#include "InstCombineInternal.h"
#include "llvm/Analysis/CmpInstAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
                              InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate NewPred;
  if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
    return TorF;
  return Builder.CreateICmp(NewPred, LHS, RHS);
}
static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
                           InstCombiner::BuilderTy &Builder) {
  FCmpInst::Predicate NewPred;
  if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
    return TorF;
  return Builder.CreateFCmp(NewPred, LHS, RHS);
}
static Value *SimplifyBSwap(BinaryOperator &I,
                            InstCombiner::BuilderTy &Builder) {
  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
  Value *OldLHS = I.getOperand(0);
  Value *OldRHS = I.getOperand(1);
  Value *NewLHS;
  if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
    return nullptr;
  Value *NewRHS;
  const APInt *C;
  if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
        if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
      return nullptr;
      } else if (match(OldRHS, m_APInt(C))) {
        if (!OldLHS->hasOneUse())
      return nullptr;
    NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
  } else
    return nullptr;
  Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
  Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
                                          I.getType());
  return Builder.CreateCall(F, BinOp);
}
Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
                                         const APInt &Hi, bool isSigned,
                                         bool Inside) {
  assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
         "Lo is not < Hi in range emission code!");
  Type *Ty = V->getType();
      ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
  if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
    Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
    return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
  }
      Value *VMinusLo =
      Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
  Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
  return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
}
enum MaskedICmpType {
  AMask_AllOnes           =     1,
  AMask_NotAllOnes        =     2,
  BMask_AllOnes           =     4,
  BMask_NotAllOnes        =     8,
  Mask_AllZeros           =    16,
  Mask_NotAllZeros        =    32,
  AMask_Mixed             =    64,
  AMask_NotMixed          =   128,
  BMask_Mixed             =   256,
  BMask_NotMixed          =   512
};
static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
                                  ICmpInst::Predicate Pred) {
  const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
  match(A, m_APInt(ConstA));
  match(B, m_APInt(ConstB));
  match(C, m_APInt(ConstC));
  bool IsEq = (Pred == ICmpInst::ICMP_EQ);
  bool IsAPow2 = ConstA && ConstA->isPowerOf2();
  bool IsBPow2 = ConstB && ConstB->isPowerOf2();
  unsigned MaskVal = 0;
  if (ConstC && ConstC->isZero()) {
        MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
                     : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
    if (IsAPow2)
      MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
                       : (AMask_AllOnes | AMask_Mixed));
    if (IsBPow2)
      MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
                       : (BMask_AllOnes | BMask_Mixed));
    return MaskVal;
  }
  if (A == C) {
    MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
                     : (AMask_NotAllOnes | AMask_NotMixed));
    if (IsAPow2)
      MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
                       : (Mask_AllZeros | AMask_Mixed));
  } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
    MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
  }
  if (B == C) {
    MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
                     : (BMask_NotAllOnes | BMask_NotMixed));
    if (IsBPow2)
      MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
                       : (Mask_AllZeros | BMask_Mixed));
  } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
    MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
  }
  return MaskVal;
}
static unsigned conjugateICmpMask(unsigned Mask) {
  unsigned NewMask;
  NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
                     AMask_Mixed | BMask_Mixed))
            << 1;
  NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
                      AMask_NotMixed | BMask_NotMixed))
             >> 1;
  return NewMask;
}
static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
                                 Value *&X, Value *&Y, Value *&Z) {
  APInt Mask;
  if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
    return false;
  Y = ConstantInt::get(X->getType(), Mask);
  Z = ConstantInt::get(X->getType(), 0);
  return true;
}
static
Optional<std::pair<unsigned, unsigned>>
getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
                         Value *&D, Value *&E, ICmpInst *LHS,
                         ICmpInst *RHS,
                         ICmpInst::Predicate &PredL,
                         ICmpInst::Predicate &PredR) {
    if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
      !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
    return None;
              Value *L1 = LHS->getOperand(0);
  Value *L2 = LHS->getOperand(1);
  Value *L11, *L12, *L21, *L22;
    if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
    L21 = L22 = L1 = nullptr;
  } else {
        if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
                  L11 = L1;
      L12 = Constant::getAllOnesValue(L1->getType());
    }
    if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
      L21 = L2;
      L22 = Constant::getAllOnesValue(L2->getType());
    }
  }
    if (!ICmpInst::isEquality(PredL))
    return None;
  Value *R1 = RHS->getOperand(0);
  Value *R2 = RHS->getOperand(1);
  Value *R11, *R12;
  bool Ok = false;
  if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
      A = R11;
      D = R12;
    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
      A = R12;
      D = R11;
    } else {
      return None;
    }
    E = R2;
    R1 = nullptr;
    Ok = true;
  } else {
    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
                  R11 = R1;
      R12 = Constant::getAllOnesValue(R1->getType());
    }
    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
      A = R11;
      D = R12;
      E = R2;
      Ok = true;
    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
      A = R12;
      D = R11;
      E = R2;
      Ok = true;
    }
  }
    if (!ICmpInst::isEquality(PredR))
    return None;
    if (!Ok) {
    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
      R11 = R2;
      R12 = Constant::getAllOnesValue(R2->getType());
    }
    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
      A = R11;
      D = R12;
      E = R1;
      Ok = true;
    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
      A = R12;
      D = R11;
      E = R1;
      Ok = true;
    } else {
      return None;
    }
    assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
  }
  if (L11 == A) {
    B = L12;
    C = L2;
  } else if (L12 == A) {
    B = L11;
    C = L2;
  } else if (L21 == A) {
    B = L22;
    C = L1;
  } else if (L22 == A) {
    B = L21;
    C = L1;
  }
  unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
  unsigned RightType = getMaskedICmpType(A, D, E, PredR);
  return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
}
static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
    Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
    InstCombiner::BuilderTy &Builder) {
                      const APInt *BCst, *CCst, *DCst, *OrigECst;
  if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) ||
      !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst)))
    return nullptr;
  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
          APInt ECst = *OrigECst;
  if (PredR != NewCC)
    ECst ^= *DCst;
      if (*BCst == 0 || *DCst == 0)
    return nullptr;
          if ((*BCst & *DCst) == 0)
    return nullptr;
                                  if ((((*BCst & *DCst) & ECst) == 0) &&
      (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
    APInt BorD = *BCst | *DCst;
    APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
    Value *NewMask = ConstantInt::get(A->getType(), BorD);
    Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
    Value *NewAnd = Builder.CreateAnd(A, NewMask);
    return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
  }
  auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
    return (*C1 & *C2) == *C1;
  };
  auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
    return (*C1 & *C2) == *C2;
  };
              if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
    return nullptr;
  
              if (ECst.isZero()) {
    if (IsSubSetOrEqual(BCst, DCst))
      return ConstantInt::get(LHS->getType(), !IsAnd);
    return nullptr;
  }
              if (IsSuperSetOrEqual(BCst, DCst))
    return RHS;
        assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
  if ((*BCst & ECst) != 0)
    return RHS;
          return ConstantInt::get(LHS->getType(), !IsAnd);
}
static Value *foldLogOpOfMaskedICmpsAsymmetric(
    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
    Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
    unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
         "Expected equality predicates for masked type of icmps.");
            if (!IsAnd) {
    LHSMask = conjugateICmpMask(LHSMask);
    RHSMask = conjugateICmpMask(RHSMask);
  }
  if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
            LHS, RHS, IsAnd, A, B, C, D, E,
            PredL, PredR, Builder)) {
      return V;
    }
  } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
            RHS, LHS, IsAnd, A, D, E, B, C,
            PredR, PredL, Builder)) {
      return V;
    }
  }
  return nullptr;
}
static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
                                     bool IsLogical,
