#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantFold.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstdint>
using namespace llvm;
namespace {
static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
Constant *C, Type *SrcEltTy,
unsigned NumSrcElts,
const DataLayout &DL) {
unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
for (unsigned i = 0; i != NumSrcElts; ++i) {
Constant *Element;
if (DL.isLittleEndian())
Element = C->getAggregateElement(NumSrcElts - i - 1);
else
Element = C->getAggregateElement(i);
if (Element && isa<UndefValue>(Element)) {
Result <<= BitShift;
continue;
}
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI)
return ConstantExpr::getBitCast(C, DestTy);
Result <<= BitShift;
Result |= ElementCI->getValue().zext(Result.getBitWidth());
}
return nullptr;
}
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
"Invalid constantexpr bitcast!");
if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
return Res;
if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
Type *SrcEltTy = VTy->getElementType();
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
auto *SrcIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
C = ConstantExpr::getBitCast(C, SrcIVTy);
}
APInt Result(DL.getTypeSizeInBits(DestTy), 0);
if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
SrcEltTy, NumSrcElts, DL))
return CE;
if (isa<IntegerType>(DestTy))
return ConstantInt::get(DestTy, Result);
APFloat FP(DestTy->getFltSemantics(), Result);
return ConstantFP::get(DestTy->getContext(), FP);
}
}
auto *DestVTy = dyn_cast<VectorType>(DestTy);
if (!DestVTy)
return ConstantExpr::getBitCast(C, DestTy);
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
}
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
return ConstantExpr::getBitCast(C, DestTy);
unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
Type *DstEltTy = DestVTy->getElementType();
if (DstEltTy->isFloatingPointTy()) {
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
auto *DestIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumDstElt);
C = FoldBitCast(C, DestIVTy, DL);
return ConstantExpr::getBitCast(C, DestTy);
}
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
auto *SrcIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
C = ConstantExpr::getBitCast(C, SrcIVTy);
if (!isa<ConstantVector>(C) && !isa<ConstantDataVector>(C))
return C;
}
bool isLittleEndian = DL.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
Constant *Zero = Constant::getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
for (unsigned i = 0; i != NumDstElt; ++i) {
Constant *Elt = Zero;
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Src = C->getAggregateElement(SrcElt++);
if (Src && isa<UndefValue>(Src))
Src = Constant::getNullValue(
cast<VectorType>(C->getType())->getElementType());
else
Src = dyn_cast_or_null<ConstantInt>(Src);
if (!Src) return ConstantExpr::getBitCast(C, DestTy);
Src = ConstantExpr::getZExt(Src, Elt->getType());
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
Elt = ConstantExpr::getOr(Elt, Src);
}
Result.push_back(Elt);
}
return ConstantVector::get(Result);
}
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
for (unsigned i = 0; i != NumSrcElt; ++i) {
auto *Element = C->getAggregateElement(i);
if (!Element) return ConstantExpr::getBitCast(C, DestTy);
if (isa<UndefValue>(Element)) {
Result.append(Ratio, UndefValue::get(DstEltTy));
continue;
}
auto *Src = dyn_cast<ConstantInt>(Element);
if (!Src)
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
if (DstEltTy->isPointerTy()) {
IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
continue;
}
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
return ConstantVector::get(Result);
}
}
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
APInt &Offset, const DataLayout &DL,
DSOLocalEquivalent **DSOEquiv) {
if (DSOEquiv)
*DSOEquiv = nullptr;
if ((GV = dyn_cast<GlobalValue>(C))) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
if (DSOEquiv)
*DSOEquiv = FoundDSOEquiv;
GV = FoundDSOEquiv->getGlobalValue();
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
auto *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
DSOEquiv);
auto *GEP = dyn_cast<GEPOperator>(CE);
if (!GEP)
return false;
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
APInt TmpOffset(BitWidth, 0);
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
DSOEquiv))
return false;
if (!GEP->accumulateConstantOffset(DL, TmpOffset))
return false;
Offset = TmpOffset;
return true;
}
Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
const DataLayout &DL) {
do {
Type *SrcTy = C->getType();
if (SrcTy == DestTy)
return C;
TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
if (!TypeSize::isKnownGE(SrcSize, DestSize))
return nullptr;
if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
return Res;
if (SrcSize == DestSize &&
DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
DL.isNonIntegralPointerType(DestTy->getScalarType())) {
Instruction::CastOps Cast = Instruction::BitCast;
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
Cast = Instruction::IntToPtr;
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
Cast = Instruction::PtrToInt;
if (CastInst::castIsValid(Cast, C, DestTy))
return ConstantExpr::getCast(Cast, C, DestTy);
}
if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
return nullptr;
if (SrcTy->isStructTy()) {
unsigned Elem = 0;
Constant *ElemC;
do {
ElemC = C->getAggregateElement(Elem++);
} while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
C = ElemC;
} else {
if (auto *VT = dyn_cast<VectorType>(SrcTy))
if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
return nullptr;
C = C->getAggregateElement(0u);
}
} while (C);
return nullptr;
}
namespace {
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
unsigned BytesLeft, const DataLayout &DL) {
assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
"Out of range access");
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (auto *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
int n = ByteOffset;
if (!DL.isLittleEndian())
n = IntBytes - n - 1;
CurPtr[i] = (unsigned char)(Val >> (n * 8));
++ByteOffset;
}
return true;
}
if (auto *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isFloatTy()){
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isHalfTy()){
C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
return false;
}
if (auto *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = DL.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (true) {
uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
if (ByteOffset < EltSize &&
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, DL))
return false;
++Index;
if (Index == CS->getType()->getNumElements())
return true;
uint64_t NextEltOffset = SL->getElementOffset(Index);
if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
return true;
CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
}
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
isa<ConstantDataSequential>(C)) {
uint64_t NumElts;
Type *EltTy;
if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
NumElts = AT->getNumElements();
EltTy = AT->getElementType();
} else {
NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
EltTy = cast<FixedVectorType>(C->getType())->getElementType();
}
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != NumElts; ++Index) {
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
BytesLeft, DL))
return false;
uint64_t BytesWritten = EltSize - Offset;
assert(BytesWritten <= EltSize && "Not indexing into this element?");
if (BytesWritten >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= BytesWritten;
CurPtr += BytesWritten;
}
return true;
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, DL);
}
}
return false;
}
Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
int64_t Offset, const DataLayout &DL) {
if (isa<ScalableVectorType>(LoadTy))
return nullptr;
auto *IntType = dyn_cast<IntegerType>(LoadTy);
if (!IntType) {
