; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -passes=instcombine -S < %s | FileCheck %s target datalayout = "e-m:e-i64:64-n8:16:32:64" declare i32 @llvm.bswap.i32(i32) declare i128 @llvm.bswap.i128(i128) declare <2 x i64> @llvm.bswap.v2i64(<2 x i64>) declare i32 @llvm.cttz.i32(i32, i1) nounwind readnone declare i32 @llvm.ctlz.i32(i32, i1) nounwind readnone declare i32 @llvm.ctpop.i32(i32) nounwind readnone declare <2 x i8> @llvm.cttz.v2i8(<2 x i8>, i1) nounwind readnone declare <2 x i8> @llvm.ctlz.v2i8(<2 x i8>, i1) nounwind readnone declare <2 x i8> @llvm.ctpop.v2i8(<2 x i8>) nounwind readnone declare void @use(i32) declare void @usevec(<3 x i14>) define i32 @lshr_ctlz_zero_is_not_undef(i32 %x) { ; CHECK-LABEL: @lshr_ctlz_zero_is_not_undef( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[X:%.*]], 0 ; CHECK-NEXT: [[SH:%.*]] = zext i1 [[TMP1]] to i32 ; CHECK-NEXT: ret i32 [[SH]] ; %ct = call i32 @llvm.ctlz.i32(i32 %x, i1 false) %sh = lshr i32 %ct, 5 ret i32 %sh } define i32 @lshr_cttz_zero_is_not_undef(i32 %x) { ; CHECK-LABEL: @lshr_cttz_zero_is_not_undef( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[X:%.*]], 0 ; CHECK-NEXT: [[SH:%.*]] = zext i1 [[TMP1]] to i32 ; CHECK-NEXT: ret i32 [[SH]] ; %ct = call i32 @llvm.cttz.i32(i32 %x, i1 false) %sh = lshr i32 %ct, 5 ret i32 %sh } define i32 @lshr_ctpop(i32 %x) { ; CHECK-LABEL: @lshr_ctpop( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[X:%.*]], -1 ; CHECK-NEXT: [[SH:%.*]] = zext i1 [[TMP1]] to i32 ; CHECK-NEXT: ret i32 [[SH]] ; %ct = call i32 @llvm.ctpop.i32(i32 %x) %sh = lshr i32 %ct, 5 ret i32 %sh } define <2 x i8> @lshr_ctlz_zero_is_not_undef_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_ctlz_zero_is_not_undef_splat_vec( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq <2 x i8> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[SH:%.*]] = zext <2 x i1> [[TMP1]] to <2 x i8> ; CHECK-NEXT: ret <2 x i8> [[SH]] ; %ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 false) %sh = lshr <2 x i8> %ct, <i8 3, i8 3> ret <2 x i8> %sh } define <2 x i8> @lshr_cttz_zero_is_not_undef_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_cttz_zero_is_not_undef_splat_vec( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq <2 x i8> [[X:%.*]], zeroinitializer ; CHECK-NEXT: [[SH:%.*]] = zext <2 x i1> [[TMP1]] to <2 x i8> ; CHECK-NEXT: ret <2 x i8> [[SH]] ; %ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 false) %sh = lshr <2 x i8> %ct, <i8 3, i8 3> ret <2 x i8> %sh } define <2 x i8> @lshr_ctpop_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_ctpop_splat_vec( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq <2 x i8> [[X:%.*]], <i8 -1, i8 -1> ; CHECK-NEXT: [[SH:%.*]] = zext <2 x i1> [[TMP1]] to <2 x i8> ; CHECK-NEXT: ret <2 x i8> [[SH]] ; %ct = call <2 x i8> @llvm.ctpop.v2i8(<2 x i8> %x) %sh = lshr <2 x i8> %ct, <i8 3, i8 3> ret <2 x i8> %sh } define i32 @lshr_ctlz_zero_is_undef(i32 %x) { ; CHECK-LABEL: @lshr_ctlz_zero_is_undef( ; CHECK-NEXT: ret i32 0 ; %ct = call i32 @llvm.ctlz.i32(i32 %x, i1 true) %sh = lshr i32 %ct, 5 ret i32 %sh } define i32 @lshr_cttz_zero_is_undef(i32 %x) { ; CHECK-LABEL: @lshr_cttz_zero_is_undef( ; CHECK-NEXT: ret i32 0 ; %ct = call i32 @llvm.cttz.i32(i32 %x, i1 true) %sh = lshr i32 %ct, 5 ret i32 %sh } define <2 x