                                     InstCombiner::BuilderTy &Builder) {
  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
  Optional<std::pair<unsigned, unsigned>> MaskPair =
      getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
  if (!MaskPair)
    return nullptr;
  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
         "Expected equality predicates for masked type of icmps.");
  unsigned LHSMask = MaskPair->first;
  unsigned RHSMask = MaskPair->second;
  unsigned Mask = LHSMask & RHSMask;
  if (Mask == 0) {
            if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
            LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
            Builder))
      return V;
    return nullptr;
  }
                    
    ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
  if (!IsAnd) {
            Mask = conjugateICmpMask(Mask);
  }
  if (Mask & Mask_AllZeros) {
            if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
      return nullptr;     Value *NewOr = Builder.CreateOr(B, D);
    Value *NewAnd = Builder.CreateAnd(A, NewOr);
                Value *Zero = Constant::getNullValue(A->getType());
    return Builder.CreateICmp(NewCC, NewAnd, Zero);
  }
  if (Mask & BMask_AllOnes) {
            if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
      return nullptr;     Value *NewOr = Builder.CreateOr(B, D);
    Value *NewAnd = Builder.CreateAnd(A, NewOr);
    return Builder.CreateICmp(NewCC, NewAnd, NewOr);
  }
  if (Mask & AMask_AllOnes) {
            if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
      return nullptr;     Value *NewAnd1 = Builder.CreateAnd(B, D);
    Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
    return Builder.CreateICmp(NewCC, NewAnd2, A);
  }
        const APInt *ConstB, *ConstD;
  if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
    return nullptr;
  if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
                        APInt NewMask = *ConstB & *ConstD;
    if (NewMask == *ConstB)
      return LHS;
    else if (NewMask == *ConstD)
      return RHS;
  }
  if (Mask & AMask_NotAllOnes) {
                    APInt NewMask = *ConstB | *ConstD;
    if (NewMask == *ConstB)
      return LHS;
    else if (NewMask == *ConstD)
      return RHS;
  }
  if (Mask & BMask_Mixed) {
                                            const APInt *OldConstC, *OldConstE;
    if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
      return nullptr;
    const APInt ConstC = PredL != NewCC ? *ConstB ^ *OldConstC : *OldConstC;
    const APInt ConstE = PredR != NewCC ? *ConstD ^ *OldConstE : *OldConstE;
            if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
      return ConstantInt::get(LHS->getType(), !IsAnd);
    Value *NewOr1 = Builder.CreateOr(B, D);
    Value *NewAnd = Builder.CreateAnd(A, NewOr1);
    Constant *NewOr2 = ConstantInt::get(A->getType(), ConstC | ConstE);
    return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
  }
  return nullptr;
}
Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
                                            bool Inverted) {
      ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
  if (!RangeStart)
    return nullptr;
  ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
                               Cmp0->getPredicate());
    if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
        (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
    return nullptr;
  ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
                               Cmp1->getPredicate());
  Value *Input = Cmp0->getOperand(0);
  Value *RangeEnd;
  if (Cmp1->getOperand(0) == Input) {
        RangeEnd = Cmp1->getOperand(1);
  } else if (Cmp1->getOperand(1) == Input) {
        RangeEnd = Cmp1->getOperand(0);
    Pred1 = ICmpInst::getSwappedPredicate(Pred1);
  } else {
    return nullptr;
  }
    ICmpInst::Predicate NewPred;
  switch (Pred1) {
    case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
    case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
    default: return nullptr;
  }
    KnownBits Known = computeKnownBits(RangeEnd, 0, Cmp1);
  if (!Known.isNonNegative())
    return nullptr;
  if (Inverted)
    NewPred = ICmpInst::getInversePredicate(NewPred);
  return Builder.CreateICmp(NewPred, Input, RangeEnd);
}
Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
                                                       ICmpInst *RHS,
                                                       Instruction *CxtI,
                                                       bool IsAnd,
                                                       bool IsLogical) {
  CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
  if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
    return nullptr;
  if (!match(LHS->getOperand(1), m_Zero()) ||
      !match(RHS->getOperand(1), m_Zero()))
    return nullptr;
  Value *L1, *L2, *R1, *R2;
  if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
      match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
    if (L1 == R2 || L2 == R2)
      std::swap(R1, R2);
    if (L2 == R1)
      std::swap(L1, L2);
    if (L1 == R1 &&
        isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
        isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
                  if (IsLogical)
        R2 = Builder.CreateFreeze(R2);
      Value *Mask = Builder.CreateOr(L2, R2);
      Value *Masked = Builder.CreateAnd(L1, Mask);
      auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
      return Builder.CreateICmp(NewPred, Masked, Mask);
    }
  }
  return nullptr;
}
static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
                                        Instruction &CxtI,
                                        InstCombiner::BuilderTy &Builder) {
  assert(CxtI.getOpcode() == Instruction::And);
    auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
                                            APInt &SignBitMask) -> bool {
    CmpInst::Predicate Pred;
    const APInt *I01, *I1;     if (!(match(ICmp,
                m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
          Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
      return false;
        SignBitMask = *I01;
    return true;
  };
      Value *X1;
  APInt HighestBit;
  ICmpInst *OtherICmp;
  if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
    OtherICmp = ICmp0;
  else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
    OtherICmp = ICmp1;
  else
    return nullptr;
  assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
    auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
                           APInt &UnsetBitsMask) -> bool {
    CmpInst::Predicate Pred = ICmp->getPredicate();
        if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
                                   Pred, X, UnsetBitsMask,
                                   false) &&
        Pred == ICmpInst::ICMP_EQ)
      return true;
        const APInt *Mask;
    if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
        Pred == ICmpInst::ICMP_EQ) {
      UnsetBitsMask = *Mask;
      return true;
    }
    return false;
  };
    Value *X0;
  APInt UnsetBitsMask;
  if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
    return nullptr;
  assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
    Value *X;
  if (X1 == X0) {
        X = X1;
  } else if (match(X0, m_Trunc(m_Specific(X1)))) {
    UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
    X = X1;
  } else
    return nullptr;
      APInt SignBitsMask = ~(HighestBit - 1U);
    if (!UnsetBitsMask.intersects(SignBitsMask))
    return nullptr;
    if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
    APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
    if (!OtherHighestBit.isPowerOf2())
      return nullptr;
    HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
  }
  
    return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
                               CxtI.getName() + ".simplified");
}
static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
                                   InstCombiner::BuilderTy &Builder) {
  CmpInst::Predicate Pred0, Pred1;
  Value *X;
  if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
                          m_SpecificInt(1))) ||
      !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
    return nullptr;
  Value *CtPop = Cmp0->getOperand(0);
  if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE)
    return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
  if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ)
    return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
  return nullptr;
}
static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
                             InstCombiner::BuilderTy &Builder) {
    if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
    std::swap(Cmp0, Cmp1);
  else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
    std::swap(Cmp0, Cmp1);
    CmpInst::Predicate Pred0, Pred1;
  Value *X;
  if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
                         m_SpecificInt(2))) &&
      Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
    Value *CtPop = Cmp1->getOperand(0);
    return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
  }
    if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
                         m_SpecificInt(1))) &&
      Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
    Value *CtPop = Cmp1->getOperand(0);
    return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
  }
  return nullptr;
}
static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
                                         ICmpInst *UnsignedICmp, bool IsAnd,
                                         const SimplifyQuery &Q,
                                         InstCombiner::BuilderTy &Builder) {
  Value *ZeroCmpOp;
  ICmpInst::Predicate EqPred;
  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
      !ICmpInst::isEquality(EqPred))
    return nullptr;
  auto IsKnownNonZero = [&](Value *V) {
    return isKnownNonZero(V, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
  };
  ICmpInst::Predicate UnsignedPred;
  Value *A, *B;
  if (match(UnsignedICmp,
            m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