if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
!LoadTy->isVectorTy())
return nullptr;
Type *MapTy = Type::getIntNTy(
C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
!LoadTy->isX86_AMXTy())
return Constant::getNullValue(LoadTy);
Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
Res = FoldBitCast(Res, CastTy, DL);
if (LoadTy->isPtrOrPtrVectorTy()) {
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
!LoadTy->isX86_AMXTy())
return Constant::getNullValue(LoadTy);
if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
return nullptr;
Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
}
return Res;
}
return nullptr;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0)
return nullptr;
if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
return UndefValue::get(IntType);
TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
if (InitializerSize.isScalable())
return nullptr;
if (Offset >= (int64_t)InitializerSize.getFixedValue())
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
unsigned char *CurPtr = RawBytes;
unsigned BytesLeft = BytesLoaded;
if (Offset < 0) {
CurPtr += -Offset;
BytesLeft += Offset;
Offset = 0;
}
if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
return nullptr;
APInt ResultVal = APInt(IntType->getBitWidth(), 0);
if (DL.isLittleEndian()) {
ResultVal = RawBytes[BytesLoaded - 1];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[BytesLoaded - 1 - i];
}
} else {
ResultVal = RawBytes[0];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[i];
}
}
return ConstantInt::get(IntType->getContext(), ResultVal);
}
}
Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
uint64_t Offset) {
if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
return nullptr;
const DataLayout &DL = GV->getParent()->getDataLayout();
Constant *Init = const_cast<Constant *>(GV->getInitializer());
TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
if (InitSize < Offset)
return nullptr;
uint64_t NBytes = InitSize - Offset;
if (NBytes > UINT16_MAX)
return nullptr;
SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
unsigned char *CurPtr = RawBytes.data();
if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
return nullptr;
return ConstantDataArray::get(GV->getContext(), RawBytes);
}
Constant *getConstantAtOffset(Constant *Base, APInt Offset,
const DataLayout &DL) {
if (Offset.isZero())
return Base;
if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
return nullptr;
Type *ElemTy = Base->getType();
SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
if (!Offset.isZero() || !Indices[0].isZero())
return nullptr;
Constant *C = Base;
for (const APInt &Index : drop_begin(Indices)) {
if (Index.isNegative() || Index.getActiveBits() >= 32)
return nullptr;
C = C->getAggregateElement(Index.getZExtValue());
if (!C)
return nullptr;
}
return C;
}
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
const APInt &Offset,
const DataLayout &DL) {
if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
return Result;
TypeSize Size = DL.getTypeAllocSize(C->getType());
if (!Size.isScalable() && Offset.sge(Size.getFixedSize()))
return UndefValue::get(Ty);
if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
return Result;
if (Offset.getMinSignedBits() <= 64)
if (Constant *Result =
FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
return Result;
return nullptr;
}
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
const DataLayout &DL) {
return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
}
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
APInt Offset,
const DataLayout &DL) {
C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
DL, Offset, true));
if (auto *GV = dyn_cast<GlobalVariable>(C))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
Offset, DL))
return Result;
if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (Constant *Res =
ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty))
return Res;
}
}
return nullptr;
}
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
const DataLayout &DL) {
APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
}
Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
if (isa<PoisonValue>(C))
return PoisonValue::get(Ty);
if (isa<UndefValue>(C))
return UndefValue::get(Ty);
if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
return Constant::getNullValue(Ty);
if (C->isAllOnesValue() &&
(Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
return Constant::getAllOnesValue(Ty);
return nullptr;
}
namespace {
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
const DataLayout &DL) {
if (Opc == Instruction::And) {
KnownBits Known0 = computeKnownBits(Op0, DL);
KnownBits Known1 = computeKnownBits(Op1, DL);
if ((Known1.One | Known0.Zero).isAllOnes()) {
return Op0;
}
if ((Known0.One | Known1.Zero).isAllOnes()) {
return Op1;
}
Known0 &= Known1;
if (Known0.isConstant())
return ConstantInt::get(Op0->getType(), Known0.getConstant());
}
if (Opc == Instruction::Sub) {
GlobalValue *GV1, *GV2;
APInt Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
Offs2.zextOrTrunc(OpSize));
}
}
return nullptr;
}
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
Type *ResultTy, Optional<unsigned> InRangeIndex,
const DataLayout &DL, const TargetLibraryInfo *TLI) {
Type *IntIdxTy = DL.getIndexType(ResultTy);
Type *IntIdxScalarTy = IntIdxTy->getScalarType();
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(
SrcElemTy, Ops.slice(1, i - 1)))) &&
Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
Any = true;
Type *NewType = Ops[i]->getType()->isVectorTy()
? IntIdxTy
: IntIdxScalarTy;
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
true,
NewType,
true),
Ops[i], NewType));
} else
NewIdxs.push_back(Ops[i]);
}
if (!Any)
return nullptr;
Constant *C = ConstantExpr::getGetElementPtr(
SrcElemTy, Ops[0], NewIdxs, false, InRangeIndex);
return ConstantFoldConstant(C, DL, TLI);
}
Constant *StripPtrCastKeepAS(Constant *Ptr) {
assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
auto *OldPtrTy = cast<PointerType>(Ptr->getType());
Ptr = cast<Constant>(Ptr->stripPointerCasts());
auto *NewPtrTy = cast<PointerType>(Ptr->getType());
if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
Ptr = ConstantExpr::getPointerCast(
Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
OldPtrTy->getAddressSpace()));
}
return Ptr;
}
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
const GEPOperator *InnermostGEP = GEP;
bool InBounds = GEP->isInBounds();
Type *SrcElemTy = GEP->getSourceElementType();
Type *ResElemTy = GEP->getResultElementType();
Type *ResTy = GEP->getType();
if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
return nullptr;
if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
GEP->getInRangeIndex(), DL, TLI))
return C;
Constant *Ptr = Ops[0];
if (!Ptr->getType()->isPointerTy())
return nullptr;
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i]))
return nullptr;
unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
APInt Offset =
APInt(BitWidth,
DL.getIndexedOffsetInType(
SrcElemTy,
makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
Ptr = StripPtrCastKeepAS(Ptr);
while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
InnermostGEP = GEP;
InBounds &= GEP->isInBounds();
SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
bool AllConstantInt = true;
for (Value *NestedOp : NestedOps)
if (!isa<ConstantInt>(NestedOp)) {
AllConstantInt = false;
break;
}
if (!AllConstantInt)
break;
Ptr = cast<Constant>(GEP->getOperand(0));
SrcElemTy = GEP->getSourceElementType();
Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
Ptr = StripPtrCastKeepAS(Ptr);
}
APInt BasePtr(BitWidth, 0);
if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
}
}
auto *PTy = cast<PointerType>(Ptr->getType());
if ((Ptr->isNullValue() || BasePtr != 0) &&
!DL.isNonIntegralPointerType(PTy)) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
return ConstantExpr::getIntToPtr(C, ResTy);
}
if (auto *GV = dyn_cast<GlobalValue>(Ptr))