i8> @lshr_ctlz_zero_is_undef_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_ctlz_zero_is_undef_splat_vec( ; CHECK-NEXT: ret <2 x i8> zeroinitializer ; %ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true) %sh = lshr <2 x i8> %ct, <i8 3, i8 3> ret <2 x i8> %sh } define i8 @lshr_ctlz_zero_is_undef_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_ctlz_zero_is_undef_vec( ; CHECK-NEXT: ret i8 0 ; %ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true) %sh = lshr <2 x i8> %ct, <i8 3, i8 0> %ex = extractelement <2 x i8> %sh, i32 0 ret i8 %ex } define <2 x i8> @lshr_cttz_zero_is_undef_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_cttz_zero_is_undef_splat_vec( ; CHECK-NEXT: ret <2 x i8> zeroinitializer ; %ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true) %sh = lshr <2 x i8> %ct, <i8 3, i8 3> ret <2 x i8> %sh } define i8 @lshr_cttz_zero_is_undef_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_cttz_zero_is_undef_vec( ; CHECK-NEXT: ret i8 0 ; %ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true) %sh = lshr <2 x i8> %ct, <i8 3, i8 0> %ex = extractelement <2 x i8> %sh, i32 0 ret i8 %ex } define i8 @lshr_exact(i8 %x) { ; CHECK-LABEL: @lshr_exact( ; CHECK-NEXT: [[TMP1:%.*]] = add i8 [[X:%.*]], 1 ; CHECK-NEXT: [[LSHR:%.*]] = and i8 [[TMP1]], 63 ; CHECK-NEXT: ret i8 [[LSHR]] ; %shl = shl i8 %x, 2 %add = add i8 %shl, 4 %lshr = lshr i8 %add, 2 ret i8 %lshr } define <2 x i8> @lshr_exact_splat_vec(<2 x i8> %x) { ; CHECK-LABEL: @lshr_exact_splat_vec( ; CHECK-NEXT: [[TMP1:%.*]] = add <2 x i8> [[X:%.*]], <i8 1, i8 1> ; CHECK-NEXT: [[LSHR:%.*]] = and <2 x i8> [[TMP1]], <i8 63, i8 63> ; CHECK-NEXT: ret <2 x i8> [[LSHR]] ; %shl = shl <2 x i8> %x, <i8 2, i8 2> %add = add <2 x i8> %shl, <i8 4, i8 4> %lshr = lshr <2 x i8> %add, <i8 2, i8 2> ret <2 x i8> %lshr } define i8 @shl_add(i8 %x, i8 %y) { ; CHECK-LABEL: @shl_add( ; CHECK-NEXT: [[TMP1:%.*]] = lshr i8 [[Y:%.*]], 2 ; CHECK-NEXT: [[TMP2:%.*]] = add i8 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[R:%.*]] = and i8 [[TMP2]], 63 ; CHECK-NEXT: ret i8 [[R]] ; %l = shl i8 %x, 2 %a = add i8 %l, %y %r = lshr i8 %a, 2 ret i8 %r } define <2 x i8> @shl_add_commute_vec(<2 x i8> %x, <2 x i8> %py) { ; CHECK-LABEL: @shl_add_commute_vec( ; CHECK-NEXT: [[Y:%.*]] = mul <2 x i8> [[PY:%.*]], [[PY]] ; CHECK-NEXT: [[TMP1:%.*]] = lshr <2 x i8> [[Y]], <i8 3, i8 3> ; CHECK-NEXT: [[TMP2:%.*]] = add <2 x i8> [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[R:%.*]] = and <2 x i8> [[TMP2]], <i8 31, i8 31> ; CHECK-NEXT: ret <2 x i8> [[R]] ; %y = mul <2 x i8> %py, %py ; thwart complexity-based canonicalization %l = shl <2 x i8> %x, <i8 3, i8 3> %a = add <2 x i8> %y, %l %r = lshr <2 x i8> %a, <i8 3, i8 3> ret <2 x i8> %r } define i32 @shl_add_use1(i32 %x, i32 %y) { ; CHECK-LABEL: @shl_add_use1( ; CHECK-NEXT: [[L:%.*]] = shl i32 [[X:%.*]], 2 ; CHECK-NEXT: call void @use(i32 [[L]]) ; CHECK-NEXT: [[A:%.*]] = add i32 [[L]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = lshr i32 [[A]], 2 ; CHECK-NEXT: ret i32 [[R]] ; %l = shl i32 %x, 2 call void @use(i32 %l) %a = add i32 %l, %y %r = lshr i32 %a, 2 ret i32 %r } define i32 @shl_add_use2(i32 %x, i32 %y) { ; CHECK-LABEL: @shl_add_use2( ; CHECK-NEXT: [[L:%.*]] = shl i32 [[X:%.*]], 2 ; CHECK-NEXT: [[A:%.*]] = add i32 [[L]], [[Y:%.*]] ; CHECK-NEXT: call void @use(i32 [[A]]) ; CHECK-NEXT: [[R:%.