKind() == TTK_Interface; }
bool isClass() const { return getTagKind() == TTK_Class; }
bool isUnion() const { return getTagKind() == TTK_Union; }
bool isEnum() const { return getTagKind() == TTK_Enum; }
/// Is this tag type named, either directly or via being defined in
/// a typedef of this type?
///
/// C++11 [basic.link]p8:
/// A type is said to have linkage if and only if:
/// - it is a class or enumeration type that is named (or has a
/// name for linkage purposes) and the name has linkage; ...
/// C++11 [dcl.typedef]p9:
/// If the typedef declaration defines an unnamed class (or enum),
/// the first typedef-name declared by the declaration to be that
/// class type (or enum type) is used to denote the class type (or
/// enum type) for linkage purposes only.
///
/// C does not have an analogous rule, but the same concept is
/// nonetheless useful in some places.
bool hasNameForLinkage() const {
return (getDeclName() || getTypedefNameForAnonDecl());
}
TypedefNameDecl *getTypedefNameForAnonDecl() const {
return hasExtInfo() ? nullptr
: TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
}
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
/// Retrieve the nested-name-specifier that qualifies the name of this
/// declaration, if it was present in the source.
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
: nullptr;
}
/// Retrieve the nested-name-specifier (with source-location
/// information) that qualifies the name of this declaration, if it was
/// present in the source.
NestedNameSpecifierLoc getQualifierLoc() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc
: NestedNameSpecifierLoc();
}
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
unsigned getNumTemplateParameterLists() const {
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
}
TemplateParameterList *getTemplateParameterList(unsigned i) const {
assert(i < getNumTemplateParameterLists());
return getExtInfo()->TemplParamLists[i];
}
void setTemplateParameterListsInfo(ASTContext &Context,
ArrayRef<TemplateParameterList *> TPLists);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
static DeclContext *castToDeclContext(const TagDecl *D) {
return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
}
static TagDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents an enum. In C++11, enums can be forward-declared
/// with a fixed underlying type, and in C we allow them to be forward-declared
/// with no underlying type as an extension.
class EnumDecl : public TagDecl {
// This class stores some data in DeclContext::EnumDeclBits
// to save some space. Use the provided accessors to access it.
/// This represent the integer type that the enum corresponds
/// to for code generation purposes. Note that the enumerator constants may
/// have a different type than this does.
///
/// If the underlying integer type was explicitly stated in the source
/// code, this is a TypeSourceInfo* for that type. Otherwise this type
/// was automatically deduced somehow, and this is a Type*.
///
/// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
/// some cases it won't.
///
/// The underlying type of an enumeration never has any qualifiers, so
/// we can get away with just storing a raw Type*, and thus save an
/// extra pointer when TypeSourceInfo is needed.
llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
/// The integer type that values of this type should
/// promote to. In C, enumerators are generally of an integer type
/// directly, but gcc-style large enumerators (and all enumerators
/// in C++) are of the enum type instead.
QualType PromotionType;
/// If this enumeration is an instantiation of a member enumeration
/// of a class template specialization, this is the member specialization
/// information.
MemberSpecializationInfo *SpecializationInfo = nullptr;
/// Store the ODRHash after first calculation.
/// The corresponding flag HasODRHash is in EnumDeclBits
/// and can be accessed with the provided accessors.
unsigned ODRHash;
EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
bool Scoped, bool ScopedUsingClassTag, bool Fixed);
void anchor() override;
void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
TemplateSpecializationKind TSK);
/// Sets the width in bits required to store all the
/// non-negative enumerators of this enum.
void setNumPositiveBits(unsigned Num) {
EnumDeclBits.NumPositiveBits = Num;
assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
}
/// Returns the width in bits required to store all the
/// negative enumerators of this enum. (see getNumNegativeBits)
void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
public:
/// True if this tag declaration is a scoped enumeration. Only
/// possible in C++11 mode.
void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
/// If this tag declaration is a scoped enum,
/// then this is true if the scoped enum was declared using the class
/// tag, false if it was declared with the struct tag. No meaning is
/// associated if this tag declaration is not a scoped enum.