SrcElemTy = GV->getValueType();
else if (!PTy->isOpaque())
SrcElemTy = PTy->getNonOpaquePointerElementType();
else
SrcElemTy = Type::getInt8Ty(Ptr->getContext());
if (!SrcElemTy->isSized())
return nullptr;
Type *ElemTy = SrcElemTy;
SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
if (Offset != 0)
return nullptr;
while (ElemTy != ResElemTy) {
Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
if (!NextTy)
break;
Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
ElemTy = NextTy;
}
SmallVector<Constant *, 32> NewIdxs;
for (const APInt &Index : Indices)
NewIdxs.push_back(ConstantInt::get(
Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
Optional<unsigned> InRangeIndex;
if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
if (SrcElemTy == InnermostGEP->getSourceElementType() &&
NewIdxs.size() > *LastIRIndex) {
InRangeIndex = LastIRIndex;
for (unsigned I = 0; I <= *LastIRIndex; ++I)
if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
return nullptr;
}
Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
InBounds, InRangeIndex);
assert(
cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
"Computed GetElementPtr has unexpected type!");
if (C->getType() != ResTy)
C = FoldBitCast(C, ResTy, DL);
return C;
}
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
Type *DestTy = InstOrCE->getType();
if (Instruction::isUnaryOp(Opcode))
return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
if (Instruction::isBinaryOp(Opcode)) {
switch (Opcode) {
default:
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
}
}
return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
}
if (Instruction::isCast(Opcode))
return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
return C;
return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
Ops.slice(1), GEP->isInBounds(),
GEP->getInRangeIndex());
}
if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
DL, TLI);
return CE->getWithOperands(Ops);
}
switch (Opcode) {
default: return nullptr;
case Instruction::ICmp:
case Instruction::FCmp: {
auto *C = cast<CmpInst>(InstOrCE);
return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
DL, TLI, C);
}
case Instruction::Freeze:
return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
case Instruction::Call:
if (auto *F = dyn_cast<Function>(Ops.back())) {
const auto *Call = cast<CallBase>(InstOrCE);
if (canConstantFoldCallTo(Call, F))
return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
}
return nullptr;
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::ExtractValue:
return ConstantFoldExtractValueInstruction(
Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertValue:
return ConstantFoldInsertValueInstruction(
Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(
Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
case Instruction::Load: {
const auto *LI = dyn_cast<LoadInst>(InstOrCE);
if (LI->isVolatile())
return nullptr;
return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
}
}
}
}
namespace {
Constant *
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI,
SmallDenseMap<Constant *, Constant *> &FoldedOps) {
if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
return const_cast<Constant *>(C);
SmallVector<Constant *, 8> Ops;
for (const Use &OldU : C->operands()) {
Constant *OldC = cast<Constant>(&OldU);
Constant *NewC = OldC;
if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
auto It = FoldedOps.find(OldC);
if (It == FoldedOps.end()) {
NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
FoldedOps.insert({OldC, NewC});
} else {
NewC = It->second;
}
}
Ops.push_back(NewC);
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (Constant *Res =
ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
return Res;
return const_cast<Constant *>(C);
}
assert(isa<ConstantVector>(C));
return ConstantVector::get(Ops);
}
}
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
if (auto *PN = dyn_cast<PHINode>(I)) {
Constant *CommonValue = nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
for (Value *Incoming : PN->incoming_values()) {
if (isa<UndefValue>(Incoming))
continue;
auto *C = dyn_cast<Constant>(Incoming);
if (!C)
return nullptr;
C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
if (CommonValue && C != CommonValue)
return nullptr;
CommonValue = C;
}
return CommonValue ? CommonValue : UndefValue::get(PN->getType());
}
if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
return nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
SmallVector<Constant *, 8> Ops;
for (const Use &OpU : I->operands()) {
auto *Op = cast<Constant>(&OpU);
Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
Ops.push_back(Op);
}
return ConstantFoldInstOperands(I, Ops, DL, TLI);
}
Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
SmallDenseMap<Constant *, Constant *> FoldedOps;
return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
}
Constant *llvm::ConstantFoldInstOperands(Instruction *I,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
}
Constant *llvm::ConstantFoldCompareInstOperands(
unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
const TargetLibraryInfo *TLI, const Instruction *I) {
CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (Ops1->isNullValue()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
}
}
if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (CE0->getOpcode() == CE1->getOpcode()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
}
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
return ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
}
}
}
}
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
Constant *LHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), Ops1, DL, TLI);
Constant *RHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(1), Ops1, DL, TLI);
unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
}
if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
APInt Offset0(IndexWidth, 0);
Value *Stripped0 =
Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
APInt Offset1(IndexWidth, 0);
Value *Stripped1 =
Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
if (Stripped0 == Stripped1)
return ConstantExpr::getCompare(
ICmpInst::getSignedPredicate(Predicate),
ConstantInt::get(CE0->getContext(), Offset0),
ConstantInt::get(CE0->getContext(), Offset1));
}
} else if (isa<ConstantExpr>(Ops1)) {
Predicate = ICmpInst::getSwappedPredicate(Predicate);
return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
}
Ops0 = FlushFPConstant(Ops0, I, false);
Ops1 = FlushFPConstant(Ops1, I, false);
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
const DataLayout &DL) {
assert(Instruction::isUnaryOp(Opcode));
return ConstantExpr::get(Opcode, Op);
}
Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
Constant *RHS,
const DataLayout &DL) {
assert(Instruction::isBinaryOp(Opcode));
if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
return C;
if (ConstantExpr::isDesirableBinOp(Opcode))
return ConstantExpr::get(Opcode, LHS, RHS);
return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
}
Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
bool IsOutput) {
if (!I || !I->getParent() || !I->getFunction())
return Operand;
ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
if (!CFP)
return Operand;
const APFloat &APF = CFP->getValueAPF();
Type *Ty = CFP->getType();
DenormalMode DenormMode =
I->getFunction()->getDenormalMode(Ty->getFltSemantics());
DenormalMode::DenormalModeKind Mode =
IsOutput ? DenormMode.Output : DenormMode.Input;
switch (Mode) {
default:
llvm_unreachable("unknown denormal mode");
return Operand;
case DenormalMode::IEEE:
return Operand;
case DenormalMode::PreserveSign:
if (APF.isDenormal()) {
return ConstantFP::get(
Ty->getContext(),
APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
}
return Operand;
case DenormalMode::PositiveZero:
if (APF.isDenormal()) {
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(Ty->getFltSemantics(), false));
}
return Operand;
}
return Operand;
}
Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
Constant *RHS, const DataLayout &DL,
const Instruction *I) {
if (Instruction::isBinaryOp(Opcode)) {
Constant *Op0 = FlushFPConstant(LHS, I, false);
Constant *Op1 = FlushFPConstant(RHS, I, false);
Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
if (!C)
return nullptr;
return FlushFPConstant(C, I, true);
}
return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
}
Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
Type *DestTy, const DataLayout &DL) {
assert(Instruction::isCast(Opcode));
switch (Opcode) {
default:
llvm_unreachable("Missing case");
case Instruction::PtrToInt:
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
Constant *FoldedValue = nullptr;
if (CE->getOpcode() == Instruction::IntToPtr) {
FoldedValue = ConstantExpr::getIntegerCast(
CE->getOperand(0), DL.getIntPtrType(CE->getType()),
false);
} else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
APInt BaseOffset(BitWidth, 0);
auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
DL, BaseOffset, true));
if (Base->isNullValue()) {
FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
} else {
if (GEP->getNumIndices() == 1 &&
GEP->getSourceElementType()->isIntegerTy(8)) {
auto *Ptr = cast<Constant>(GEP->getPointerOperand());
auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
if (Sub && Sub->getType() == IntIdxTy &&
Sub->getOpcode() == Instruction::Sub &&
Sub->getOperand(0)->isNullValue())
FoldedValue = ConstantExpr::getSub(
ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
}
}
}
if (FoldedValue) {
return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
false);
}
}
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::IntToPtr:
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *SrcPtr = CE->getOperand(0);
unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
if (MidIntSize >= SrcPtrSize) {
unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
if (SrcAS == DestTy->getPointerAddressSpace())
return FoldBitCast(CE->getOperand(0), DestTy, DL);
}
}
}
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::AddrSpaceCast:
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::BitCast:
return FoldBitCast(C, DestTy, DL);
}
}
bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
if (Call->isNoBuiltin())
return false;
if (Call->getFunctionType() != F->getFunctionType())
return false;
switch (F->getIntrinsicID()) {
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::fshl:
case Intrinsic::fshr:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::masked_load:
case Intrinsic::get_active_lane_mask:
case Intrinsic::abs:
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::uadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::usub_sat:
case Intrinsic::smul_fix:
case Intrinsic::smul_fix_sat:
case Intrinsic::bitreverse:
case Intrinsic::is_constant:
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax:
case Intrinsic::amdgcn_perm:
case Intrinsic::arm_mve_vctp8:
case Intrinsic::arm_mve_vctp16:
case Intrinsic::arm_mve_vctp32:
case Intrinsic::arm_mve_vctp64:
case Intrinsic::aarch64_sve_convert_from_svbool:
case Intrinsic::wasm_trunc_signed:
case Intrinsic::wasm_trunc_unsigned:
return true;
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::minimum:
case Intrinsic::maximum:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::sqrt:
case Intrinsic::sin:
case Intrinsic::cos:
case Intrinsic::pow:
case Intrinsic::powi:
case Intrinsic::fma:
case Intrinsic::fmuladd:
case Intrinsic::fptoui_sat:
case Intrinsic::fptosi_sat:
case Intrinsic::convert_from_fp16:
case Intrinsic::convert_to_fp16:
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_cubema:
case Intrinsic::amdgcn_cubesc:
case Intrinsic::amdgcn_cubetc:
case Intrinsic::amdgcn_fmul_legacy:
case Intrinsic::amdgcn_fma_legacy:
case Intrinsic::amdgcn_fract:
case Intrinsic::amdgcn_ldexp:
case Intrinsic::amdgcn_sin:
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2si32:
case Intrinsic::x86_avx512_vcvtss2si64:
case Intrinsic::x86_avx512_cvttss2si:
case Intrinsic::x86_avx512_cvttss2si64:
case Intrinsic::x86_avx512_vcvtsd2si32:
case Intrinsic::x86_avx512_vcvtsd2si64:
case Intrinsic::x86_avx512_cvttsd2si:
case Intrinsic::x86_avx512_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2usi32:
case Intrinsic::x86_avx512_vcvtss2usi64:
case Intrinsic::x86_avx512_cvttss2usi:
case Intrinsic::x86_avx512_cvttss2usi64:
case Intrinsic::x86_avx512_vcvtsd2usi32:
case Intrinsic::x86_avx512_vcvtsd2usi64:
case Intrinsic::x86_avx512_cvttsd2usi:
case Intrinsic::x86_avx512_cvttsd2usi64:
return !Call->isStrictFP();
case Intrinsic::fabs:
case Intrinsic::copysign:
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::round:
case Intrinsic::roundeven:
case Intrinsic::trunc:
case Intrinsic::nearbyint:
case Intrinsic::rint:
case Intrinsic::experimental_constrained_fma:
case Intrinsic::experimental_constrained_fmuladd:
case Intrinsic::experimental_constrained_fadd:
case Intrinsic::experimental_constrained_fsub:
case Intrinsic::experimental_constrained_fmul:
case Intrinsic::experimental_constrained_fdiv:
case Intrinsic::experimental_constrained_frem:
case Intrinsic::experimental_constrained_ceil:
case Intrinsic::experimental_constrained_floor:
case Intrinsic::experimental_constrained_round:
case Intrinsic::experimental_constrained_roundeven:
case Intrinsic::experimental_constrained_trunc:
case Intrinsic::experimental_constrained_nearbyint:
case Intrinsic::experimental_constrained_rint:
case Intrinsic::experimental_constrained_fcmp:
case Intrinsic::experimental_constrained_fcmps:
return true;
default:
return false;
case Intrinsic::not_intrinsic: break;
}
if (!F->hasName() || Call->isStrictFP())
return false;
StringRef Name = F->getName();
switch (Name[0]) {
default:
return false;
case 'a':
return Name == "acos" || Name == "acosf" ||
Name == "asin" || Name == "asinf" ||
Name == "atan" || Name == "atanf" ||
Name == "atan2" || Name == "atan2f";
case 'c':
return Name == "ceil" || Name == "ceilf" ||
Name == "cos" || Name == "cosf" ||
Name == "cosh" || Name == "coshf";
case 'e':
return Name == "exp" || Name == "expf" ||
Name == "exp2" || Name == "exp2f";
case 'f':
return Name == "fabs" || Name == "fabsf" ||
Name == "floor" || Name == "floorf" ||
Name == "fmod" || Name == "fmodf";
case 'l':
return Name == "log" || Name == "logf" ||
Name == "log2" || Name == "log2f" ||
Name == "log10" || Name == "log10f";
case 'n':
return Name == "nearbyint" || Name == "nearbyintf";
case 'p':
return Name == "pow" || Name == "powf";
case 'r':
return Name == "remainder" || Name == "remainderf" ||
Name == "rint" || Name == "rintf" ||
Name == "round" || Name == "roundf";
case 's':
return Name == "sin" || Name == "sinf" ||
Name == "sinh" || Name == "sinhf" ||
Name == "sqrt" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanf" ||
Name == "tanh" || Name == "tanhf" ||
Name == "trunc" || Name == "truncf";
case '_':
if (Name.size() < 12 || Name[1] != '_')
return false;
switch (Name[2]) {
default:
return false;
case 'a':
return Name == "__acos_finite" || Name == "__acosf_finite" ||
Name == "__asin_finite" || Name == "__asinf_finite" ||
Name == "__atan2_finite" || Name == "__atan2f_finite";
case 'c':
return Name == "__cosh_finite" || Name == "__coshf_finite";
case 'e':
return Name == "__exp_finite" || Name == "__expf_finite" ||
Name == "__exp2_finite" || Name == "__exp2f_finite";
case 'l':
return Name == "__log_finite" || Name == "__logf_finite" ||
Name == "__log10_finite" || Name == "__log10f_finite";
case 'p':
return Name == "__pow_finite" || Name == "__powf_finite";
case 's':
return Name == "__sinh_finite" || Name == "__sinhf_finite";
}
}
}
namespace {
Constant *GetConstantFoldFPValue(double V, Type *Ty) {
if (Ty->isHalfTy() || Ty->isFloatTy()) {
APFloat APF(V);
bool unused;
APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
return ConstantFP::get(Ty->getContext(), APF);
}
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold half/float/double");
}
inline void llvm_fenv_clearexcept() {