      match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
      (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
    auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
      if (!IsKnownNonZero(NonZero))
        std::swap(NonZero, Other);
      return IsKnownNonZero(NonZero);
    };
                        if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
        IsAnd && GetKnownNonZeroAndOther(B, A))
      return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
    if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
        !IsAnd && GetKnownNonZeroAndOther(B, A))
      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
  }
  Value *Base, *Offset;
  if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
    return nullptr;
  if (!match(UnsignedICmp,
             m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
      !ICmpInst::isUnsigned(UnsignedPred))
    return nullptr;
      if ((UnsignedPred == ICmpInst::ICMP_UGE ||
       UnsignedPred == ICmpInst::ICMP_UGT) &&
      EqPred == ICmpInst::ICMP_NE && IsAnd)
    return Builder.CreateICmpUGT(Base, Offset);
      if ((UnsignedPred == ICmpInst::ICMP_ULE ||
       UnsignedPred == ICmpInst::ICMP_ULT) &&
      EqPred == ICmpInst::ICMP_EQ && !IsAnd)
    return Builder.CreateICmpULE(Base, Offset);
    if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
      IsAnd)
    return Builder.CreateICmpULT(Base, Offset);
    if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
      !IsAnd)
    return Builder.CreateICmpUGE(Base, Offset);
  return nullptr;
}
struct IntPart {
  Value *From;
  unsigned StartBit;
  unsigned NumBits;
};
static Optional<IntPart> matchIntPart(Value *V) {
  Value *X;
  if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
    return None;
  unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
  unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
  Value *Y;
  const APInt *Shift;
      if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
      Shift->ule(NumOriginalBits - NumExtractedBits))
    return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
  return {{X, 0, NumExtractedBits}};
}
static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
  Value *V = P.From;
  if (P.StartBit)
    V = Builder.CreateLShr(V, P.StartBit);
  Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
  if (TruncTy != V->getType())
    V = Builder.CreateTrunc(V, TruncTy);
  return V;
}
Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
                                       bool IsAnd) {
  if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
    return nullptr;
  CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
  if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred)
    return nullptr;
  Optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0));
  Optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1));
  Optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0));
  Optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1));
  if (!L0 || !R0 || !L1 || !R1)
    return nullptr;
      if (L0->From != L1->From || R0->From != R1->From) {
    if (L0->From != R1->From || R0->From != L1->From)
      return nullptr;
    std::swap(L1, R1);
  }
      if (L0->StartBit + L0->NumBits != L1->StartBit ||
      R0->StartBit + R0->NumBits != R1->StartBit) {
    if (L1->StartBit + L1->NumBits != L0->StartBit ||
        R1->StartBit + R1->NumBits != R0->StartBit)
      return nullptr;
    std::swap(L0, L1);
    std::swap(R0, R1);
  }
    IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
  IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
  Value *LValue = extractIntPart(L, Builder);
  Value *RValue = extractIntPart(R, Builder);
  return Builder.CreateICmp(Pred, LValue, RValue);
}
static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
                                          bool IsAnd,
                                          InstCombiner::BuilderTy &Builder,
                                          const SimplifyQuery &Q) {
      ICmpInst::Predicate Pred0;
  Value *X;
  Constant *C;
  if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
      !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
    return nullptr;
  if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
      (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
    return nullptr;
        Value *Y;
  ICmpInst::Predicate Pred1;
  if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
    return nullptr;
            Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
  if (!SubstituteCmp) {
            if (!Cmp1->hasOneUse())
      return nullptr;
    SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
  }
  return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
                             SubstituteCmp);
}
Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
                                                     ICmpInst *ICmp2,
                                                     bool IsAnd) {
  ICmpInst::Predicate Pred1, Pred2;
  Value *V1, *V2;
  const APInt *C1, *C2;
  if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
      !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
    return nullptr;
      const APInt *Offset1 = nullptr, *Offset2 = nullptr;
  if (V1 != V2) {
    Value *X;
    if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
      V1 = X;
    if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
      V2 = X;
  }
  if (V1 != V2)
    return nullptr;
  ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
      IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1);
  if (Offset1)
    CR1 = CR1.subtract(*Offset1);
  ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
      IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2);
  if (Offset2)
    CR2 = CR2.subtract(*Offset2);
  Type *Ty = V1->getType();
  Value *NewV = V1;
  Optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
  if (!CR) {
    if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
        CR2.isWrappedSet())
      return nullptr;
            APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
    APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
    APInt CR1Size = CR1.getUpper() - CR1.getLower();
    if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
        CR1Size != CR2.getUpper() - CR2.getLower())
      return nullptr;
    CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
    NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
  }
  if (IsAnd)
    CR = CR->inverse();
  CmpInst::Predicate NewPred;
  APInt NewC, Offset;
  CR->getEquivalentICmp(NewPred, NewC, Offset);
  if (Offset != 0)
    NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
  return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
}
Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
                                          bool IsAnd, bool IsLogicalSelect) {
  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
  FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
  if (LHS0 == RHS1 && RHS0 == LHS1) {
        PredR = FCmpInst::getSwappedPredicate(PredR);
    std::swap(RHS0, RHS1);
  }
                              if (LHS0 == RHS0 && LHS1 == RHS1) {
    unsigned FCmpCodeL = getFCmpCode(PredL);
    unsigned FCmpCodeR = getFCmpCode(PredR);
    unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
            IRBuilder<>::FastMathFlagGuard FMFG(Builder);
    FastMathFlags FMF = LHS->getFastMathFlags();
    FMF &= RHS->getFastMathFlags();
    Builder.setFastMathFlags(FMF);
    return getFCmpValue(NewPred, LHS0, LHS1, Builder);
  }
    if (!IsLogicalSelect &&
      ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
        !IsAnd))) {
    if (LHS0->getType() != RHS0->getType())
      return nullptr;
            if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
                        return Builder.CreateFCmp(PredL, LHS0, RHS0);
  }
  return nullptr;
}
static Instruction *reassociateFCmps(BinaryOperator &BO,
                                     InstCombiner::BuilderTy &Builder) {
  Instruction::BinaryOps Opcode = BO.getOpcode();
  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
         "Expecting and/or op for fcmp transform");
      Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
  FCmpInst::Predicate Pred;
  if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
    std::swap(Op0, Op1);
    Value *BO10, *BO11;
  FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
                                                           : FCmpInst::FCMP_UNO;
  if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
      !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
    return nullptr;
    Value *Y;
  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
      Pred != NanPred || X->getType() != Y->getType())
    std::swap(BO10, BO11);
  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
      Pred != NanPred || X->getType() != Y->getType())
    return nullptr;
      Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
  if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
        NewFCmpInst->copyIRFlags(Op0);
    NewFCmpInst->andIRFlags(BO10);
  }
  return BinaryOperator::Create(Opcode, NewFCmp, BO11);
}
static Instruction *matchDeMorgansLaws(BinaryOperator &I,
                                       InstCombiner::BuilderTy &Builder) {
  const Instruction::BinaryOps Opcode = I.getOpcode();
  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
         "Trying to match De Morgan's Laws with something other than and/or");
    const Instruction::BinaryOps FlippedOpcode =
      (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Value *A, *B;
  if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
      match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
      !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
      !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
    Value *AndOr =
        Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
    return BinaryOperator::CreateNot(AndOr);
  }
            Value *C;
  if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
      match(Op1, m_Not(m_Value(C)))) {
    Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C);
    return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO));
  }
  return nullptr;
}
bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
  Value *CastSrc = CI->getOperand(0);