void setScopedUsingClassTag(bool ScopedUCT = true) {
EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
}
/// True if this is an Objective-C, C++11, or
/// Microsoft-style enumeration with a fixed underlying type.
void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
private:
/// True if a valid hash is stored in ODRHash.
bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
public:
friend class ASTDeclReader;
EnumDecl *getCanonicalDecl() override {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
const EnumDecl *getCanonicalDecl() const {
return const_cast<EnumDecl*>(this)->getCanonicalDecl();
}
EnumDecl *getPreviousDecl() {
return cast_or_null<EnumDecl>(
static_cast<TagDecl *>(this)->getPreviousDecl());
}
const EnumDecl *getPreviousDecl() const {
return const_cast<EnumDecl*>(this)->getPreviousDecl();
}
EnumDecl *getMostRecentDecl() {
return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
}
const EnumDecl *getMostRecentDecl() const {
return const_cast<EnumDecl*>(this)->getMostRecentDecl();
}
EnumDecl *getDefinition() const {
return cast_or_null<EnumDecl>(TagDecl::getDefinition());
}
static EnumDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, EnumDecl *PrevDecl,
bool IsScoped, bool IsScopedUsingClassTag,
bool IsFixed);
static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Overrides to provide correct range when there's an enum-base specifier
/// with forward declarations.
SourceRange getSourceRange() const override LLVM_READONLY;
/// When created, the EnumDecl corresponds to a
/// forward-declared enum. This method is used to mark the
/// declaration as being defined; its enumerators have already been
/// added (via DeclContext::addDecl). NewType is the new underlying
/// type of the enumeration type.
void completeDefinition(QualType NewType,
QualType PromotionType,
unsigned NumPositiveBits,
unsigned NumNegativeBits);
// Iterates through the enumerators of this enumeration.
using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
using enumerator_range =
llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
enumerator_range enumerators() const {
return enumerator_range(enumerator_begin(), enumerator_end());
}
enumerator_iterator enumerator_begin() const {
const EnumDecl *E = getDefinition();
if (!E)
E = this;
return enumerator_iterator(E->decls_begin());
}
enumerator_iterator enumerator_end() const {
const EnumDecl *E = getDefinition();
if (!E)
E = this;
return enumerator_iterator(E->decls_end());
}
/// Return the integer type that enumerators should promote to.
QualType getPromotionType() const { return PromotionType; }
/// Set the promotion type.
void setPromotionType(QualType T) { PromotionType = T; }
/// Return the integer type this enum decl corresponds to.
/// This returns a null QualType for an enum forward definition with no fixed
/// underlying type.
QualType getIntegerType() const {
if (!IntegerType)
return QualType();
if (const Type *T = IntegerType.dyn_cast<const Type*>())
return QualType(T, 0);
return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
}
/// Set the underlying integer type.
void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
/// Set the underlying integer type source info.
void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
/// Return the type source info for the underlying integer type,
/// if no type source info exists, return 0.
TypeSourceInfo *getIntegerTypeSourceInfo() const {
return IntegerType.dyn_cast<TypeSourceInfo*>();
}
/// Retrieve the source range that covers the underlying type if
/// specified.
SourceRange getIntegerTypeRange() const LLVM_READONLY;
/// Returns the width in bits required to store all the
/// non-negative enumerators of this enum.
unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
/// Returns the width in bits required to store all the
/// negative enumerators of this enum. These widths include
/// the rightmost leading 1; that is:
///
/// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
/// ------------------------ ------- -----------------
/// -1 1111111 1
/// -10 1110110 5
/// -101 1001011 8
unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
/// Returns true if this is a C++11 scoped enumeration.
bool isScoped() const { return EnumDeclBits.IsScoped; }
/// Returns true if this is a C++11 scoped enumeration.
bool isScopedUsingClassTag() const {
return EnumDeclBits.IsScopedUsingClassTag;
}
/// Returns true if this is an Objective-C, C++11, or
/// Microsoft-style enumeration with a fixed underlying type.
bool isFixed() const { return EnumDeclBits.IsFixed; }
unsigned getODRHash();
/// Returns true if this can be considered a complete type.
bool isComplete() const {
// IntegerType is set for fixed type enums and non-fixed but implicitly
// int-sized Microsoft enums.