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
feclearexcept(FE_ALL_EXCEPT);
#endif
errno = 0;
}
inline bool llvm_fenv_testexcept() {
int errno_val = errno;
if (errno_val == ERANGE || errno_val == EDOM)
return true;
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
return true;
#endif
return false;
}
Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
Type *Ty) {
llvm_fenv_clearexcept();
double Result = NativeFP(V.convertToDouble());
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(Result, Ty);
}
Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
const APFloat &V, const APFloat &W, Type *Ty) {
llvm_fenv_clearexcept();
double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(Result, Ty);
}
Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
if (!VT)
return nullptr;
if (isa<ConstantAggregateZero>(Op))
return ConstantInt::get(VT->getElementType(), 0);
if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
return PoisonValue::get(VT->getElementType());
if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
return nullptr;
auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
if (!EltC)
return nullptr;
APInt Acc = EltC->getValue();
for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
return nullptr;
const APInt &X = EltC->getValue();
switch (IID) {
case Intrinsic::vector_reduce_add:
Acc = Acc + X;
break;
case Intrinsic::vector_reduce_mul:
Acc = Acc * X;
break;
case Intrinsic::vector_reduce_and:
Acc = Acc & X;
break;
case Intrinsic::vector_reduce_or:
Acc = Acc | X;
break;
case Intrinsic::vector_reduce_xor:
Acc = Acc ^ X;
break;
case Intrinsic::vector_reduce_smin:
Acc = APIntOps::smin(Acc, X);
break;
case Intrinsic::vector_reduce_smax:
Acc = APIntOps::smax(Acc, X);
break;
case Intrinsic::vector_reduce_umin:
Acc = APIntOps::umin(Acc, X);
break;
case Intrinsic::vector_reduce_umax:
Acc = APIntOps::umax(Acc, X);
break;
}
}
return ConstantInt::get(Op->getContext(), Acc);
}
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
Type *Ty, bool IsSigned) {
unsigned ResultWidth = Ty->getIntegerBitWidth();
assert(ResultWidth <= 64 &&
"Can only constant fold conversions to 64 and 32 bit ints");
uint64_t UIntVal;
bool isExact = false;
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
: APFloat::rmNearestTiesToEven;
APFloat::opStatus status =
Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
IsSigned, mode, &isExact);
if (status != APFloat::opOK &&
(!roundTowardZero || status != APFloat::opInexact))
return nullptr;
return ConstantInt::get(Ty, UIntVal, IsSigned);
}
double getValueAsDouble(ConstantFP *Op) {
Type *Ty = Op->getType();
if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
return Op->getValueAPF().convertToDouble();
bool unused;
APFloat APF = Op->getValueAPF();
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
return APF.convertToDouble();
}
static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
C = &CI->getValue();
return true;
}
if (isa<UndefValue>(Op)) {
C = nullptr;
return true;
}
return false;
}
static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
APFloat::opStatus St) {
Optional<RoundingMode> ORM = CI->getRoundingMode();
Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
if (St == APFloat::opStatus::opOK)
return true;
if (ORM && *ORM == RoundingMode::Dynamic)
return false;
if (EB && *EB != fp::ExceptionBehavior::ebStrict)
return true;
return false;
}
static RoundingMode
getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
Optional<RoundingMode> ORM = CI->getRoundingMode();
if (!ORM || *ORM == RoundingMode::Dynamic)
return RoundingMode::NearestTiesToEven;
return *ORM;
}
static Constant *ConstantFoldScalarCall1(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 1 && "Wrong number of operands.");
if (IntrinsicID == Intrinsic::is_constant) {
if (Operands[0]->isManifestConstant())
return ConstantInt::getTrue(Ty->getContext());
return nullptr;
}
if (isa<UndefValue>(Operands[0])) {
if (IntrinsicID == Intrinsic::cos ||
IntrinsicID == Intrinsic::ctpop ||
IntrinsicID == Intrinsic::fptoui_sat ||
IntrinsicID == Intrinsic::fptosi_sat)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::bswap ||
IntrinsicID == Intrinsic::bitreverse ||
IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group)
return Operands[0];
}
if (isa<ConstantPointerNull>(Operands[0])) {
if (IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group) {
const Function *Caller =
Call->getParent() ? Call->getCaller() : nullptr;
if (Caller &&
!NullPointerIsDefined(
Caller, Operands[0]->getType()->getPointerAddressSpace())) {
return Operands[0];
}
return nullptr;
}
}
if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
if (IntrinsicID == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
}
APFloat U = Op->getValueAPF();
if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
if (U.isNaN())
return nullptr;
unsigned Width = Ty->getIntegerBitWidth();
APSInt Int(Width, !Signed);
bool IsExact = false;
APFloat::opStatus Status =
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
if (Status == APFloat::opOK || Status == APFloat::opInexact)
return ConstantInt::get(Ty, Int);
return nullptr;
}
if (IntrinsicID == Intrinsic::fptoui_sat ||
IntrinsicID == Intrinsic::fptosi_sat) {
APSInt Int(Ty->getIntegerBitWidth(),
IntrinsicID == Intrinsic::fptoui_sat);
bool IsExact;
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
return ConstantInt::get(Ty, Int);
}
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::round) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::roundeven) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::ceil) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::floor) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::trunc) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::fabs) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::amdgcn_fract) {
APFloat FloorU(U);
FloorU.roundToIntegral(APFloat::rmTowardNegative);
APFloat FractU(U - FloorU);
APFloat AlmostOne(U.getSemantics(), 1);
AlmostOne.next( true);
return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
}
Optional<APFloat::roundingMode> RM;
switch (IntrinsicID) {
default:
break;
case Intrinsic::experimental_constrained_nearbyint:
case Intrinsic::experimental_constrained_rint: {
auto CI = cast<ConstrainedFPIntrinsic>(Call);
RM = CI->getRoundingMode();
if (!RM || *RM == RoundingMode::Dynamic)
return nullptr;
break;
}
case Intrinsic::experimental_constrained_round:
RM = APFloat::rmNearestTiesToAway;
break;
case Intrinsic::experimental_constrained_ceil:
RM = APFloat::rmTowardPositive;
break;
case Intrinsic::experimental_constrained_floor:
RM = APFloat::rmTowardNegative;
break;
case Intrinsic::experimental_constrained_trunc:
RM = APFloat::rmTowardZero;
break;
}
if (RM) {
auto CI = cast<ConstrainedFPIntrinsic>(Call);
if (U.isFinite()) {
APFloat::opStatus St = U.roundToIntegral(*RM);
if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
St == APFloat::opInexact) {
Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
if (EB && *EB == fp::ebStrict)
return nullptr;
}
} else if (U.isSignaling()) {
Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
if (EB && *EB != fp::ebIgnore)
return nullptr;
U = APFloat::getQNaN(U.getSemantics());
}
return ConstantFP::get(Ty->getContext(), U);
}
if (!U.isFinite())
return nullptr;
const APFloat &APF = Op->getValueAPF();
switch (IntrinsicID) {
default: break;
case Intrinsic::log:
return ConstantFoldFP(log, APF, Ty);
case Intrinsic::log2:
return ConstantFoldFP(Log2, APF, Ty);
case Intrinsic::log10:
return ConstantFoldFP(log10, APF, Ty);
case Intrinsic::exp:
return ConstantFoldFP(exp, APF, Ty);
case Intrinsic::exp2:
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
case Intrinsic::sin:
return ConstantFoldFP(sin, APF, Ty);
case Intrinsic::cos:
return ConstantFoldFP(cos, APF, Ty);
case Intrinsic::sqrt:
return ConstantFoldFP(sqrt, APF, Ty);
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_sin: {
double V = getValueAsDouble(Op);
if (V < -256.0 || V > 256.0)