*]] = lshr i32 [[A]], 2 ; CHECK-NEXT: ret i32 [[R]] ; %l = shl i32 %x, 2 %a = add i32 %l, %y call void @use(i32 %a) %r = lshr i32 %a, 2 ret i32 %r } define i16 @bool_zext(i1 %x) { ; CHECK-LABEL: @bool_zext( ; CHECK-NEXT: [[HIBIT:%.*]] = zext i1 [[X:%.*]] to i16 ; CHECK-NEXT: ret i16 [[HIBIT]] ; %sext = sext i1 %x to i16 %hibit = lshr i16 %sext, 15 ret i16 %hibit } define i32 @bool_zext_use(i1 %x) { ; CHECK-LABEL: @bool_zext_use( ; CHECK-NEXT: [[SEXT:%.*]] = sext i1 [[X:%.*]] to i32 ; CHECK-NEXT: call void @use(i32 [[SEXT]]) ; CHECK-NEXT: [[HIBIT:%.*]] = zext i1 [[X]] to i32 ; CHECK-NEXT: ret i32 [[HIBIT]] ; %sext = sext i1 %x to i32 call void @use(i32 %sext) %hibit = lshr i32 %sext, 31 ret i32 %hibit } define <2 x i8> @bool_zext_splat(<2 x i1> %x) { ; CHECK-LABEL: @bool_zext_splat( ; CHECK-NEXT: [[HIBIT:%.*]] = zext <2 x i1> [[X:%.*]] to <2 x i8> ; CHECK-NEXT: ret <2 x i8> [[HIBIT]] ; %sext = sext <2 x i1> %x to <2 x i8> %hibit = lshr <2 x i8> %sext, <i8 7, i8 7> ret <2 x i8> %hibit } define i32 @smear_sign_and_widen(i8 %x) { ; CHECK-LABEL: @smear_sign_and_widen( ; CHECK-NEXT: [[TMP1:%.*]] = ashr i8 [[X:%.*]], 7 ; CHECK-NEXT: [[HIBIT:%.*]] = zext i8 [[TMP1]] to i32 ; CHECK-NEXT: ret i32 [[HIBIT]] ; %sext = sext i8 %x to i32 %hibit = lshr i32 %sext, 24 ret i32 %hibit } define i16 @smear_sign_and_widen_should_not_change_type(i4 %x) { ; CHECK-LABEL: @smear_sign_and_widen_should_not_change_type( ; CHECK-NEXT: [[SEXT:%.*]] = sext i4 [[X:%.*]] to i16 ; CHECK-NEXT: [[HIBIT:%.*]] = lshr i16 [[SEXT]], 12 ; CHECK-NEXT: ret i16 [[HIBIT]] ; %sext = sext i4 %x to i16 %hibit = lshr i16 %sext, 12 ret i16 %hibit } define <2 x i8> @smear_sign_and_widen_splat(<2 x i6> %x) { ; CHECK-LABEL: @smear_sign_and_widen_splat( ; CHECK-NEXT: [[TMP1:%.*]] = ashr <2 x i6> [[X:%.*]], <i6 2, i6 2> ; CHECK-NEXT: [[HIBIT:%.*]] = zext <2 x i6> [[TMP1]] to <2 x i8> ; CHECK-NEXT: ret <2 x i8> [[HIBIT]] ; %sext = sext <2 x i6> %x to <2 x i8> %hibit = lshr <2 x i8> %sext, <i8 2, i8 2> ret <2 x i8> %hibit } define i18 @fake_sext(i3 %x) { ; CHECK-LABEL: @fake_sext( ; CHECK-NEXT: [[TMP1:%.*]] = lshr i3 [[X:%.*]], 2 ; CHECK-NEXT: [[SH:%.*]] = zext i3 [[TMP1]] to i18 ; CHECK-NEXT: ret i18 [[SH]] ; %sext = sext i3 %x to i18 %sh = lshr i18 %sext, 17 ret i18 %sh } ; Avoid the transform if it would change the shift from a legal to illegal type. define i32 @fake_sext_but_should_not_change_type(i3 %x) { ; CHECK-LABEL: @fake_sext_but_should_not_change_type( ; CHECK-NEXT: [[SEXT:%.*]] = sext i3 [[X:%.*]] to i32 ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[SEXT]], 31 ; CHECK-NEXT: ret i32 [[SH]] ; %sext = sext i3 %x to i32 %sh = lshr i32 %sext, 31 ret i32 %sh } define <2 x i8> @fake_sext_splat(<2 x i3> %x) { ; CHECK-LABEL: @fake_sext_splat( ; CHECK-NEXT: [[TMP1:%.*]] = lshr <2 x i3> [[X:%.*]], <i3 2, i3 2> ; CHECK-NEXT: [[SH:%.*]] = zext <2 x i3> [[TMP1]] to <2 x i8> ; CHECK-NEXT: ret <2 x i8> [[SH]] ; %sext = sext <2 x i3> %x to <2 x i8> %sh = lshr <2 x i8> %sext, <i8 7, i8 7> ret <2 x i8> %sh } ; Use a narrow shift: lshr (zext iM X to iN), C --> zext (lshr X, C) to iN define <2 x i32> @narrow_lshr_constant(<2 x i8> %x, <2 x i8> %y) { ; CHECK-LABEL: @narrow_lshr_constant( ; CHECK-NEXT: [[TMP1:%.*]] = lshr <2 x i8> [[X:%.*]], <i8 3, i8 3> ; CHECK-NEXT: [[SH:%.