return isCompleteDefinition() || IntegerType;
}
/// Returns true if this enum is either annotated with
/// enum_extensibility(closed) or isn't annotated with enum_extensibility.
bool isClosed() const;
/// Returns true if this enum is annotated with flag_enum and isn't annotated
/// with enum_extensibility(open).
bool isClosedFlag() const;
/// Returns true if this enum is annotated with neither flag_enum nor
/// enum_extensibility(open).
bool isClosedNonFlag() const;
/// Retrieve the enum definition from which this enumeration could
/// be instantiated, if it is an instantiation (rather than a non-template).
EnumDecl *getTemplateInstantiationPattern() const;
/// Returns the enumeration (declared within the template)
/// from which this enumeration type was instantiated, or NULL if
/// this enumeration was not instantiated from any template.
EnumDecl *getInstantiatedFromMemberEnum() const;
/// If this enumeration is a member of a specialization of a
/// templated class, determine what kind of template specialization
/// or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// For an enumeration member that was instantiated from a member
/// enumeration of a templated class, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// If this enumeration is an instantiation of a member enumeration of
/// a class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const {
return SpecializationInfo;
}
/// Specify that this enumeration is an instantiation of the
/// member enumeration ED.
void setInstantiationOfMemberEnum(EnumDecl *ED,
TemplateSpecializationKind TSK) {
setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Enum; }
};
/// Represents a struct/union/class. For example:
/// struct X; // Forward declaration, no "body".
/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
/// This decl will be marked invalid if *any* members are invalid.
class RecordDecl : public TagDecl {
// This class stores some data in DeclContext::RecordDeclBits
// to save some space. Use the provided accessors to access it.
public:
friend class DeclContext;
/// Enum that represents the different ways arguments are passed to and
/// returned from function calls. This takes into account the target-specific
/// and version-specific rules along with the rules determined by the
/// language.
enum ArgPassingKind : unsigned {
/// The argument of this type can be passed directly in registers.
APK_CanPassInRegs,
/// The argument of this type cannot be passed directly in registers.
/// Records containing this type as a subobject are not forced to be passed
/// indirectly. This value is used only in C++. This value is required by
/// C++ because, in uncommon situations, it is possible for a class to have
/// only trivial copy/move constructors even when one of its subobjects has
/// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
/// constructor in the derived class is deleted).
APK_CannotPassInRegs,
/// The argument of this type cannot be passed directly in registers.
/// Records containing this type as a subobject are forced to be passed
/// indirectly.
APK_CanNeverPassInRegs
};
protected:
RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl *PrevDecl);
public:
static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
RecordDecl *getPreviousDecl() {
return cast_or_null<RecordDecl>(
static_cast<TagDecl *>(this)->getPreviousDecl());
}
const RecordDecl *getPreviousDecl() const {
return const_cast<RecordDecl*>(this)->getPreviousDecl();
}
RecordDecl *getMostRecentDecl() {
return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
}
const RecordDecl *getMostRecentDecl() const {
return const_cast<RecordDecl*>(this)->getMostRecentDecl();
}
bool hasFlexibleArrayMember() const {
return RecordDeclBits.HasFlexibleArrayMember;
}
void setHasFlexibleArrayMember(bool V) {
RecordDeclBits.HasFlexibleArrayMember = V;
}
/// Whether this is an anonymous struct or union. To be an anonymous
/// struct or union, it must have been declared without a name and
/// there must be no objects of this type declared, e.g.,
/// @code
/// union { int i; float f; };
/// @endcode
/// is an anonymous union but neither of the following are:
/// @code
/// union X { int i; float f; };
/// union { int i; float f; } obj;
/// @endcode
bool isAnonymousStructOrUnion() const {
return RecordDeclBits.AnonymousStructOrUnion;
}
void setAnonymousStructOrUnion(bool Anon) {
RecordDeclBits.AnonymousStructOrUnion = Anon;
}
bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
void setHasVolatileMember(bool val) {
RecordDeclBits.HasVolatileMember = val;
}
bool hasLoadedFieldsFromExternalStorage() const {
return RecordDeclBits.LoadedFieldsFromExternalStorage;
}
void setHasLoadedFieldsFromExternalStorage(bool val) const {
RecordDeclBits.LoadedFieldsFromExternalStorage = val;
}
/// Functions to query basic properties of non-trivial C structs.