    if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
    return false;
      if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
    if (isEliminableCastPair(PrecedingCI, CI))
      return false;
  return true;
}
static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
                                          InstCombiner::BuilderTy &Builder) {
  Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
  if (!C)
    return nullptr;
  auto LogicOpc = Logic.getOpcode();
  Type *DestTy = Logic.getType();
  Type *SrcTy = Cast->getSrcTy();
          Value *X;
  if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
    Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
    if (ZextTruncC == C) {
            Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
      return new ZExtInst(NewOp, DestTy);
    }
  }
  if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
    Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
    if (SextTruncC == C) {
            Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
      return new SExtInst(NewOp, DestTy);
    }
  }
  return nullptr;
}
Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
  auto LogicOpc = I.getOpcode();
  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  CastInst *Cast0 = dyn_cast<CastInst>(Op0);
  if (!Cast0)
    return nullptr;
      Type *DestTy = I.getType();
  Type *SrcTy = Cast0->getSrcTy();
  if (!SrcTy->isIntOrIntVectorTy())
    return nullptr;
  if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
    return Ret;
  CastInst *Cast1 = dyn_cast<CastInst>(Op1);
  if (!Cast1)
    return nullptr;
      auto CastOpcode = Cast0->getOpcode();
  if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
    return nullptr;
  Value *Cast0Src = Cast0->getOperand(0);
  Value *Cast1Src = Cast1->getOperand(0);
    if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
      shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
    Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
                                       I.getName());
    return CastInst::Create(CastOpcode, NewOp, DestTy);
  }
    if (LogicOpc == Instruction::Xor)
    return nullptr;
      ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
  ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
  if (ICmp0 && ICmp1) {
    if (Value *Res =
            foldAndOrOfICmps(ICmp0, ICmp1, I, LogicOpc == Instruction::And))
      return CastInst::Create(CastOpcode, Res, DestTy);
    return nullptr;
  }
      FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
  FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
  if (FCmp0 && FCmp1)
    if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
      return CastInst::Create(CastOpcode, R, DestTy);
  return nullptr;
}
static Instruction *foldAndToXor(BinaryOperator &I,
                                 InstCombiner::BuilderTy &Builder) {
  assert(I.getOpcode() == Instruction::And);
  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *A, *B;
        if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
                        m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
    return BinaryOperator::CreateXor(A, B);
          if (Op0->hasOneUse() || Op1->hasOneUse())
    if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
                          m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
  return nullptr;
}
static Instruction *foldOrToXor(BinaryOperator &I,
                                InstCombiner::BuilderTy &Builder) {
  assert(I.getOpcode() == Instruction::Or);
  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *A, *B;
        if (Op0->hasOneUse() || Op1->hasOneUse())
    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
        if (Op0->hasOneUse() || Op1->hasOneUse())
    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
      return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
          if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
      match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
    return BinaryOperator::CreateXor(A, B);
  return nullptr;
}
static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
  APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
  return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
}
Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
            Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
  Constant *C;
  if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
    return nullptr;
  Value *X;
  if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
    return nullptr;
  Type *Ty = And.getType();
  if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
    return nullptr;
        Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
  if (Opc == Instruction::LShr || Opc == Instruction::Shl)
    if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
      return nullptr;
      Value *NewC = ConstantExpr::getTrunc(C, X->getType());
  Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
                                         : Builder.CreateBinOp(Opc, X, NewC);
  return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
}
static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
                                             InstCombiner::BuilderTy &Builder) {
  const Instruction::BinaryOps Opcode = I.getOpcode();
  assert(Opcode == Instruction::And || Opcode == Instruction::Or);
    const Instruction::BinaryOps FlippedOpcode =
      (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Value *A, *B, *C, *X, *Y, *Dummy;
          const auto matchNotOrAnd =
      [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
                              Value *&X, bool CountUses = false) -> bool {
    if (CountUses && !Op->hasOneUse())
      return false;
    if (match(Op, m_c_BinOp(FlippedOpcode,
                            m_CombineAnd(m_Value(X),
                                         m_Not(m_c_BinOp(Opcode, m_A, m_B))),
                            m_C)))
      return !CountUses || X->hasOneUse();
    return false;
  };
            if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
            if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
                      true)) {
      Value *Xor = Builder.CreateXor(B, C);
      return (Opcode == Instruction::Or)
                 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
                 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
    }
            if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
                      true)) {
      Value *Xor = Builder.CreateXor(A, C);
      return (Opcode == Instruction::Or)
                 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
                 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
    }
            if (match(Op1, m_OneUse(m_Not(m_OneUse(
                       m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
      return BinaryOperator::CreateNot(Builder.CreateBinOp(
          Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
            if (match(Op1, m_OneUse(m_Not(m_OneUse(
                       m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
      return BinaryOperator::CreateNot(Builder.CreateBinOp(
          Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
                    if (Opcode == Instruction::Or && Op0->hasOneUse() &&
        match(Op1, m_OneUse(m_Not(m_CombineAnd(
                       m_Value(Y),
                       m_c_BinOp(Opcode, m_Specific(C),
                                 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
                  Value *Or = cast<BinaryOperator>(X)->getOperand(0);
      return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
    }
  }
            if (match(Op0,
            m_OneUse(m_c_BinOp(FlippedOpcode,
                               m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
                               m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
      match(Op0, m_OneUse(m_c_BinOp(
                     FlippedOpcode,
                     m_c_BinOp(FlippedOpcode, m_Value(C),
                               m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
                     m_Value(B))))) {
                if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
                       Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
                       m_Specific(C))))) ||
        match(Op1, m_OneUse(m_Not(m_c_BinOp(
                       Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
                       m_Specific(A))))) ||
        match(Op1, m_OneUse(m_Not(m_c_BinOp(
                       Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
                       m_Specific(B)))))) {
      Value *Xor = Builder.CreateXor(B, C);
      return (Opcode == Instruction::Or)
                 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
                 : BinaryOperator::CreateOr(Xor, X);
    }
            if (match(Op1, m_OneUse(m_Not(m_OneUse(
                       m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
      return BinaryOperator::Create(
          FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
          X);
            if (match(Op1, m_OneUse(m_Not(m_OneUse(
                       m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
      return BinaryOperator::Create(
          FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
          X);
  }
  return nullptr;
}
Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
  Type *Ty = I.getType();
  if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
                                 SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);
  if (SimplifyAssociativeOrCommutative(I))
    return &I;
  if (Instruction *X = foldVectorBinop(I))
    return X;
  if (Instruction *Phi = foldBinopWithPhiOperands(I))
    return Phi;
      if (SimplifyDemandedInstructionBits(I))
    return &I;
    if (Instruction *Xor = foldAndToXor(I, Builder))
    return Xor;
  if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
    return X;
    if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);
  if (Value *V = SimplifyBSwap(I, Builder))
    return replaceInstUsesWith(I, V);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Value *X, *Y;
  if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