return nullptr;
bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
double V4 = V * 4.0;
if (V4 == floor(V4)) {
const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
} else {
if (IsCos)
V = cos(V * 2.0 * numbers::pi);
else
V = sin(V * 2.0 * numbers::pi);
}
return GetConstantFoldFPValue(V, Ty);
}
}
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
if (!TLI->getLibFunc(Name, Func))
return nullptr;
switch (Func) {
default:
break;
case LibFunc_acos:
case LibFunc_acosf:
case LibFunc_acos_finite:
case LibFunc_acosf_finite:
if (TLI->has(Func))
return ConstantFoldFP(acos, APF, Ty);
break;
case LibFunc_asin:
case LibFunc_asinf:
case LibFunc_asin_finite:
case LibFunc_asinf_finite:
if (TLI->has(Func))
return ConstantFoldFP(asin, APF, Ty);
break;
case LibFunc_atan:
case LibFunc_atanf:
if (TLI->has(Func))
return ConstantFoldFP(atan, APF, Ty);
break;
case LibFunc_ceil:
case LibFunc_ceilf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_cos:
case LibFunc_cosf:
if (TLI->has(Func))
return ConstantFoldFP(cos, APF, Ty);
break;
case LibFunc_cosh:
case LibFunc_coshf:
case LibFunc_cosh_finite:
case LibFunc_coshf_finite:
if (TLI->has(Func))
return ConstantFoldFP(cosh, APF, Ty);
break;
case LibFunc_exp:
case LibFunc_expf:
case LibFunc_exp_finite:
case LibFunc_expf_finite:
if (TLI->has(Func))
return ConstantFoldFP(exp, APF, Ty);
break;
case LibFunc_exp2:
case LibFunc_exp2f:
case LibFunc_exp2_finite:
case LibFunc_exp2f_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
break;
case LibFunc_fabs:
case LibFunc_fabsf:
if (TLI->has(Func)) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_floor:
case LibFunc_floorf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_log:
case LibFunc_logf:
case LibFunc_log_finite:
case LibFunc_logf_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
return ConstantFoldFP(log, APF, Ty);
break;
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log2_finite:
case LibFunc_log2f_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
return ConstantFoldFP(Log2, APF, Ty);
break;
case LibFunc_log10:
case LibFunc_log10f:
case LibFunc_log10_finite:
case LibFunc_log10f_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
return ConstantFoldFP(log10, APF, Ty);
break;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_rint:
case LibFunc_rintf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_round:
case LibFunc_roundf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_sin:
case LibFunc_sinf:
if (TLI->has(Func))
return ConstantFoldFP(sin, APF, Ty);
break;
case LibFunc_sinh:
case LibFunc_sinhf:
case LibFunc_sinh_finite:
case LibFunc_sinhf_finite:
if (TLI->has(Func))
return ConstantFoldFP(sinh, APF, Ty);
break;
case LibFunc_sqrt:
case LibFunc_sqrtf:
if (!APF.isNegative() && TLI->has(Func))
return ConstantFoldFP(sqrt, APF, Ty);
break;
case LibFunc_tan:
case LibFunc_tanf:
if (TLI->has(Func))
return ConstantFoldFP(tan, APF, Ty);
break;
case LibFunc_tanh:
case LibFunc_tanhf:
if (TLI->has(Func))
return ConstantFoldFP(tanh, APF, Ty);
break;
case LibFunc_trunc:
case LibFunc_truncf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
break;
}
return nullptr;
}
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
switch (IntrinsicID) {
case Intrinsic::bswap:
return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::bitreverse:
return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
case Intrinsic::convert_from_fp16: {
APFloat Val(APFloat::IEEEhalf(), Op->getValue());
bool lost = false;
APFloat::opStatus status = Val.convert(
Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
(void)status;
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
return ConstantFP::get(Ty->getContext(), Val);
}
default:
return nullptr;
}
}
switch (IntrinsicID) {
default: break;
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax:
if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
return C;
break;
}
if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
auto *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
false, Ty,
true);
break;
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
true, Ty,
true);
break;
}
}
return nullptr;
}
static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
const ConstrainedFPIntrinsic *Call) {
APFloat::opStatus St = APFloat::opOK;
auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
FCmpInst::Predicate Cond = FCmp->getPredicate();
if (FCmp->isSignaling()) {
if (Op1.isNaN() || Op2.isNaN())
St = APFloat::opInvalidOp;
} else {
if (Op1.isSignaling() || Op2.isSignaling())
St = APFloat::opInvalidOp;
}
bool Result = FCmpInst::compare(Op1, Op2, Cond);
if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
return ConstantInt::get(Call->getType()->getScalarType(), Result);
return nullptr;
}
static Constant *ConstantFoldScalarCall2(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 2 && "Wrong number of operands.");
if (Ty->isFloatingPointTy()) {
bool IsOp0Undef = isa<UndefValue>(Operands[0]);
bool IsOp1Undef = isa<UndefValue>(Operands[1]);
switch (IntrinsicID) {
case Intrinsic::maxnum:
case Intrinsic::minnum:
case Intrinsic::maximum:
case Intrinsic::minimum:
if (IsOp0Undef)
return Operands[1];
if (IsOp1Undef)
return Operands[0];
break;
}
}
if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
const APFloat &Op1V = Op1->getValueAPF();
if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return nullptr;
const APFloat &Op2V = Op2->getValueAPF();
if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
APFloat Res = Op1V;
APFloat::opStatus St;
switch (IntrinsicID) {
default:
return nullptr;
case Intrinsic::experimental_constrained_fadd:
St = Res.add(Op2V, RM);
break;
case Intrinsic::experimental_constrained_fsub:
St = Res.subtract(Op2V, RM);
break;
case Intrinsic::experimental_constrained_fmul:
St = Res.multiply(Op2V, RM);
break;
case Intrinsic::experimental_constrained_fdiv:
St = Res.divide(Op2V, RM);
break;
case Intrinsic::experimental_constrained_frem:
St = Res.mod(Op2V);
break;
case Intrinsic::experimental_constrained_fcmp:
case Intrinsic::experimental_constrained_fcmps:
return evaluateCompare(Op1V, Op2V, ConstrIntr);
}
if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
St))
return ConstantFP::get(Ty->getContext(), Res);
return nullptr;
}
switch (IntrinsicID) {
default:
break;
case Intrinsic::copysign:
return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
case Intrinsic::minnum:
return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
case Intrinsic::maxnum:
return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
case Intrinsic::minimum:
return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
case Intrinsic::maximum:
return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
}
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
switch (IntrinsicID) {
default:
break;
case Intrinsic::pow:
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
case Intrinsic::amdgcn_fmul_legacy:
if (Op1V.isZero() || Op2V.isZero())
return ConstantFP::getNullValue(Ty);
return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
}
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
if (!TLI->getLibFunc(Name, Func))
return nullptr;
switch (Func) {
default:
break;
case LibFunc_pow:
case LibFunc_powf:
case LibFunc_pow_finite:
case LibFunc_powf_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
break;
case LibFunc_fmod:
case LibFunc_fmodf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
return ConstantFP::get(Ty->getContext(), V);
}
break;
case LibFunc_remainder:
case LibFunc_remainderf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
return ConstantFP::get(Ty->getContext(), V);
}
break;
case LibFunc_atan2:
case LibFunc_atan2f:
case LibFunc_atan2_finite:
case LibFunc_atan2f_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
break;
}
} else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
return ConstantFP::get(
Ty->getContext(),
APFloat((float)std::pow((float)Op1V.convertToDouble(),
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