bool isNonTrivialToPrimitiveDefaultInitialize() const {
return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
}
void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
}
bool isNonTrivialToPrimitiveCopy() const {
return RecordDeclBits.NonTrivialToPrimitiveCopy;
}
void setNonTrivialToPrimitiveCopy(bool V) {
RecordDeclBits.NonTrivialToPrimitiveCopy = V;
}
bool isNonTrivialToPrimitiveDestroy() const {
return RecordDeclBits.NonTrivialToPrimitiveDestroy;
}
void setNonTrivialToPrimitiveDestroy(bool V) {
RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
}
bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
}
void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
}
bool hasNonTrivialToPrimitiveDestructCUnion() const {
return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
}
void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
}
bool hasNonTrivialToPrimitiveCopyCUnion() const {
return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
}
void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
}
/// Determine whether this class can be passed in registers. In C++ mode,
/// it must have at least one trivial, non-deleted copy or move constructor.
/// FIXME: This should be set as part of completeDefinition.
bool canPassInRegisters() const {
return getArgPassingRestrictions() == APK_CanPassInRegs;
}
ArgPassingKind getArgPassingRestrictions() const {
return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
}
void setArgPassingRestrictions(ArgPassingKind Kind) {
RecordDeclBits.ArgPassingRestrictions = Kind;
}
bool isParamDestroyedInCallee() const {
return RecordDeclBits.ParamDestroyedInCallee;
}
void setParamDestroyedInCallee(bool V) {
RecordDeclBits.ParamDestroyedInCallee = V;
}
bool isRandomized() const { return RecordDeclBits.IsRandomized; }
void setIsRandomized(bool V) { RecordDeclBits.IsRandomized = V; }
void reorderDecls(const SmallVectorImpl<Decl *> &Decls);
/// Determines whether this declaration represents the
/// injected class name.
///
/// The injected class name in C++ is the name of the class that
/// appears inside the class itself. For example:
///
/// \code
/// struct C {
/// // C is implicitly declared here as a synonym for the class name.
/// };
///
/// C::C c; // same as "C c;"
/// \endcode
bool isInjectedClassName() const;
/// Determine whether this record is a class describing a lambda
/// function object.
bool isLambda() const;
/// Determine whether this record is a record for captured variables in
/// CapturedStmt construct.
bool isCapturedRecord() const;
/// Mark the record as a record for captured variables in CapturedStmt
/// construct.
void setCapturedRecord();
/// Returns the RecordDecl that actually defines
/// this struct/union/class. When determining whether or not a
/// struct/union/class is completely defined, one should use this
/// method as opposed to 'isCompleteDefinition'.
/// 'isCompleteDefinition' indicates whether or not a specific
/// RecordDecl is a completed definition, not whether or not the
/// record type is defined. This method returns NULL if there is
/// no RecordDecl that defines the struct/union/tag.
RecordDecl *getDefinition() const {
return cast_or_null<RecordDecl>(TagDecl::getDefinition());
}
/// Returns whether this record is a union, or contains (at any nesting level)
/// a union member. This is used by CMSE to warn about possible information
/// leaks.
bool isOrContainsUnion() const;
// Iterator access to field members. The field iterator only visits
// the non-static data members of this class, ignoring any static
// data members, functions, constructors, destructors, etc.
using field_iterator = specific_decl_iterator<FieldDecl>;
using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
field_range fields() const { return field_range(field_begin(), field_end()); }
field_iterator field_begin() const;
field_iterator field_end() const {
return field_iterator(decl_iterator());
}
// Whether there are any fields (non-static data members) in this record.
bool field_empty() const {
return field_begin() == field_end();
}
/// Note that the definition of this type is now complete.
virtual void completeDefinition();
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstRecord && K <= lastRecord;
}
/// Get whether or not this is an ms_struct which can
/// be turned on with an attribute, pragma, or -mms-bitfields
/// commandline option.
bool isMsStruct(const ASTContext &C) const;
/// Whether we are allowed to insert extra padding between fields.