      match(Op1, m_One())) {
            Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
    return new ZExtInst(IsZero, Ty);
  }
    Value *Neg;
  if (match(&I,
            m_c_And(m_CombineAnd(m_Value(Neg),
                                 m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
                    m_Value(Y)))) {
    Value *Cmp = Builder.CreateIsNull(Neg);
    return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
  }
  const APInt *C;
  if (match(Op1, m_APInt(C))) {
    const APInt *XorC;
    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
            Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
      Value *And = Builder.CreateAnd(X, Op1);
      And->takeName(Op0);
      return BinaryOperator::CreateXor(And, NewC);
    }
    const APInt *OrC;
    if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
                                          APInt Together = *C & *OrC;
      Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
      And->takeName(Op0);
      return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
    }
    unsigned Width = Ty->getScalarSizeInBits();
    const APInt *ShiftC;
    if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
        ShiftC->ult(Width)) {
      if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
                        Value *Sext = Builder.CreateSExt(X, Ty);
        Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
        return BinaryOperator::CreateLShr(Sext, ShAmtC);
      }
    }
            if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
        C->isMask(Width - ShiftC->getZExtValue()))
      return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
    const APInt *AddC;
    if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
                  unsigned Ctlz = C->countLeadingZeros();
      APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
      if ((*AddC & LowMask).isZero())
        return BinaryOperator::CreateAnd(X, Op1);
                              if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
        assert((*C & *AddC) != 0 && "Expected common bit");
        Value *NewAnd = Builder.CreateAnd(X, Op1);
        return BinaryOperator::CreateXor(NewAnd, Op1);
      }
    }
            auto isNarrowableBinOpcode = [](BinaryOperator *B) {
      switch (B->getOpcode()) {
      case Instruction::Xor:
      case Instruction::Or:
      case Instruction::Mul:
      case Instruction::Add:
      case Instruction::Sub:
        return true;
      default:
        return false;
      }
    };
    BinaryOperator *BO;
    if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
      Instruction::BinaryOps BOpcode = BO->getOpcode();
      Value *X;
      const APInt *C1;
                              if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
          C->isIntN(X->getType()->getScalarSizeInBits())) {
        unsigned XWidth = X->getType()->getScalarSizeInBits();
        Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
        Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
                           ? Builder.CreateBinOp(BOpcode, X, TruncC1)
                           : Builder.CreateBinOp(BOpcode, TruncC1, X);
        Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
        Value *And = Builder.CreateAnd(BinOp, TruncC);
        return new ZExtInst(And, Ty);
      }
                        if (isa<Instruction>(BO->getOperand(0)) &&
          match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
          C->isMask(X->getType()->getScalarSizeInBits())) {
        Y = BO->getOperand(1);
        Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
        Value *NewBO =
            Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
        return new ZExtInst(NewBO, Ty);
      }
            if (isa<Instruction>(BO->getOperand(1)) &&
          match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
          C->isMask(X->getType()->getScalarSizeInBits())) {
        Y = BO->getOperand(0);
        Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
        Value *NewBO =
            Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
        return new ZExtInst(NewBO, Ty);
      }
    }
                if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
        match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
      APInt NotAndMask(~(*C));
      BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
      if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
                        Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
        return BinaryOperator::Create(BinOp, X, NewRHS);
      }
      if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
                        Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
        return BinaryOperator::Create(BinOp, NewLHS, Y);
      }
    }
                    if (C->isPowerOf2() &&
        match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
      int Log2ShiftC = ShiftC->exactLogBase2();
      int Log2C = C->exactLogBase2();
      bool IsShiftLeft =
         cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
      int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
      assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
      Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
      return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
                                ConstantInt::getNullValue(Ty));
    }
    Constant *C1, *C2;
    const APInt *C3 = C;
    Value *X;
    if (C3->isPowerOf2()) {
      Constant *Log2C3 = ConstantInt::get(Ty, C3->countTrailingZeros());
      if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
                                     m_ImmConstant(C2)))) &&
          match(C1, m_Power2())) {
        Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
        Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
        KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
        if (KnownLShrc.getMaxValue().ult(Width)) {
                              Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
          Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
          return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
                                    ConstantInt::getNullValue(Ty));
        }
      }
      if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
                                    m_ImmConstant(C2)))) &&
          match(C1, m_Power2())) {
        Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
        Constant *Cmp =
            ConstantExpr::getCompare(ICmpInst::ICMP_ULT, Log2C3, C2);
        if (Cmp->isZeroValue()) {
                              Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
          Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
          Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
          return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
                                    ConstantInt::getNullValue(Ty));
        }
      }
    }
  }
  if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
                      m_SignMask())) &&
      match(Y, m_SpecificInt_ICMP(
                   ICmpInst::Predicate::ICMP_EQ,
                   APInt(Ty->getScalarSizeInBits(),
                         Ty->getScalarSizeInBits() -
                             X->getType()->getScalarSizeInBits())))) {
    auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
    auto *SanitizedSignMask = cast<Constant>(Op1);
                SanitizedSignMask = Constant::replaceUndefsWith(
        SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
    SanitizedSignMask =
        Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
    return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
  }
  if (Instruction *Z = narrowMaskedBinOp(I))
    return Z;
  if (I.getType()->isIntOrIntVectorTy(1)) {
    if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
      if (auto *I =
              foldAndOrOfSelectUsingImpliedCond(Op1, *SI0,  true))
        return I;
    }
    if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
      if (auto *I =
              foldAndOrOfSelectUsingImpliedCond(Op0, *SI1,  true))
        return I;
    }
  }
  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
    return FoldedLogic;
  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
    return DeMorgan;
  {
    Value *A, *B, *C;
        if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
      return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
        if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
      return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
        if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
      return BinaryOperator::CreateAnd(Op0, B);
        if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
      return BinaryOperator::CreateAnd(Op1, B);
        if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
      if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
        if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
          return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
        if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
      if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
        if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
          return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
                    if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateAnd(A, B);
                    if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateAnd(A, B);
                    if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
        match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
                    if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
        match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
  }
  {
    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
    if (LHS && RHS)
      if (Value *Res = foldAndOrOfICmps(LHS, RHS, I,  true))
        return replaceInstUsesWith(I, Res);
            if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
      bool IsLogical = isa<SelectInst>(Op1);
            if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res =
