; We specify -mcpu explicitly to avoid instruction reordering that happens on ; some setups (e.g., Atom) from affecting the output. ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN ; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX ; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer ; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer ; arguments are caller-cleanup like normal arguments. define void @sret1(ptr sret(i8) %x) nounwind { entry: ; WIN32-LABEL: _sret1: ; WIN32: movb $42, ({{%e[abcd]x}}) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret1: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret1: ; CYGWIN: retl $4 ; LINUX-LABEL: sret1: ; LINUX: retl $4 store i8 42, ptr %x, align 4 ret void } define void @sret2(ptr sret(i8) %x, i8 %y) nounwind { entry: ; WIN32-LABEL: _sret2: ; WIN32: movb {{.*}}, ({{%e[abcd]x}}) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret2: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret2: ; CYGWIN: retl $4 ; LINUX-LABEL: sret2: ; LINUX: retl $4 store i8 %y, ptr %x ret void } define void @sret3(ptr sret(i8) %x, ptr %y) nounwind { entry: ; WIN32-LABEL: _sret3: ; WIN32: movb $42, ([[REG1:%e[abcd]x]]) ; WIN32-NOT: movb $13, ([[REG1]]) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret3: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret3: ; CYGWIN: retl $4 ; LINUX-LABEL: sret3: ; LINUX: retl $4 store i8 42, ptr %x store i8 13, ptr %y ret void } ; PR15556 %struct.S4 = type { i32, i32, i32 } define void @sret4(ptr noalias sret(%struct.S4) %agg.result) { entry: ; WIN32-LABEL: _sret4: ; WIN32: movl $42, ({{%e[abcd]x}}) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret4: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret4: ; CYGWIN: retl $4 ; LINUX-LABEL: sret4: ; LINUX: retl $4 store i32 42, ptr %agg.result, align 4 ret void } %struct.S5 = type { i32 } %class.C5 = type { i8 } define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(ptr noalias sret(%struct.S5) %agg.result, ptr %this) { entry: %this.addr = alloca ptr, align 4 store ptr %this, ptr %this.addr, align 4 %this1 = load ptr, ptr %this.addr store i32 42, ptr %agg.result, align 4 ret void ; WIN32-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; CYGWIN-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; LINUX-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; The address of the return structure is passed as an implicit parameter. ; In the -O0 build, %eax is spilled at the beginning of the function, hence we ; should match both 4(%esp) and 8(%esp). ; WIN32: {{[48]}}(%esp), [[REG:%e[abcd]x]] ; WIN32: movl $42, ([[REG]]) ; WIN32: retl $4 } define void @call_foo5() { entry: %c = alloca %class.C5, align 1 %s = alloca %struct.S5, align 4 call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(ptr sret(%struct.S5) %s, ptr %c) ; WIN32-LABEL: {{^}}_call_foo5: ; MINGW_X86-LABEL: {{^}}_call_foo5: ; CYGWIN-LABEL: {{^}}_call_foo5: ; LINUX-LABEL: {{^}}call_foo5: ; Load the address of the result and put it onto stack ; The this pointer goes to ECX. ; (through %ecx in the -O0 build). ; WIN32-DAG: leal {{[0-9]*}}(%esp), %e{{[a-d]}}x ; WIN32-DAG: {{leal [1-9]+\(%esp\)|movl %esp}}, %ecx ; WIN32-DAG: {{pushl %e[a-d]x|movl %e[a-d]x, \(%esp\)}} ; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ" ; WIN32: retl ret void } %struct.test6 = type { i32, i32, i32 } define void @test6_f(ptr %x) nounwind { ; WIN32-LABEL: _test6_f: ; MINGW_X86-LABEL: _test6_f: ; CYGWIN-LABEL: _test6_f: ; LINUX-LABEL: test6_f: ; The %x argument is moved to %ecx. It will be the this pointer. ; WIN32-DAG: movl {{16|20}}(%esp), %ecx ; The sret pointer is (%esp) ; WIN32-DAG: {{leal 4\(%esp\)|movl %esp}}, %eax ; WIN32-DAG: {{pushl %eax|movl %eax, \(%esp\)}} ; The sret pointer is %ecx ; The %x argument is moved to (%esp). It will be the this pointer. ; MINGW_X86-DAG: {{leal 4\(%esp\)|movl %esp}}, %ecx ; MINGW_X86-DAG: {{pushl 16\(%esp\)|movl %eax, \(%esp\)}} ; MINGW_X86-NEXT: calll _test6_g ; CYGWIN-DAG: {{leal 4\(%esp\)|movl %esp}}, %ecx ; CYGWIN-DAG: {{pushl 16\(%esp\)|movl %eax, \(%esp\)}} ; CYGWIN-NEXT: calll _test6_g %tmp = alloca %struct.test6, align 4 call x86_thiscallcc void @test6_g(ptr sret(%struct.test6) %tmp, ptr %x) ret void } declare x86_thiscallcc void @test6_g(ptr sret(%struct.test6), ptr) ; Flipping the parameters at the IR level generates the same code. %struct.test7 = type { i32, i32, i32 } define void @test7_f(ptr %x) nounwind { ; WIN32-LABEL: _test7_f: ; MINGW_X86-LABEL: _test7_f: ; CYGWIN-LABEL: _test7_f: ; LINUX-LABEL: test7_f: ; The %x argument is moved to %ecx on all OSs. It will be the this pointer. ; WIN32: movl {{16|20}}(%esp), %ecx ; MINGW_X86: movl {{16|20}}(%esp), %ecx ; CYGWIN: movl {{16|20}}(%esp), %ecx ; The sret pointer is (%esp) ; WIN32: {{leal 4\(%esp\)|movl %esp}}, %eax ; WIN32-NEXT: {{pushl %eax|movl %eax, \(%esp\)}} ; MINGW_X86: {{leal 4\(%esp\)|movl %esp}}, %eax ; MINGW_X86-NEXT: {{pushl %eax|movl %eax, \(%esp\)}} ; CYGWIN: {{leal 4\(%esp\)|movl %esp}}, %eax ; CYGWIN-NEXT: {{pushl %eax|movl %eax, \(%esp\)}} %tmp = alloca %struct.test7, align 4 call x86_thiscallcc void @test7_g(ptr %x, ptr sret(%struct.test7) %tmp) ret void } define x86_thiscallcc void @test7_g(ptr %in, ptr sret(%struct.test7) %out) { %v = load i32, ptr %in store i32 %v, ptr %out call void @clobber_eax() ret void ; Make sure we return the second parameter in %eax. ; WIN32-LABEL: _test7_g: ; WIN32: calll _clobber_eax ; WIN32: movl {{.*}}, %eax ; WIN32: retl } declare void @clobber_eax() ; Test what happens if the first parameter has to be split by codegen. ; Realistically, no frontend will generate code like this, but here it is for ; completeness. define void @test8_f(i64 inreg %a, ptr sret(i64) %out) { store i64 %a, ptr %out call void @clobber_eax() ret void ; WIN32-LABEL: _test8_f: ; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]] ; WIN32-DAG: movl {{%e[abcd]x}}, 4(%[[out]]) ; WIN32-DAG: movl {{%e[abcd]x}}, (%[[out]]) ; WIN32: calll _clobber_eax ; WIN32: movl {{.*}}, %eax ; WIN32: retl }