return ConstantFP::get(
Ty->getContext(),
APFloat((float)std::pow((float)Op1V.convertToDouble(),
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
return ConstantFP::get(
Ty->getContext(),
APFloat((double)std::pow(Op1V.convertToDouble(),
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), Result);
}
}
return nullptr;
}
if (Operands[0]->getType()->isIntegerTy() &&
Operands[1]->getType()->isIntegerTy()) {
const APInt *C0, *C1;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1))
return nullptr;
switch (IntrinsicID) {
default: break;
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin:
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
return PoisonValue::get(Ty);
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
return ConstantInt::get(
Ty, ICmpInst::compare(*C0, *C1,
MinMaxIntrinsic::getPredicate(IntrinsicID))
? *C0
: *C1);
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
if (!C0 || !C1)
return Constant::getNullValue(Ty);
LLVM_FALLTHROUGH;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
if (!C0 || !C1) {
return ConstantStruct::get(
cast<StructType>(Ty),
{Constant::getAllOnesValue(Ty->getStructElementType(0)),
Constant::getNullValue(Ty->getStructElementType(1))});
}
LLVM_FALLTHROUGH;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
if (!C0 || !C1)
return Constant::getNullValue(Ty);
APInt Res;
bool Overflow;
switch (IntrinsicID) {
default: llvm_unreachable("Invalid case");
case Intrinsic::sadd_with_overflow:
Res = C0->sadd_ov(*C1, Overflow);
break;
case Intrinsic::uadd_with_overflow:
Res = C0->uadd_ov(*C1, Overflow);
break;
case Intrinsic::ssub_with_overflow:
Res = C0->ssub_ov(*C1, Overflow);
break;
case Intrinsic::usub_with_overflow:
Res = C0->usub_ov(*C1, Overflow);
break;
case Intrinsic::smul_with_overflow:
Res = C0->smul_ov(*C1, Overflow);
break;
case Intrinsic::umul_with_overflow:
Res = C0->umul_ov(*C1, Overflow);
break;
}
Constant *Ops[] = {
ConstantInt::get(Ty->getContext(), Res),
ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
};
return ConstantStruct::get(cast<StructType>(Ty), Ops);
}
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
return PoisonValue::get(Ty);
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return Constant::getAllOnesValue(Ty);
if (IntrinsicID == Intrinsic::uadd_sat)
return ConstantInt::get(Ty, C0->uadd_sat(*C1));
else
return ConstantInt::get(Ty, C0->sadd_sat(*C1));
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
return PoisonValue::get(Ty);
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::usub_sat)
return ConstantInt::get(Ty, C0->usub_sat(*C1));
else
return ConstantInt::get(Ty, C0->ssub_sat(*C1));
case Intrinsic::cttz:
case Intrinsic::ctlz:
assert(C1 && "Must be constant int");
if (C1->isOne() && (!C0 || C0->isZero()))
return PoisonValue::get(Ty);
if (!C0)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::cttz)
return ConstantInt::get(Ty, C0->countTrailingZeros());
else
return ConstantInt::get(Ty, C0->countLeadingZeros());
case Intrinsic::abs:
assert(C1 && "Must be constant int");
assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
return UndefValue::get(Ty);
if (!C0)
return Constant::getNullValue(Ty);
return ConstantInt::get(Ty, C0->abs());
}
return nullptr;
}
if ((isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) &&
isa<ConstantInt>(Operands[1]) &&
cast<ConstantInt>(Operands[1])->getValue() == 4) {
auto *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_avx512_vcvtss2si32:
case Intrinsic::x86_avx512_vcvtss2si64:
case Intrinsic::x86_avx512_vcvtsd2si32:
case Intrinsic::x86_avx512_vcvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
false, Ty,
true);
break;
case Intrinsic::x86_avx512_vcvtss2usi32:
case Intrinsic::x86_avx512_vcvtss2usi64:
case Intrinsic::x86_avx512_vcvtsd2usi32:
case Intrinsic::x86_avx512_vcvtsd2usi64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
false, Ty,
false);
break;
case Intrinsic::x86_avx512_cvttss2si:
case Intrinsic::x86_avx512_cvttss2si64:
case Intrinsic::x86_avx512_cvttsd2si:
case Intrinsic::x86_avx512_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
true, Ty,
true);
break;
case Intrinsic::x86_avx512_cvttss2usi:
case Intrinsic::x86_avx512_cvttss2usi64:
case Intrinsic::x86_avx512_cvttsd2usi:
case Intrinsic::x86_avx512_cvttsd2usi64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
true, Ty,
false);
break;
}
}
return nullptr;
}
static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
const APFloat &S0,
const APFloat &S1,
const APFloat &S2) {
unsigned ID;
const fltSemantics &Sem = S0.getSemantics();
APFloat MA(Sem), SC(Sem), TC(Sem);
if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
ID = 5;
SC = -S0;
} else {
ID = 4;
SC = S0;
}
MA = S2;
TC = -S1;
} else if (abs(S1) >= abs(S0)) {
if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
ID = 3;
TC = -S2;
} else {
ID = 2;
TC = S2;
}
MA = S1;
SC = S0;
} else {
if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
ID = 1;
SC = S2;
} else {
ID = 0;
SC = -S2;
}
MA = S0;
TC = -S1;
}
switch (IntrinsicID) {
default:
llvm_unreachable("unhandled amdgcn cube intrinsic");
case Intrinsic::amdgcn_cubeid:
return APFloat(Sem, ID);
case Intrinsic::amdgcn_cubema:
return MA + MA;
case Intrinsic::amdgcn_cubesc:
return SC;
case Intrinsic::amdgcn_cubetc:
return TC;
}
}
static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
Type *Ty) {
const APInt *C0, *C1, *C2;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1) ||
!getConstIntOrUndef(Operands[2], C2))
return nullptr;
if (!C2)
return UndefValue::get(Ty);
APInt Val(32, 0);
unsigned NumUndefBytes = 0;
for (unsigned I = 0; I < 32; I += 8) {
unsigned Sel = C2->extractBitsAsZExtValue(8, I);
unsigned B = 0;
if (Sel >= 13)
B = 0xff;
else if (Sel == 12)
B = 0x00;
else {
const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
if (!Src)
++NumUndefBytes;
else if (Sel < 8)
B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
else
B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
}
Val.insertBits(B, I, 8);
}
if (NumUndefBytes == 4)
return UndefValue::get(Ty);
return ConstantInt::get(Ty, Val);
}
static Constant *ConstantFoldScalarCall3(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 3 && "Wrong number of operands.");
if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
const APFloat &C3 = Op3->getValueAPF();
if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
APFloat Res = C1;
APFloat::opStatus St;
switch (IntrinsicID) {
default:
return nullptr;
case Intrinsic::experimental_constrained_fma:
case Intrinsic::experimental_constrained_fmuladd:
St = Res.fusedMultiplyAdd(C2, C3, RM);
break;
}
if (mayFoldConstrained(
const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
return ConstantFP::get(Ty->getContext(), Res);
return nullptr;
}
switch (IntrinsicID) {
default: break;
case Intrinsic::amdgcn_fma_legacy: {
if (C1.isZero() || C2.isZero()) {
return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
}
LLVM_FALLTHROUGH;
}
case Intrinsic::fma:
case Intrinsic::fmuladd: {
APFloat V = C1;
V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), V);
}
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_cubema:
case Intrinsic::amdgcn_cubesc:
case Intrinsic::amdgcn_cubetc: {
APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
return ConstantFP::get(Ty->getContext(), V);
}
}
}
}
}
if (IntrinsicID == Intrinsic::smul_fix ||
IntrinsicID == Intrinsic::smul_fix_sat) {
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
return PoisonValue::get(Ty);
const APInt *C0, *C1;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1))
return nullptr;
if (!C0 || !C1)
return Constant::getNullValue(Ty);
unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
unsigned Width = C0->getBitWidth();
assert(Scale < Width && "Illegal scale.");
unsigned ExtendedWidth = Width * 2;
APInt Product =
(C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
if (IntrinsicID == Intrinsic::smul_fix_sat) {
APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
Product = APIntOps::smin(Product, Max);
