; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instsimplify -S | FileCheck %s ; This is canonical form for this IR. define i1 @abs_nsw_is_positive(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_positive( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i32 %x, 0 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp sgt i32 %abs, -1 ret i1 %r } ; Test non-canonical predicate and non-canonical form of abs(). define i1 @abs_nsw_is_positive_sge(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_positive_sge( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i32 %x, 1 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp sge i32 %abs, 0 ret i1 %r } ; This is a range-based analysis. Any negative constant works. define i1 @abs_nsw_is_positive_reduced_range(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_positive_reduced_range( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i32 %x, 0 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp sgt i32 %abs, -42 ret i1 %r } ; Negative test - we need 'nsw' in the abs(). define i1 @abs_is_positive_reduced_range(i32 %x) { ; CHECK-LABEL: @abs_is_positive_reduced_range( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0 ; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]] ; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]] ; CHECK-NEXT: [[R:%.*]] = icmp sgt i32 [[ABS]], 42 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %x, 0 %negx = sub i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp sgt i32 %abs, 42 ret i1 %r } ; Negative test - range intersection is not subset. define i1 @abs_nsw_is_positive_wrong_range(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_positive_wrong_range( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0 ; CHECK-NEXT: [[NEGX:%.*]] = sub nsw i32 0, [[X]] ; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]] ; CHECK-NEXT: [[R:%.*]] = icmp sgt i32 [[ABS]], 0 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %x, 0 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp sgt i32 %abs, 0 ret i1 %r } ; This is canonical form for this IR. define i1 @abs_nsw_is_not_negative(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_not_negative( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i32 %x, 0 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp slt i32 %abs, 0 ret i1 %r } ; Test non-canonical predicate and non-canonical form of abs(). define i1 @abs_nsw_is_not_negative_sle(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_not_negative_sle( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i32 %x, 1 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp sle i32 %abs, -1 ret i1 %r } ; This is a range-based analysis. Any negative constant works. define i1 @abs_nsw_is_not_negative_reduced_range(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_not_negative_reduced_range( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i32 %x, 0 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp slt i32 %abs, -24 ret i1 %r } ; Negative test - we need 'nsw' in the abs(). define i1 @abs_is_not_negative_reduced_range(i32 %x) { ; CHECK-LABEL: @abs_is_not_negative_reduced_range( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0 ; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]] ; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]] ; CHECK-NEXT: [[R:%.*]] = icmp slt i32 [[ABS]], 42 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %x, 0 %negx = sub i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp slt i32 %abs, 42 ret i1 %r } ; Negative test - range intersection is not empty. define i1 @abs_nsw_is_not_negative_wrong_range(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_not_negative_wrong_range( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0 ; CHECK-NEXT: [[NEGX:%.*]] = sub nsw i32 0, [[X]] ; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]] ; CHECK-NEXT: [[R:%.