                foldAndOrOfICmps(LHS, Cmp, I,  true, IsLogical))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalAnd(Res, Y)
                                            : Builder.CreateAnd(Res, Y));
            if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I,  true,
                                           false))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalAnd(X, Res)
                                            : Builder.CreateAnd(X, Res));
    }
    if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
      bool IsLogical = isa<SelectInst>(Op0);
            if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res =
                foldAndOrOfICmps(Cmp, RHS, I,  true, IsLogical))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalAnd(Res, Y)
                                            : Builder.CreateAnd(Res, Y));
            if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I,  true,
                                           false))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalAnd(X, Res)
                                            : Builder.CreateAnd(X, Res));
    }
  }
  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
      if (Value *Res = foldLogicOfFCmps(LHS, RHS,  true))
        return replaceInstUsesWith(I, Res);
  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
    return FoldedFCmps;
  if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
    return CastedAnd;
  if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
    return Sel;
            Value *A;
  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
    unsigned FullShift = Ty->getScalarSizeInBits() - 1;
  if (match(&I, m_c_And(m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))),
                        m_Value(Y)))) {
    Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
    return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
  }
      if (match(&I, m_c_And(m_OneUse(m_Not(
                            m_AShr(m_Value(X), m_SpecificInt(FullShift)))),
                        m_Value(Y)))) {
    Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
    return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
  }
    if (sinkNotIntoOtherHandOfAndOrOr(I))
    return &I;
    PHINode *PN = nullptr;
  Value *Start = nullptr, *Step = nullptr;
  if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
    return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
  return nullptr;
}
Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
                                                      bool MatchBSwaps,
                                                      bool MatchBitReversals) {
  SmallVector<Instruction *, 4> Insts;
  if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
                                       Insts))
    return nullptr;
  Instruction *LastInst = Insts.pop_back_val();
  LastInst->removeFromParent();
  for (auto *Inst : Insts)
    Worklist.push(Inst);
  return LastInst;
}
static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
      unsigned Width = Or.getType()->getScalarSizeInBits();
      BinaryOperator *Or0, *Or1;
  if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
      !match(Or.getOperand(1), m_BinOp(Or1)))
    return nullptr;
  Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
      !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
      Or0->getOpcode() == Or1->getOpcode())
    return nullptr;
    if (Or0->getOpcode() == BinaryOperator::LShr) {
    std::swap(Or0, Or1);
    std::swap(ShVal0, ShVal1);
    std::swap(ShAmt0, ShAmt1);
  }
  assert(Or0->getOpcode() == BinaryOperator::Shl &&
         Or1->getOpcode() == BinaryOperator::LShr &&
         "Illegal or(shift,shift) pair");
      auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
        const APInt *LI, *RI;
    if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
      if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
        return ConstantInt::get(L->getType(), *LI);
    Constant *LC, *RC;
    if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
        match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
        match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
        match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
      return ConstantExpr::mergeUndefsWith(LC, RC);
                        if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
      KnownBits KnownL = IC.computeKnownBits(L,  0, &Or);
      return KnownL.getMaxValue().ult(Width) ? L : nullptr;
    }
                if (ShVal0 != ShVal1)
      return nullptr;
            if (!isPowerOf2_32(Width))
      return nullptr;
            Value *X;
    unsigned Mask = Width - 1;
    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
      return X;
            if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
        match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
                       m_SpecificInt(Mask))))
      return L;
    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
      return L;
    return nullptr;
  };
  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
  bool IsFshl = true;   if (!ShAmt) {
    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
    IsFshl = false;   }
  if (!ShAmt)
    return nullptr;
  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
  Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
  return CallInst::Create(F, {ShVal0, ShVal1, ShAmt});
}
static Instruction *matchOrConcat(Instruction &Or,
                                  InstCombiner::BuilderTy &Builder) {
  assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
  Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
  Type *Ty = Or.getType();
  unsigned Width = Ty->getScalarSizeInBits();
  if ((Width & 1) != 0)
    return nullptr;
  unsigned HalfWidth = Width / 2;
    if (!isa<ZExtInst>(Op0))
    std::swap(Op0, Op1);
    Value *LowerSrc, *ShlVal, *UpperSrc;
  const APInt *C;
  if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
      !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
      !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
    return nullptr;
  if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
      LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
    return nullptr;
  auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
    Value *NewLower = Builder.CreateZExt(Lo, Ty);
    Value *NewUpper = Builder.CreateZExt(Hi, Ty);
    NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
    Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
    Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
    return Builder.CreateCall(F, BinOp);
  };
      Value *LowerBSwap, *UpperBSwap;
  if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
      match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
    return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
      Value *LowerBRev, *UpperBRev;
  if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
      match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
    return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
  return nullptr;
}
static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
  unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *EltC1 = C1->getAggregateElement(i);
    Constant *EltC2 = C2->getAggregateElement(i);
    if (!EltC1 || !EltC2)
      return false;
        if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
          (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
      return false;
  }
  return true;
}
Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B) {
      Type *Ty = A->getType();
  if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
    return nullptr;
    if (match(B, m_Not(m_Specific(A)))) {
        if (Ty->isIntOrIntVectorTy(1))
      return A;
                        A = peekThroughBitcast(A);
    if (A->getType()->isIntOrIntVectorTy()) {
      unsigned NumSignBits = ComputeNumSignBits(A);
      if (NumSignBits == A->getType()->getScalarSizeInBits() &&
          NumSignBits <= Ty->getScalarSizeInBits())
        return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
    }
    return nullptr;
  }
    Constant *AConst, *BConst;
  if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
    if (AConst == ConstantExpr::getNot(BConst) &&
        ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
      return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
      Value *Cond;
  Value *NotB;
  if (match(A, m_SExt(m_Value(Cond))) &&
      Cond->getType()->isIntOrIntVectorTy(1)) {
        if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
      return Cond;
                    if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
      NotB = peekThroughBitcast(NotB, true);
      if (match(NotB, m_SExt(m_Specific(Cond))))
        return Cond;
    }
  }
      if (!Ty->isVectorTy())
    return nullptr;
        if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
      match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
      Cond->getType()->isIntOrIntVectorTy(1) &&
      areInverseVectorBitmasks(AConst, BConst)) {
    AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
    return Builder.CreateXor(Cond, AConst);
  }
  return nullptr;
}
Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
                                              Value *D) {
      Type *OrigType = A->getType();
  A = peekThroughBitcast(A, true);
  B = peekThroughBitcast(B, true);
  if (Value *Cond = getSelectCondition(A, B)) {
                    Type *SelTy = A->getType();
    if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
            unsigned Elts = VecTy->getElementCount().getKnownMinValue();
                  unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinSize();
      Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
      SelTy = VectorType::get(EltTy, VecTy->getElementCount());
    }
    Value *BitcastC = Builder.CreateBitCast(C, SelTy);
    Value *BitcastD = Builder.CreateBitCast(D, SelTy);
    Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
    return Builder.CreateBitCast(Select, OrigType);
  }
  return nullptr;
}
Value *foldAndOrOfICmpEqZeroAndICmp(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
                                    IRBuilderBase &Builder) {
  ICmpInst::Predicate LPred =
      IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