Product = APIntOps::smax(Product, Min);
}
return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
}
if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
const APInt *C0, *C1, *C2;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1) ||
!getConstIntOrUndef(Operands[2], C2))
return nullptr;
bool IsRight = IntrinsicID == Intrinsic::fshr;
if (!C2)
return Operands[IsRight ? 1 : 0];
if (!C0 && !C1)
return UndefValue::get(Ty);
unsigned BitWidth = C2->getBitWidth();
unsigned ShAmt = C2->urem(BitWidth);
if (!ShAmt)
return Operands[IsRight ? 1 : 0];
unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
if (!C0)
return ConstantInt::get(Ty, C1->lshr(LshrAmt));
if (!C1)
return ConstantInt::get(Ty, C0->shl(ShlAmt));
return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
}
if (IntrinsicID == Intrinsic::amdgcn_perm)
return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
return nullptr;
}
static Constant *ConstantFoldScalarCall(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
if (Operands.size() == 1)
return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
if (Operands.size() == 2)
return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
if (Operands.size() == 3)
return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
return nullptr;
}
static Constant *ConstantFoldFixedVectorCall(
StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
ArrayRef<Constant *> Operands, const DataLayout &DL,
const TargetLibraryInfo *TLI, const CallBase *Call) {
SmallVector<Constant *, 4> Result(FVTy->getNumElements());
SmallVector<Constant *, 4> Lane(Operands.size());
Type *Ty = FVTy->getElementType();
switch (IntrinsicID) {
case Intrinsic::masked_load: {
auto *SrcPtr = Operands[0];
auto *Mask = Operands[2];
auto *Passthru = Operands[3];
Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
SmallVector<Constant *, 32> NewElements;
for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
auto *MaskElt = Mask->getAggregateElement(I);
if (!MaskElt)
break;
auto *PassthruElt = Passthru->getAggregateElement(I);
auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
if (isa<UndefValue>(MaskElt)) {
if (PassthruElt)
NewElements.push_back(PassthruElt);
else if (VecElt)
NewElements.push_back(VecElt);
else
return nullptr;
}
if (MaskElt->isNullValue()) {
if (!PassthruElt)
return nullptr;
NewElements.push_back(PassthruElt);
} else if (MaskElt->isOneValue()) {
if (!VecElt)
return nullptr;
NewElements.push_back(VecElt);
} else {
return nullptr;
}
}
if (NewElements.size() != FVTy->getNumElements())
return nullptr;
return ConstantVector::get(NewElements);
}
case Intrinsic::arm_mve_vctp8:
case Intrinsic::arm_mve_vctp16:
case Intrinsic::arm_mve_vctp32:
case Intrinsic::arm_mve_vctp64: {
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
unsigned Lanes = FVTy->getNumElements();
uint64_t Limit = Op->getZExtValue();
SmallVector<Constant *, 16> NCs;
for (unsigned i = 0; i < Lanes; i++) {
if (i < Limit)
NCs.push_back(ConstantInt::getTrue(Ty));
else
NCs.push_back(ConstantInt::getFalse(Ty));
}
return ConstantVector::get(NCs);
}
return nullptr;
}
case Intrinsic::get_active_lane_mask: {
auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
if (Op0 && Op1) {
unsigned Lanes = FVTy->getNumElements();
uint64_t Base = Op0->getZExtValue();
uint64_t Limit = Op1->getZExtValue();
SmallVector<Constant *, 16> NCs;
for (unsigned i = 0; i < Lanes; i++) {
if (Base + i < Limit)
NCs.push_back(ConstantInt::getTrue(Ty));
else
NCs.push_back(ConstantInt::getFalse(Ty));
}
return ConstantVector::get(NCs);
}
return nullptr;
}
default:
break;
}
for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
Lane[J] = Operands[J];
continue;
}
Constant *Agg = Operands[J]->getAggregateElement(I);
if (!Agg)
return nullptr;
Lane[J] = Agg;
}
Constant *Folded =
ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
if (!Folded)
return nullptr;
Result[I] = Folded;
}
return ConstantVector::get(Result);
}
static Constant *ConstantFoldScalableVectorCall(
StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
ArrayRef<Constant *> Operands, const DataLayout &DL,
const TargetLibraryInfo *TLI, const CallBase *Call) {
switch (IntrinsicID) {
case Intrinsic::aarch64_sve_convert_from_svbool: {
auto *Src = dyn_cast<Constant>(Operands[0]);
if (!Src || !Src->isNullValue())
break;
return ConstantInt::getFalse(SVTy);
}
default:
break;
}
return nullptr;
}
}
Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (Call->isNoBuiltin())
return nullptr;
if (!F->hasName())
return nullptr;
if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
if (!TLI)
return nullptr;
LibFunc LibF;
if (!TLI->getLibFunc(*F, LibF))
return nullptr;
}
StringRef Name = F->getName();
Type *Ty = F->getReturnType();
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
return ConstantFoldFixedVectorCall(
Name, F->getIntrinsicID(), FVTy, Operands,
F->getParent()->getDataLayout(), TLI, Call);
if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
return ConstantFoldScalableVectorCall(
Name, F->getIntrinsicID(), SVTy, Operands,
F->getParent()->getDataLayout(), TLI, Call);
return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
Call);
}
bool llvm::isMathLibCallNoop(const CallBase *Call,
const TargetLibraryInfo *TLI) {
if (Call->isNoBuiltin() || Call->isStrictFP())
return false;
Function *F = Call->getCalledFunction();
if (!F)
return false;
LibFunc Func;
if (!TLI || !TLI->getLibFunc(*F, Func))
return false;
if (Call->arg_size() == 1) {
if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
const APFloat &Op = OpC->getValueAPF();
switch (Func) {
case LibFunc_logl:
case LibFunc_log:
case LibFunc_logf:
case LibFunc_log2l:
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log10l:
case LibFunc_log10:
case LibFunc_log10f:
return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
case LibFunc_expl:
case LibFunc_exp:
case LibFunc_expf:
if (OpC->getType()->isDoubleTy())
return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
if (OpC->getType()->isFloatTy())
return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
break;
case LibFunc_exp2l:
case LibFunc_exp2:
case LibFunc_exp2f:
if (OpC->getType()->isDoubleTy())
return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
if (OpC->getType()->isFloatTy())
return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
break;
case LibFunc_sinl:
case LibFunc_sin:
case LibFunc_sinf:
case LibFunc_cosl:
case LibFunc_cos:
case LibFunc_cosf:
return !Op.isInfinity();
case LibFunc_tanl:
case LibFunc_tan:
case LibFunc_tanf: {
Type *Ty = OpC->getType();
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
break;
}
case LibFunc_asinl:
case LibFunc_asin:
case LibFunc_asinf:
case LibFunc_acosl:
case LibFunc_acos:
case LibFunc_acosf:
return !(Op < APFloat(Op.getSemantics(), "-1") ||
Op > APFloat(Op.getSemantics(), "1"));
case LibFunc_sinh:
case LibFunc_cosh:
case LibFunc_sinhf:
case LibFunc_coshf:
case LibFunc_sinhl:
case LibFunc_coshl:
if (OpC->getType()->isDoubleTy())
return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
if (OpC->getType()->isFloatTy())
return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
break;
case LibFunc_sqrtl:
case LibFunc_sqrt:
case LibFunc_sqrtf:
return Op.isNaN() || Op.isZero() || !Op.isNegative();
default:
break;
}
}
}
if (Call->arg_size() == 2) {
ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
if (Op0C && Op1C) {
const APFloat &Op0 = Op0C->getValueAPF();
const APFloat &Op1 = Op1C->getValueAPF();
switch (Func) {
case LibFunc_powl:
case LibFunc_pow:
case LibFunc_powf: {
Type *Ty = Op0C->getType();
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
if (Ty == Op1C->getType())
return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
}
break;
}
case LibFunc_fmodl:
case LibFunc_fmod:
case LibFunc_fmodf:
case LibFunc_remainderl:
case LibFunc_remainder:
case LibFunc_remainderf:
return Op0.isNaN() || Op1.isNaN() ||
(!Op0.isInfinity() && !Op1.isZero());
default:
break;
}
}
}
return false;
}
void TargetFolder::anchor() {}