/// These padding are added to help AddressSanitizer detect
/// intra-object-overflow bugs.
bool mayInsertExtraPadding(bool EmitRemark = false) const;
/// Finds the first data member which has a name.
/// nullptr is returned if no named data member exists.
const FieldDecl *findFirstNamedDataMember() const;
private:
/// Deserialize just the fields.
void LoadFieldsFromExternalStorage() const;
};
class FileScopeAsmDecl : public Decl {
StringLiteral *AsmString;
SourceLocation RParenLoc;
FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
SourceLocation StartL, SourceLocation EndL)
: Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
virtual void anchor();
public:
static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
StringLiteral *Str, SourceLocation AsmLoc,
SourceLocation RParenLoc);
static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getAsmLoc() const { return getLocation(); }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getAsmLoc(), getRParenLoc());
}
const StringLiteral *getAsmString() const { return AsmString; }
StringLiteral *getAsmString() { return AsmString; }
void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == FileScopeAsm; }
};
/// Represents a block literal declaration, which is like an
/// unnamed FunctionDecl. For example:
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
class BlockDecl : public Decl, public DeclContext {
// This class stores some data in DeclContext::BlockDeclBits
// to save some space. Use the provided accessors to access it.
public:
/// A class which contains all the information about a particular
/// captured value.
class Capture {
enum {
flag_isByRef = 0x1,
flag_isNested = 0x2
};
/// The variable being captured.
llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
/// The copy expression, expressed in terms of a DeclRef (or
/// BlockDeclRef) to the captured variable. Only required if the
/// variable has a C++ class type.
Expr *CopyExpr;
public:
Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
: VariableAndFlags(variable,
(byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
CopyExpr(copy) {}
/// The variable being captured.
VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
/// Whether this is a "by ref" capture, i.e. a capture of a __block
/// variable.
bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
bool isEscapingByref() const {
return getVariable()->isEscapingByref();
}
bool isNonEscapingByref() const {
return getVariable()->isNonEscapingByref();
}
/// Whether this is a nested capture, i.e. the variable captured
/// is not from outside the immediately enclosing function/block.
bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
bool hasCopyExpr() const { return CopyExpr != nullptr; }
Expr *getCopyExpr() const { return CopyExpr; }
void setCopyExpr(Expr *e) { CopyExpr = e; }
};
private:
/// A new[]'d array of pointers to ParmVarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo = nullptr;
unsigned NumParams = 0;
Stmt *Body = nullptr;
TypeSourceInfo *SignatureAsWritten = nullptr;
const Capture *Captures = nullptr;
unsigned NumCaptures = 0;
unsigned ManglingNumber = 0;
Decl *ManglingContextDecl = nullptr;
protected:
BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
public:
static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getCaretLocation() const { return getLocation(); }
bool isVariadic() const { return BlockDeclBits.IsVariadic; }
void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
Stmt *getBody() const override { return (Stmt*) Body; }
void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
// ArrayRef access to formal parameters.
ArrayRef<ParmVarDecl *> parameters() const {
return {ParamInfo, getNumParams()};
}
MutableArrayRef<ParmVarDecl *> parameters() {
return {ParamInfo, getNumParams()};
}
// Iterator access to formal parameters.
using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
bool param_empty() const { return parameters().empty(); }
param_iterator param_begin() { return parameters().begin(); }
param_iterator param_end() { return parameters().end(); }
param_const_iterator param_begin() const { return parameters().begin(); }
param_const_iterator param_end() const { return parameters().end(); }
size_t param_size() const { return parameters().size(); }
unsigned getNumParams() const { return NumParams; }
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
/// True if this block (or its nested blocks) captures
/// anything of local storage from its enclosing scopes.
bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
/// Returns the number of captured variables.