  ICmpInst::Predicate RPred =
      IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
  Value *LHS0 = LHS->getOperand(0);
  if (LPred != ICmpInst::ICMP_EQ || !match(LHS->getOperand(1), m_Zero()) ||
      !LHS0->getType()->isIntOrIntVectorTy() ||
      !(LHS->hasOneUse() || RHS->hasOneUse()))
    return nullptr;
  Value *Other;
  if (RPred == ICmpInst::ICMP_ULT && RHS->getOperand(1) == LHS0)
    Other = RHS->getOperand(0);
  else if (RPred == ICmpInst::ICMP_UGT && RHS->getOperand(0) == LHS0)
    Other = RHS->getOperand(1);
  else
    return nullptr;
  return Builder.CreateICmp(
      IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
      Builder.CreateAdd(LHS0, Constant::getAllOnesValue(LHS0->getType())),
      Other);
}
Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
                                          Instruction &I, bool IsAnd,
                                          bool IsLogical) {
  const SimplifyQuery Q = SQ.getWithInstruction(&I);
        if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical))
    return V;
  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
  Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
  const APInt *LHSC = nullptr, *RHSC = nullptr;
  match(LHS1, m_APInt(LHSC));
  match(RHS1, m_APInt(RHSC));
      if (predicatesFoldable(PredL, PredR)) {
    if (LHS0 == RHS1 && LHS1 == RHS0) {
      PredL = ICmpInst::getSwappedPredicate(PredL);
      std::swap(LHS0, LHS1);
    }
    if (LHS0 == RHS0 && LHS1 == RHS1) {
      unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
                            : getICmpCode(PredL) | getICmpCode(PredR);
      bool IsSigned = LHS->isSigned() || RHS->isSigned();
      return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
    }
  }
        if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder))
    return V;
      if (!IsLogical) {
    if (Value *V = foldAndOrOfICmpEqZeroAndICmp(LHS, RHS, IsAnd, Builder))
      return V;
    if (Value *V = foldAndOrOfICmpEqZeroAndICmp(RHS, LHS, IsAnd, Builder))
      return V;
  }
    if (!IsLogical) {
    if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, Builder, Q))
      return V;
    if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd, Builder, Q))
      return V;
  }
  if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder))
    return V;
  if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder))
    return V;
      if (!IsLogical) {
            if (Value *V = simplifyRangeCheck(LHS, RHS, !IsAnd))
      return V;
            if (Value *V = simplifyRangeCheck(RHS, LHS, !IsAnd))
      return V;
  }
    if (IsAnd && !IsLogical)
    if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
      return V;
  if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder))
    return V;
    if (!IsLogical) {
    if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
      return X;
    if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
      return X;
  }
  if (Value *X = foldEqOfParts(LHS, RHS, IsAnd))
    return X;
        if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
      PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
      LHS0->getType() == RHS0->getType()) {
    Value *NewOr = Builder.CreateOr(LHS0, RHS0);
    return Builder.CreateICmp(PredL, NewOr,
                              Constant::getNullValue(NewOr->getType()));
  }
    if (!LHSC || !RHSC)
    return nullptr;
          if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
      PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
    Value *V;
    const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
            if (match(RHS0, m_Trunc(m_Value(V))) &&
        match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
      SmallC = RHSC;
      BigC = LHSC;
    } else if (match(LHS0, m_Trunc(m_Value(V))) &&
               match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
      SmallC = LHSC;
      BigC = RHSC;
    }
    if (SmallC && BigC) {
      unsigned BigBitSize = BigC->getBitWidth();
      unsigned SmallBitSize = SmallC->getBitWidth();
            APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
      if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
        Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
        APInt N = SmallC->zext(BigBitSize) | *BigC;
        Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
        return Builder.CreateICmp(PredL, NewAnd, NewVal);
      }
    }
  }
            bool TrueIfSignedL, TrueIfSignedR;
  if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
      isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
      (RHS->hasOneUse() || LHS->hasOneUse())) {
    Value *X, *Y;
    if (IsAnd) {
      if ((TrueIfSignedL && !TrueIfSignedR &&
           match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
           match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
          (!TrueIfSignedL && TrueIfSignedR &&
           match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
           match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
        Value *NewXor = Builder.CreateXor(X, Y);
        return Builder.CreateIsNeg(NewXor);
      }
    } else {
      if ((TrueIfSignedL && !TrueIfSignedR &&
            match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
            match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
          (!TrueIfSignedL && TrueIfSignedR &&
           match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
           match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
        Value *NewXor = Builder.CreateXor(X, Y);
        return Builder.CreateIsNotNeg(NewXor);
      }
    }
  }
  return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
}
Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
  if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
                                SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);
  if (SimplifyAssociativeOrCommutative(I))
    return &I;
  if (Instruction *X = foldVectorBinop(I))
    return X;
  if (Instruction *Phi = foldBinopWithPhiOperands(I))
    return Phi;
      if (SimplifyDemandedInstructionBits(I))
    return &I;
    if (Instruction *Xor = foldOrToXor(I, Builder))
    return Xor;
  if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
    return X;
    if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);
  if (Value *V = SimplifyBSwap(I, Builder))
    return replaceInstUsesWith(I, V);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = I.getType();
  if (Ty->isIntOrIntVectorTy(1)) {
    if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
      if (auto *I =
              foldAndOrOfSelectUsingImpliedCond(Op1, *SI0,  false))
        return I;
    }
    if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
      if (auto *I =
              foldAndOrOfSelectUsingImpliedCond(Op0, *SI1,  false))
        return I;
    }
  }
  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
    return FoldedLogic;
  if (Instruction *BitOp = matchBSwapOrBitReverse(I,  true,
                                                   true))
    return BitOp;
  if (Instruction *Funnel = matchFunnelShift(I, *this))
    return Funnel;
  if (Instruction *Concat = matchOrConcat(I, Builder))
    return replaceInstUsesWith(I, Concat);
  Value *X, *Y;
  const APInt *CV;
  if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
      !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
            Value *Or = Builder.CreateOr(X, Y);
    return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
  }
      if (match(&I,
            m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) &&
      haveNoCommonBitsSet(Op0, Op1, DL)) {
    Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
    return BinaryOperator::CreateMul(X, IncrementY);
  }
    Value *A, *B, *C, *D;
  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
      match(Op1, m_And(m_Value(B), m_Value(D)))) {
        const APInt *C0, *C1;
    if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
      Value *X;
      if (*C0 == ~*C1) {
                if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
          return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
                if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
          return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
                if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
          return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
                if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
          return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
      }
      if ((*C0 & *C1).isZero()) {
                        if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
            MaskedValueIsZero(X, ~*C0, 0, &I)) {
          Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
          return BinaryOperator::CreateAnd(A, C01);
        }
                        if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
            MaskedValueIsZero(X, ~*C1, 0, &I)) {
          Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
          return BinaryOperator::CreateAnd(B, C01);
        }
                        const APInt *C2, *C3;
        if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
            match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
            (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
          Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
          Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
          return BinaryOperator::CreateAnd(Or, C01);
        }
      }
    }
                if (Op0->hasOneUse() || Op1->hasOneUse()) {
            if (Value *V = matchSelectFromAndOr(A, C, B, D))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(A, C, D, B))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(C, A, B, D))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(C, A, D, B))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(B, D, A, C))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(B, D, C, A))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(D, B, A, C))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(D, B, C, A))
        return replaceInstUsesWith(I, V);
    }
  }
    if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