*]] = zext <2 x i8> [[TMP1]] to <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[SH]] ; %zx = zext <2 x i8> %x to <2 x i32> %sh = lshr <2 x i32> %zx, <i32 3, i32 3> ret <2 x i32> %sh } define i32 @mul_splat_fold(i32 %x) { ; CHECK-LABEL: @mul_splat_fold( ; CHECK-NEXT: [[T:%.*]] = and i32 [[X:%.*]], 65535 ; CHECK-NEXT: ret i32 [[T]] ; %m = mul nuw i32 %x, 65537 %t = lshr i32 %m, 16 ret i32 %t } ; Vector type, extra use, weird types are all ok. define <3 x i14> @mul_splat_fold_vec(<3 x i14> %x) { ; CHECK-LABEL: @mul_splat_fold_vec( ; CHECK-NEXT: [[M:%.*]] = mul nuw <3 x i14> [[X:%.*]], <i14 129, i14 129, i14 129> ; CHECK-NEXT: call void @usevec(<3 x i14> [[M]]) ; CHECK-NEXT: [[T:%.*]] = and <3 x i14> [[X]], <i14 127, i14 127, i14 127> ; CHECK-NEXT: ret <3 x i14> [[T]] ; %m = mul nuw <3 x i14> %x, <i14 129, i14 129, i14 129> call void @usevec(<3 x i14> %m) %t = lshr <3 x i14> %m, <i14 7, i14 7, i14 7> ret <3 x i14> %t } ; Negative test define i32 @mul_splat_fold_wrong_mul_const(i32 %x) { ; CHECK-LABEL: @mul_splat_fold_wrong_mul_const( ; CHECK-NEXT: [[M:%.*]] = mul nuw i32 [[X:%.*]], 65538 ; CHECK-NEXT: [[T:%.*]] = lshr i32 [[M]], 16 ; CHECK-NEXT: ret i32 [[T]] ; %m = mul nuw i32 %x, 65538 %t = lshr i32 %m, 16 ret i32 %t } ; Negative test define i32 @mul_splat_fold_wrong_lshr_const(i32 %x) { ; CHECK-LABEL: @mul_splat_fold_wrong_lshr_const( ; CHECK-NEXT: [[M:%.*]] = mul nuw i32 [[X:%.*]], 65537 ; CHECK-NEXT: [[T:%.*]] = lshr i32 [[M]], 15 ; CHECK-NEXT: ret i32 [[T]] ; %m = mul nuw i32 %x, 65537 %t = lshr i32 %m, 15 ret i32 %t } ; Negative test define i32 @mul_splat_fold_no_nuw(i32 %x) { ; CHECK-LABEL: @mul_splat_fold_no_nuw( ; CHECK-NEXT: [[M:%.*]] = mul nsw i32 [[X:%.*]], 65537 ; CHECK-NEXT: [[T:%.*]] = lshr i32 [[M]], 16 ; CHECK-NEXT: ret i32 [[T]] ; %m = mul nsw i32 %x, 65537 %t = lshr i32 %m, 16 ret i32 %t } ; Negative test (but simplifies before we reach the mul_splat transform)- need more than 2 bits define i2 @mul_splat_fold_too_narrow(i2 %x) { ; CHECK-LABEL: @mul_splat_fold_too_narrow( ; CHECK-NEXT: ret i2 [[X:%.*]] ; %m = mul nuw i2 %x, 2 %t = lshr i2 %m, 1 ret i2 %t } define i32 @negative_and_odd(i32 %x) { ; CHECK-LABEL: @negative_and_odd( ; CHECK-NEXT: [[TMP1:%.*]] = lshr i32 [[X:%.*]], 31 ; CHECK-NEXT: [[R:%.*]] = and i32 [[TMP1]], [[X]] ; CHECK-NEXT: ret i32 [[R]] ; %s = srem i32 %x, 2 %r = lshr i32 %s, 31 ret i32 %r } define <2 x i7> @negative_and_odd_vec(<2 x i7> %x) { ; CHECK-LABEL: @negative_and_odd_vec( ; CHECK-NEXT: [[TMP1:%.*]] = lshr <2 x i7> [[X:%.*]], <i7 6, i7 6> ; CHECK-NEXT: [[R:%.*]] = and <2 x i7> [[TMP1]], [[X]] ; CHECK-NEXT: ret <2 x i7> [[R]] ; %s = srem <2 x i7> %x, <i7 2, i7 2> %r = lshr <2 x i7> %s, <i7 6, i7 6> ret <2 x i7> %r } ; Negative test - this is still worth trying to avoid srem? define i32 @negative_and_odd_uses(i32 %x, i32* %p) { ; CHECK-LABEL: @negative_and_odd_uses( ; CHECK-NEXT: [[S:%.*]] = srem i32 [[X:%.*]], 2 ; CHECK-NEXT: store i32 [[S]], i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[R:%.*]] = lshr i32 [[S]], 31 ; CHECK-NEXT: ret i32 [[R]] ; %s = srem i32 %x, 2 store i32 %s, i32* %p %r = lshr i32 %s, 31 ret i32 %r } ; Negative test - wrong divisor define i32 @srem3(i32 %x) { ; CHECK-LABEL: @srem3( ; CHECK-NEXT: [[S:%.*]] = srem i32 [[X:%.*]], 3 ; CHECK-NEXT: [[R:%.