/// Does not include an entry for 'this'.
unsigned getNumCaptures() const { return NumCaptures; }
using capture_const_iterator = ArrayRef<Capture>::const_iterator;
ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
capture_const_iterator capture_begin() const { return captures().begin(); }
capture_const_iterator capture_end() const { return captures().end(); }
bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
bool blockMissingReturnType() const {
return BlockDeclBits.BlockMissingReturnType;
}
void setBlockMissingReturnType(bool val = true) {
BlockDeclBits.BlockMissingReturnType = val;
}
bool isConversionFromLambda() const {
return BlockDeclBits.IsConversionFromLambda;
}
void setIsConversionFromLambda(bool val = true) {
BlockDeclBits.IsConversionFromLambda = val;
}
bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
bool canAvoidCopyToHeap() const {
return BlockDeclBits.CanAvoidCopyToHeap;
}
void setCanAvoidCopyToHeap(bool B = true) {
BlockDeclBits.CanAvoidCopyToHeap = B;
}
bool capturesVariable(const VarDecl *var) const;
void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
bool CapturesCXXThis);
unsigned getBlockManglingNumber() const { return ManglingNumber; }
Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
void setBlockMangling(unsigned Number, Decl *Ctx) {
ManglingNumber = Number;
ManglingContextDecl = Ctx;
}
SourceRange getSourceRange() const override LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Block; }
static DeclContext *castToDeclContext(const BlockDecl *D) {
return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
}
static BlockDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents the body of a CapturedStmt, and serves as its DeclContext.
class CapturedDecl final
: public Decl,
public DeclContext,
private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
protected:
size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
return NumParams;
}
private:
/// The number of parameters to the outlined function.
unsigned NumParams;
/// The position of context parameter in list of parameters.
unsigned ContextParam;
/// The body of the outlined function.
llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
ImplicitParamDecl *const *getParams() const {
return getTrailingObjects<ImplicitParamDecl *>();
}
ImplicitParamDecl **getParams() {
return getTrailingObjects<ImplicitParamDecl *>();
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
unsigned NumParams);
static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumParams);
Stmt *getBody() const override;
void setBody(Stmt *B);
bool isNothrow() const;
void setNothrow(bool Nothrow = true);
unsigned getNumParams() const { return NumParams; }
ImplicitParamDecl *getParam(unsigned i) const {
assert(i < NumParams);
return getParams()[i];
}
void setParam(unsigned i, ImplicitParamDecl *P) {
assert(i < NumParams);
getParams()[i] = P;
}
// ArrayRef interface to parameters.
ArrayRef<ImplicitParamDecl *> parameters() const {
return {getParams(), getNumParams()};
}
MutableArrayRef<ImplicitParamDecl *> parameters() {
return {getParams(), getNumParams()};
}
/// Retrieve the parameter containing captured variables.
ImplicitParamDecl *getContextParam() const {
assert(ContextParam < NumParams);
return getParam(ContextParam);
}
void setContextParam(unsigned i, ImplicitParamDecl *P) {
assert(i < NumParams);
ContextParam = i;
setParam(i, P);
}
unsigned getContextParamPosition() const { return ContextParam; }
using param_iterator = ImplicitParamDecl *const *;
using param_range = llvm::iterator_range<param_iterator>;
/// Retrieve an iterator pointing to the first parameter decl.
param_iterator param_begin() const { return getParams(); }
/// Retrieve an iterator one past the last parameter decl.
param_iterator param_end() const { return getParams() + NumParams; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Captured; }
static DeclContext *castToDeclContext(const CapturedDecl *D) {
return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
}
static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
}
};
/// Describes a module import declaration, which makes the contents
/// of the named module visible in the current translation unit.
///
/// An import declaration imports the named module (or submodule). For example:
/// \code
/// @import std.vector;
/// \endcode
///
/// A C++20 module import declaration imports the named module or partition.
/// Periods are permitted in C++20 module names, but have no semantic meaning.
/// For example:
/// \code
/// import NamedModule;
/// import :SomePartition; // Must be a partition of the current module.
/// import Names.Like.this; // Allowed.
/// import :and.Also.Partition.names;
/// \endcode
///
/// Import declarations can also be implicitly generated from
/// \#include/\#import directives.
class ImportDecl final : public Decl,
llvm::TrailingObjects<ImportDecl, SourceLocation> {
friend class ASTContext;
friend class ASTDeclReader;
friend class ASTReader;
friend TrailingObjects;
/// The imported module.