*]] = icmp sle i32 [[ABS]], 0 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %x, 0 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp sle i32 %abs, 0 ret i1 %r } ; Even if we don't have nsw, the range is still limited in the unsigned domain. define i1 @abs_positive_or_signed_min(i32 %x) { ; CHECK-LABEL: @abs_positive_or_signed_min( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i32 %x, 0 %negx = sub i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp ult i32 %abs, 2147483649 ret i1 %r } define i1 @abs_positive_or_signed_min_reduced_range(i32 %x) { ; CHECK-LABEL: @abs_positive_or_signed_min_reduced_range( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0 ; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]] ; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]] ; CHECK-NEXT: [[R:%.*]] = icmp ult i32 [[ABS]], -2147483648 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %x, 0 %negx = sub i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp ult i32 %abs, 2147483648 ret i1 %r } ; This is canonical form for this IR. For nabs(), we don't require 'nsw' define i1 @nabs_is_negative_or_0(i32 %x) { ; CHECK-LABEL: @nabs_is_negative_or_0( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i32 %x, 0 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp slt i32 %nabs, 1 ret i1 %r } ; Test non-canonical predicate and non-canonical form of nabs(). define i1 @nabs_is_negative_or_0_sle(i32 %x) { ; CHECK-LABEL: @nabs_is_negative_or_0_sle( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i32 %x, 1 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp sle i32 %nabs, 0 ret i1 %r } ; This is a range-based analysis. Any positive constant works. define i1 @nabs_is_negative_or_0_reduced_range(i32 %x) { ; CHECK-LABEL: @nabs_is_negative_or_0_reduced_range( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i32 %x, 1 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp slt i32 %nabs, 421 ret i1 %r } ; Negative test - range intersection is not subset. define i1 @nabs_is_negative_or_0_wrong_range(i32 %x) { ; CHECK-LABEL: @nabs_is_negative_or_0_wrong_range( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 1 ; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]] ; CHECK-NEXT: [[NABS:%.*]] = select i1 [[CMP]], i32 [[X]], i32 [[NEGX]] ; CHECK-NEXT: [[R:%.*]] = icmp slt i32 [[NABS]], 0 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %x, 1 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp slt i32 %nabs, 0 ret i1 %r } ; This is canonical form for this IR. For nabs(), we don't require 'nsw' define i1 @nabs_is_not_over_0(i32 %x) { ; CHECK-LABEL: @nabs_is_not_over_0( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i32 %x, 0 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp sgt i32 %nabs, 0 ret i1 %r } ; Test non-canonical predicate and non-canonical form of nabs(). define i1 @nabs_is_not_over_0_sle(i32 %x) { ; CHECK-LABEL: @nabs_is_not_over_0_sle( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i32 %x, 1 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp sge i32 %nabs, 1 ret i1 %r } ; This is a range-based analysis. Any positive constant works. define i1 @nabs_is_not_over_0_reduced_range(i32 %x) { ; CHECK-LABEL: @nabs_is_not_over_0_reduced_range( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i32 %x, 1 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp sgt i32 %nabs, 4223 ret i1 %r } ; Negative test - range intersection is not subset. define i1 @nabs_is_not_over_0_wrong_range(i32 %x) { ; CHECK-LABEL: @nabs_is_not_over_0_wrong_range( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 1 ; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]] ; CHECK-NEXT: [[NABS:%.*]] = select i1 [[CMP]], i32 [[X]], i32 [[NEGX]] ; CHECK-NEXT: [[R:%.