*]] = lshr i32 [[S]], 31 ; CHECK-NEXT: ret i32 [[R]] ; %s = srem i32 %x, 3 %r = lshr i32 %s, 31 ret i32 %r } ; Negative test - wrong shift amount define i32 @srem2_lshr30(i32 %x) { ; CHECK-LABEL: @srem2_lshr30( ; CHECK-NEXT: [[S:%.*]] = srem i32 [[X:%.*]], 2 ; CHECK-NEXT: [[R:%.*]] = lshr i32 [[S]], 30 ; CHECK-NEXT: ret i32 [[R]] ; %s = srem i32 %x, 2 %r = lshr i32 %s, 30 ret i32 %r } define i12 @trunc_sandwich(i32 %x) { ; CHECK-LABEL: @trunc_sandwich( ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X:%.*]], 30 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 28 %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 2 ret i12 %r } define <2 x i12> @trunc_sandwich_splat_vec(<2 x i32> %x) { ; CHECK-LABEL: @trunc_sandwich_splat_vec( ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr <2 x i32> [[X:%.*]], <i32 30, i32 30> ; CHECK-NEXT: [[R1:%.*]] = trunc <2 x i32> [[SUM_SHIFT]] to <2 x i12> ; CHECK-NEXT: ret <2 x i12> [[R1]] ; %sh = lshr <2 x i32> %x, <i32 22, i32 22> %tr = trunc <2 x i32> %sh to <2 x i12> %r = lshr <2 x i12> %tr, <i12 8, i12 8> ret <2 x i12> %r } define i12 @trunc_sandwich_min_shift1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_min_shift1( ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X:%.*]], 21 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 20 %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } define i12 @trunc_sandwich_small_shift1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_small_shift1( ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X:%.*]], 20 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: [[R:%.*]] = and i12 [[R1]], 2047 ; CHECK-NEXT: ret i12 [[R]] ; %sh = lshr i32 %x, 19 %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } define i12 @trunc_sandwich_max_sum_shift(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_max_sum_shift( ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X:%.*]], 31 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 20 %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 11 ret i12 %r } define i12 @trunc_sandwich_max_sum_shift2(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_max_sum_shift2( ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X:%.*]], 31 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 30 %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } define i12 @trunc_sandwich_big_sum_shift1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_big_sum_shift1( ; CHECK-NEXT: ret i12 0 ; %sh = lshr i32 %x, 21 %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 11 ret i12 %r } define i12 @trunc_sandwich_big_sum_shift2(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_big_sum_shift2( ; CHECK-NEXT: ret i12 0 ; %sh = lshr i32 %x, 31 %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } define i12 @trunc_sandwich_use1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[X:%.*]], 28 ; CHECK-NEXT: call void @use(i32 [[SH]]) ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X]], 30 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 28 call void @use(i32 %sh) %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 2 ret i12 %r } define <3 x i9> @trunc_sandwich_splat_vec_use1(<3 x i14> %x) { ; CHECK-LABEL: @trunc_sandwich_splat_vec_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr <3 x i14> [[X:%.