Module *ImportedModule = nullptr;
/// The next import in the list of imports local to the translation
/// unit being parsed (not loaded from an AST file).
///
/// Includes a bit that indicates whether we have source-location information
/// for each identifier in the module name.
///
/// When the bit is false, we only have a single source location for the
/// end of the import declaration.
llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs);
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
SourceLocation EndLoc);
ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
/// The next import in the list of imports local to the translation
/// unit being parsed (not loaded from an AST file).
ImportDecl *getNextLocalImport() const {
return NextLocalImportAndComplete.getPointer();
}
void setNextLocalImport(ImportDecl *Import) {
NextLocalImportAndComplete.setPointer(Import);
}
public:
/// Create a new module import declaration.
static ImportDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs);
/// Create a new module import declaration for an implicitly-generated
/// import.
static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
SourceLocation EndLoc);
/// Create a new, deserialized module import declaration.
static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumLocations);
/// Retrieve the module that was imported by the import declaration.
Module *getImportedModule() const { return ImportedModule; }
/// Retrieves the locations of each of the identifiers that make up
/// the complete module name in the import declaration.
///
/// This will return an empty array if the locations of the individual
/// identifiers aren't available.
ArrayRef<SourceLocation> getIdentifierLocs() const;
SourceRange getSourceRange() const override LLVM_READONLY;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Import; }
};
/// Represents a C++ Modules TS module export declaration.
///
/// For example:
/// \code
/// export void foo();
/// \endcode
class ExportDecl final : public Decl, public DeclContext {
virtual void anchor();
private:
friend class ASTDeclReader;
/// The source location for the right brace (if valid).
SourceLocation RBraceLoc;
ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
: Decl(Export, DC, ExportLoc), DeclContext(Export),
RBraceLoc(SourceLocation()) {}
public:
static ExportDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation ExportLoc);
static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getExportLoc() const { return getLocation(); }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
bool hasBraces() const { return RBraceLoc.isValid(); }
SourceLocation getEndLoc() const LLVM_READONLY {
if (hasBraces())
return RBraceLoc;
// No braces: get the end location of the (only) declaration in context
// (if present).
return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getLocation(), getEndLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Export; }
static DeclContext *castToDeclContext(const ExportDecl *D) {
return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
}
static ExportDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents an empty-declaration.
class EmptyDecl : public Decl {
EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
virtual void anchor();
public:
static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L);
static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Empty; }
};
/// Insertion operator for diagnostics. This allows sending NamedDecl's
/// into a diagnostic with <<.
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
const NamedDecl *ND) {
PD.AddTaggedVal(reinterpret_cast<uint64_t>(ND),
DiagnosticsEngine::ak_nameddecl);
return PD;
}
template<typename decl_type>
void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
// Note: This routine is implemented here because we need both NamedDecl
// and Redeclarable to be defined.
assert(RedeclLink.isFirst() &&
"setPreviousDecl on a decl already in a redeclaration chain");
if (PrevDecl) {
// Point to previous. Make sure that this is actually the most recent
// redeclaration, or we can build invalid chains. If the most recent
// redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
First = PrevDecl->getFirstDecl();
assert(First->RedeclLink.isFirst() && "Expected first");
decl_type *MostRecent = First->getNextRedeclaration();
RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
// If the declaration was previously visible, a redeclaration of it remains
// visible even if it wouldn't be visible by itself.
static_cast<decl_type*>(this)->IdentifierNamespace |=
MostRecent->getIdentifierNamespace() &
(Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
} else {
// Make this first.
First = static_cast<decl_type*>(this);
}
// First one will point to this one as latest.
First->RedeclLink.setLatest(static_cast<decl_type*>(this));
assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
}
// Inline function definitions.
/// Check if the given decl is complete.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclComplete(EnumDecl *ED) {
return ED->isComplete();
}
/// Check if the given decl is scoped.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclScoped(EnumDecl *ED) {
return ED->isScoped();
}
/// OpenMP variants are mangled early based on their OpenMP context selector.
/// The new name looks likes this:
/// <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
return "$ompvariant";
}
} // namespace clang
#endif // LLVM_CLANG_AST_DECL_H