*]] = icmp sgt i32 [[NABS]], -1 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %x, 1 %negx = sub i32 0, %x %nabs = select i1 %cmp, i32 %x, i32 %negx %r = icmp sgt i32 %nabs, -1 ret i1 %r } ; More miscellaneous tests for predicates/types. ; Equality predicates are ok. define i1 @abs_nsw_is_positive_eq(i32 %x) { ; CHECK-LABEL: @abs_nsw_is_positive_eq( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i32 %x, 1 %negx = sub nsw i32 0, %x %abs = select i1 %cmp, i32 %negx, i32 %x %r = icmp eq i32 %abs, -8 ret i1 %r } ; An unsigned compare may work. define i1 @abs_nsw_is_positive_ult(i8 %x) { ; CHECK-LABEL: @abs_nsw_is_positive_ult( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i8 %x, 0 %negx = sub nsw i8 0, %x %abs = select i1 %cmp, i8 %negx, i8 %x %r = icmp ult i8 %abs, 139 ret i1 %r } ; An unsigned compare may work. define i1 @abs_nsw_is_not_negative_ugt(i8 %x) { ; CHECK-LABEL: @abs_nsw_is_not_negative_ugt( ; CHECK-NEXT: ret i1 false ; %cmp = icmp slt i8 %x, 0 %negx = sub nsw i8 0, %x %abs = select i1 %cmp, i8 %negx, i8 %x %r = icmp ugt i8 %abs, 127 ret i1 %r } ; Vector types are ok. define <2 x i1> @abs_nsw_is_not_negative_vec_splat(<2 x i32> %x) { ; CHECK-LABEL: @abs_nsw_is_not_negative_vec_splat( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %cmp = icmp slt <2 x i32> %x, zeroinitializer %negx = sub nsw <2 x i32> zeroinitializer, %x %abs = select <2 x i1> %cmp, <2 x i32> %negx, <2 x i32> %x %r = icmp slt <2 x i32> %abs, <i32 -8, i32 -8> ret <2 x i1> %r } ; Equality predicates are ok. define i1 @nabs_is_negative_or_0_ne(i8 %x) { ; CHECK-LABEL: @nabs_is_negative_or_0_ne( ; CHECK-NEXT: ret i1 true ; %cmp = icmp slt i8 %x, 0 %negx = sub i8 0, %x %nabs = select i1 %cmp, i8 %x, i8 %negx %r = icmp ne i8 %nabs, 12 ret i1 %r } ; Vector types are ok. define <3 x i1> @nabs_is_not_over_0_sle_vec_splat(<3 x i33> %x) { ; CHECK-LABEL: @nabs_is_not_over_0_sle_vec_splat( ; CHECK-NEXT: ret <3 x i1> zeroinitializer ; %cmp = icmp slt <3 x i33> %x, <i33 1, i33 1, i33 1> %negx = sub <3 x i33> zeroinitializer, %x %nabs = select <3 x i1> %cmp, <3 x i33> %x, <3 x i33> %negx %r = icmp sge <3 x i33> %nabs, <i33 1, i33 1, i33 1> ret <3 x i1> %r } ; Negative test - intersection does not equal absolute value range. ; PR39510 - https://bugs.llvm.org/show_bug.cgi?id=39510 define i1 @abs_no_intersection(i32 %a) { ; CHECK-LABEL: @abs_no_intersection( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[A:%.*]], 0 ; CHECK-NEXT: [[SUB:%.*]] = sub nsw i32 0, [[A]] ; CHECK-NEXT: [[COND:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 [[A]] ; CHECK-NEXT: [[R:%.*]] = icmp ne i32 [[COND]], 2 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp slt i32 %a, 0 %sub = sub nsw i32 0, %a %cond = select i1 %cmp, i32 %sub, i32 %a %r = icmp ne i32 %cond, 2 ret i1 %r } ; Negative test - intersection does not equal absolute value range. define i1 @nabs_no_intersection(i32 %a) { ; CHECK-LABEL: @nabs_no_intersection( ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[A:%.*]], 0 ; CHECK-NEXT: [[SUB:%.*]] = sub i32 0, [[A]] ; CHECK-NEXT: [[COND:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 [[A]] ; CHECK-NEXT: [[R:%.*]] = icmp ne i32 [[COND]], -2 ; CHECK-NEXT: ret i1 [[R]] ; %cmp = icmp sgt i32 %a, 0 %sub = sub i32 0, %a %cond = select i1 %cmp, i32 %sub, i32 %a %r = icmp ne i32 %cond, -2 ret i1 %r } ; We can't fold this to false unless both subs have nsw. define i1 @abs_sub_sub_missing_nsw(i32 %x, i32 %y) { ; CHECK-LABEL: @abs_sub_sub_missing_nsw( ; CHECK-NEXT: [[A:%.*]] = sub i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[B:%.*]] = sub nsw i32 [[Y]], [[X]] ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[A]], -1 ; CHECK-NEXT: [[D:%.*]] = select i1 [[C]], i32 [[A]], i32 [[B]] ; CHECK-NEXT: [[E:%.*]] = icmp slt i32 [[D]], 0 ; CHECK-NEXT: ret i1 [[E]] ; %a = sub i32 %x, %y %b = sub nsw i32 %y, %x %c = icmp sgt i32 %a, -1 %d = select i1 %c, i32 %a, i32 %b %e = icmp slt i32 %d, 0 ret i1 %e }