*]], <i14 6, i14 6, i14 6> ; CHECK-NEXT: call void @usevec(<3 x i14> [[SH]]) ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr <3 x i14> [[X]], <i14 11, i14 11, i14 11> ; CHECK-NEXT: [[R1:%.*]] = trunc <3 x i14> [[SUM_SHIFT]] to <3 x i9> ; CHECK-NEXT: ret <3 x i9> [[R1]] ; %sh = lshr <3 x i14> %x, <i14 6, i14 6, i14 6> call void @usevec(<3 x i14> %sh) %tr = trunc <3 x i14> %sh to <3 x i9> %r = lshr <3 x i9> %tr, <i9 5, i9 5, i9 5> ret <3 x i9> %r } define i12 @trunc_sandwich_min_shift1_use1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_min_shift1_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[X:%.*]], 20 ; CHECK-NEXT: call void @use(i32 [[SH]]) ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X]], 21 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 20 call void @use(i32 %sh) %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } ; negative test - trunc is bigger than first shift define i12 @trunc_sandwich_small_shift1_use1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_small_shift1_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[X:%.*]], 19 ; CHECK-NEXT: call void @use(i32 [[SH]]) ; CHECK-NEXT: [[TR:%.*]] = trunc i32 [[SH]] to i12 ; CHECK-NEXT: [[R:%.*]] = lshr i12 [[TR]], 1 ; CHECK-NEXT: ret i12 [[R]] ; %sh = lshr i32 %x, 19 call void @use(i32 %sh) %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } define i12 @trunc_sandwich_max_sum_shift_use1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_max_sum_shift_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[X:%.*]], 20 ; CHECK-NEXT: call void @use(i32 [[SH]]) ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X]], 31 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 20 call void @use(i32 %sh) %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 11 ret i12 %r } define i12 @trunc_sandwich_max_sum_shift2_use1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_max_sum_shift2_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[X:%.*]], 30 ; CHECK-NEXT: call void @use(i32 [[SH]]) ; CHECK-NEXT: [[SUM_SHIFT:%.*]] = lshr i32 [[X]], 31 ; CHECK-NEXT: [[R1:%.*]] = trunc i32 [[SUM_SHIFT]] to i12 ; CHECK-NEXT: ret i12 [[R1]] ; %sh = lshr i32 %x, 30 call void @use(i32 %sh) %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } ; negative test - but overshift is simplified to zero by another fold define i12 @trunc_sandwich_big_sum_shift1_use1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_big_sum_shift1_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[X:%.*]], 21 ; CHECK-NEXT: call void @use(i32 [[SH]]) ; CHECK-NEXT: ret i12 0 ; %sh = lshr i32 %x, 21 call void @use(i32 %sh) %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 11 ret i12 %r } ; negative test - but overshift is simplified to zero by another fold define i12 @trunc_sandwich_big_sum_shift2_use1(i32 %x) { ; CHECK-LABEL: @trunc_sandwich_big_sum_shift2_use1( ; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[X:%.*]], 31 ; CHECK-NEXT: call void @use(i32 [[SH]]) ; CHECK-NEXT: ret i12 0 ; %sh = lshr i32 %x, 31 call void @use(i32 %sh) %tr = trunc i32 %sh to i12 %r = lshr i12 %tr, 1 ret i12 %r } define i16 @lshr_sext_i1_to_i16(i1 %a) { ; CHECK-LABEL: @lshr_sext_i1_to_i16( ; CHECK-NEXT: [[LSHR:%.*]] = select i1 [[A:%.*]], i16 4095, i16 0 ; CHECK-NEXT: ret i16 [[LSHR]] ; %sext = sext i1 %a to i16 %lshr = lshr i16 %sext, 4 ret i16 %lshr } define i128 @lshr_sext_i1_to_i128(i1 %a) { ; CHECK-LABEL: @lshr_sext_i1_to_i128( ; CHECK-NEXT: [[LSHR:%.*]] = select i1 [[A:%.*]], i128 77371252455336267181195263, i128 0 ; CHECK-NEXT: ret i128 [[LSHR]] ; %sext = sext i1 %a to i128 %lshr = lshr i128 %sext, 42 ret i128 %lshr } define i32 @lshr_sext_i1_to_i32_use(i1 %a) { ; CHECK-LABEL: @lshr_sext_i1_to_i32_use( ; CHECK-NEXT: [[SEXT:%.*]] = sext i1 [[A:%.*]] to i32 ; CHECK-NEXT: call void @use(i32 [[SEXT]]) ; CHECK-NEXT: [[LSHR:%.*]] = select i1 [[A]], i32 262143, i32 0 ; CHECK-NEXT: ret i32 [[LSHR]] ; %sext = sext i1 %a to i32 call void @use(i32 %sext) %lshr = lshr i32 %sext, 14 ret i32 %lshr } define <3 x i14> @lshr_sext_i1_to_i14_splat_vec_use1(<3 x i1> %a) { ; CHECK-LABEL: @lshr_sext_i1_to_i14_splat_vec_use1( ; CHECK-NEXT: [[SEXT:%.*]] = sext <3 x i1> [[A:%.*]] to <3 x i14> ; CHECK-NEXT: call void @usevec(<3 x i14> [[SEXT]]) ; CHECK-NEXT: [[LSHR:%.*]] = select <3 x i1> [[A]], <3 x i14> <i14 1023, i14 1023, i14 1023>, <3 x i14> zeroinitializer ; CHECK-NEXT: ret <3 x i14> [[LSHR]] ; %sext = sext <3 x i1> %a to <3 x i14> call void @usevec(<3 x i14> %sext) %lshr = lshr <3 x i14> %sext, <i14 4, i14 4, i14 4> ret <3 x i14> %lshr } define i1 @icmp_ule(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_ule( ; CHECK-NEXT: ret i1 true ; %x.shifted = lshr i32 %x, %y %cmp = icmp ule i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_ult(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_ult( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp ult i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_eq(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_eq( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp eq i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_ne(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_ne( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp ne i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_ugt(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_ugt( ; CHECK-NEXT: ret i1 false ; %x.shifted = lshr i32 %x, %y %cmp = icmp ugt i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_uge(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_uge( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp uge i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp uge i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_sle(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_sle( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp sle i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp sle i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_slt(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_slt( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp slt i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_sgt(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_sgt( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp sgt i32 %x.shifted, %x ret i1 %cmp } define i1 @icmp_sge(i32 %x, i32 %y) { ; CHECK-LABEL: @icmp_sge( ; CHECK-NEXT: [[X_SHIFTED:%.*]] = lshr i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp sge i32 [[X_SHIFTED]], [[X]] ; CHECK-NEXT: ret i1 [[CMP]] ; %x.shifted = lshr i32 %x, %y %cmp = icmp sge i32 %x.shifted, %x ret i1 %cmp } define i32 @narrow_bswap(i16 %x) { ; CHECK-LABEL: @narrow_bswap( ; CHECK-NEXT: [[TMP1:%.*]] = call i16 @llvm.bswap.i16(i16 [[X:%.*]]) ; CHECK-NEXT: [[S:%.*]] = zext i16 [[TMP1]] to i32 ; CHECK-NEXT: ret i32 [[S]] ; %z = zext i16 %x to i32 %b = call i32 @llvm.bswap.i32(i32 %z) %s = lshr i32 %b, 16 ret i32 %s } define i128 @narrow_bswap_extra_wide(i16 %x) { ; CHECK-LABEL: @narrow_bswap_extra_wide( ; CHECK-NEXT: [[TMP1:%.*]] = call i16 @llvm.bswap.i16(i16 [[X:%.*]]) ; CHECK-NEXT: [[S:%.*]] = zext i16 [[TMP1]] to i128 ; CHECK-NEXT: ret i128 [[S]] ; %z = zext i16 %x to i128 %b = call i128 @llvm.bswap.i128(i128 %z) %s = lshr i128 %b, 112 ret i128 %s } define i32 @narrow_bswap_undershift(i16 %x) { ; CHECK-LABEL: @narrow_bswap_undershift( ; CHECK-NEXT: [[TMP1:%.*]] = call i16 @llvm.bswap.i16(i16 [[X:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = zext i16 [[TMP1]] to i32 ; CHECK-NEXT: [[S:%.*]] = shl nuw nsw i32 [[TMP2]], 7 ; CHECK-NEXT: ret i32 [[S]] ; %z = zext i16 %x to i32 %b = call i32 @llvm.bswap.i32(i32 %z) %s = lshr i32 %b, 9 ret i32 %s } define <2 x i64> @narrow_bswap_splat(<2 x i16> %x) { ; CHECK-LABEL: @narrow_bswap_splat( ; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i16> @llvm.bswap.v2i16(<2 x i16> [[X:%.*]]) ; CHECK-NEXT: [[S:%.*]] = zext <2 x i16> [[TMP1]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[S]] ; %z = zext <2 x i16> %x to <2 x i64> %b = call <2 x i64> @llvm.bswap.v2i64(<2 x i64> %z) %s = lshr <2 x i64> %b, <i64 48, i64 48> ret <2 x i64> %s } ; TODO: poison/undef in the shift amount is ok to propagate. define <2 x i64> @narrow_bswap_splat_poison_elt(<2 x i16> %x) { ; CHECK-LABEL: @narrow_bswap_splat_poison_elt( ; CHECK-NEXT: [[Z:%.*]] = zext <2 x i16> [[X:%.*]] to <2 x i64> ; CHECK-NEXT: [[B:%.*]] = call <2 x i64> @llvm.bswap.v2i64(<2 x i64> [[Z]]) ; CHECK-NEXT: [[S:%.*]] = lshr <2 x i64> [[B]], <i64 48, i64 poison> ; CHECK-NEXT: ret <2 x i64> [[S]] ; %z = zext <2 x i16> %x to <2 x i64> %b = call <2 x i64> @llvm.bswap.v2i64(<2 x i64> %z) %s = lshr <2 x i64> %b, <i64 48, i64 poison> ret <2 x i64> %s } define <2 x i64> @narrow_bswap_overshift(<2 x i32> %x) { ; CHECK-LABEL: @narrow_bswap_overshift( ; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @llvm.bswap.v2i32(<2 x i32> [[X:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = lshr <2 x i32> [[TMP1]], <i32 16, i32 16> ; CHECK-NEXT: [[S:%.*]] = zext <2 x i32> [[TMP2]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[S]] ; %z = zext <2 x i32> %x to <2 x i64> %b = call <2 x i64> @llvm.bswap.v2i64(<2 x i64> %z) %s = lshr <2 x i64> %b, <i64 48, i64 48> ret <2 x i64> %s } define i128 @narrow_bswap_overshift2(i96 %x) { ; CHECK-LABEL: @narrow_bswap_overshift2( ; CHECK-NEXT: [[TMP1:%.*]] = call i96 @llvm.bswap.i96(i96 [[X:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = lshr i96 [[TMP1]], 29 ; CHECK-NEXT: [[S:%.*]] = zext i96 [[TMP2]] to i128 ; CHECK-NEXT: ret i128 [[S]] ; %z = zext i96 %x to i128 %b = call i128 @llvm.bswap.i128(i128 %z) %s = lshr i128 %b, 61 ret i128 %s } ; negative test - can't make a bswap with an odd number of bytes define i32 @not_narrow_bswap(i24 %x) { ; CHECK-LABEL: @not_narrow_bswap( ; CHECK-NEXT: [[Z:%.*]] = zext i24 [[X:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = call i32 @llvm.bswap.i32(i32 [[Z]]) ; CHECK-NEXT: [[R:%.*]] = lshr exact i32 [[B]], 8 ; CHECK-NEXT: ret i32 [[R]] ; %z = zext i24 %x to i32 %b = call i32 @llvm.bswap.i32(i32 %z) %r = lshr i32 %b, 8 ret i32 %r }