    if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
      return BinaryOperator::CreateOr(Op0, C);
    if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
    if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
      return BinaryOperator::CreateOr(Op1, C);
    if (match(Op0, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op1)), m_Value(C))))
    return BinaryOperator::CreateOr(C, Op1);
    if (match(Op1, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op0)), m_Value(C))))
    return BinaryOperator::CreateOr(Op0, C);
    if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
    return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
    return DeMorgan;
    bool SwappedForXor = false;
  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
    std::swap(Op0, Op1);
    SwappedForXor = true;
  }
            if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
    if (Op0 == A || Op0 == B)
      return BinaryOperator::CreateOr(A, B);
    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
        match(Op0, m_And(m_Specific(B), m_Specific(A))))
      return BinaryOperator::CreateOr(A, B);
    if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
        (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
      return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
      Value *Not = Builder.CreateNot(B, B->getName() + ".not");
      return BinaryOperator::CreateOr(Not, Op0);
    }
    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
      Value *Not = Builder.CreateNot(A, A->getName() + ".not");
      return BinaryOperator::CreateOr(Not, Op0);
    }
  }
      if (match(Op1, m_Not(m_Value(A))))
    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
                               B->getOpcode() == Instruction::Xor)) {
        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
                                                 B->getOperand(0);
        Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
        return BinaryOperator::CreateOr(Not, Op0);
      }
  if (SwappedForXor)
    std::swap(Op0, Op1);
  {
    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
    if (LHS && RHS)
      if (Value *Res = foldAndOrOfICmps(LHS, RHS, I,  false))
        return replaceInstUsesWith(I, Res);
            Value *X, *Y;
    if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
      bool IsLogical = isa<SelectInst>(Op1);
            if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res =
                foldAndOrOfICmps(LHS, Cmp, I,  false, IsLogical))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalOr(Res, Y)
                                            : Builder.CreateOr(Res, Y));
            if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I,  false,
                                           false))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalOr(X, Res)
                                            : Builder.CreateOr(X, Res));
    }
    if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
      bool IsLogical = isa<SelectInst>(Op0);
            if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res =
                foldAndOrOfICmps(Cmp, RHS, I,  false, IsLogical))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalOr(Res, Y)
                                            : Builder.CreateOr(Res, Y));
            if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I,  false,
                                           false))
          return replaceInstUsesWith(I, IsLogical
                                            ? Builder.CreateLogicalOr(X, Res)
                                            : Builder.CreateOr(X, Res));
    }
  }
  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
      if (Value *Res = foldLogicOfFCmps(LHS, RHS,  false))
        return replaceInstUsesWith(I, Res);
  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
    return FoldedFCmps;
  if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
    return CastedOr;
  if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
    return Sel;
            if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op1);
  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op0);
            ConstantInt *CI;
  if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
      match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
    Value *Inner = Builder.CreateOr(A, Op1);
    Inner->takeName(Op0);
    return BinaryOperator::CreateOr(Inner, CI);
  }
        {
    Value *X = nullptr, *Y = nullptr;
    if (Op0->hasOneUse() && Op1->hasOneUse() &&
        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
      Value *orTrue = Builder.CreateOr(A, C);
      Value *orFalse = Builder.CreateOr(B, D);
      return SelectInst::Create(X, orTrue, orFalse);
    }
  }
    {
    Value *X, *Y;
    if (match(&I, m_c_Or(m_OneUse(m_AShr(
                             m_NSWSub(m_Value(Y), m_Value(X)),
                             m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
                         m_Deferred(X)))) {
      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
      Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
      return SelectInst::Create(NewICmpInst, AllOnes, X);
    }
  }
  if (Instruction *V =
          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
    return V;
  CmpInst::Predicate Pred;
  Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
          if (match(&I,
            m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
                                m_Value(Ov)),
                   m_CombineAnd(m_ICmp(Pred,
                                       m_CombineAnd(m_ExtractValue<0>(
                                                        m_Deferred(UMulWithOv)),
                                                    m_Value(Mul)),
                                       m_ZeroInt()),
                                m_Value(MulIsNotZero)))) &&
      (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
      Pred == CmpInst::ICMP_NE) {
    Value *A, *B;
    if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
                              m_Value(A), m_Value(B)))) {
      Value *NotNullA = Builder.CreateIsNotNull(A);
      Value *NotNullB = Builder.CreateIsNotNull(B);
      return BinaryOperator::CreateAnd(NotNullA, NotNullB);
    }
  }
    if (sinkNotIntoOtherHandOfAndOrOr(I))
    return &I;
      if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
                       m_Shl(m_One(), m_Deferred(X)))) &&
      match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
    Value *Sub = Builder.CreateSub(
        ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
    return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
  }
    PHINode *PN = nullptr;
  Value *Start = nullptr, *Step = nullptr;
  if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
    return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
      if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
                       m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
                                    if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
        match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
      return BinaryOperator::CreateOr(
          C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
                                    if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
        match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
      return BinaryOperator::CreateOr(
          Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
  }
  return nullptr;
}
static Instruction *foldXorToXor(BinaryOperator &I,
                                 InstCombiner::BuilderTy &Builder) {
  assert(I.getOpcode() == Instruction::Xor);
  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *A, *B;
  
          if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
                        m_c_Or(m_Deferred(A), m_Deferred(B)))))
    return BinaryOperator::CreateXor(A, B);
          if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
                      m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
    return BinaryOperator::CreateXor(A, B);
          if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
                      m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
    return BinaryOperator::CreateXor(A, B);
    if (!Op0->hasOneUse() && !Op1->hasOneUse())
    return nullptr;
            if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
       match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
      (match(Op0, m_And(m_Value(A), m_Value(B))) &&
       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
    return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
  return nullptr;
}
Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
                                        BinaryOperator &I) {
  assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
         I.getOperand(1) == RHS && "Should be 'xor' with these operands");
  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
  if (predicatesFoldable(PredL, PredR)) {
    if (LHS0 == RHS1 && LHS1 == RHS0) {
      std::swap(LHS0, LHS1);
      PredL = ICmpInst::getSwappedPredicate(PredL);
    }
    if (LHS0 == RHS0 && LHS1 == RHS1) {
            unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
      bool IsSigned = LHS->isSigned() || RHS->isSigned();
      return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
    }
  }
        const APInt *LC, *RC;
  if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
      LHS0->getType() == RHS0->getType() &&
      LHS0->getType()->isIntOrIntVectorTy() &&
      (LHS->hasOneUse() || RHS->hasOneUse())) {
                        bool TrueIfSignedL, TrueIfSignedR;
    if (isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
        isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
      Value *XorLR = Builder.CreateXor(LHS0, RHS0);
      return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
                                              Builder.CreateIsNotNeg(XorLR);
    }
                        const APInt *C1, *C2;
    if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_APInt(C1)) &&
         PredR == CmpInst::ICMP_SLT && match(RHS1, m_APInt(C2))) ||
        (PredL == CmpInst::ICMP_SLT && match(LHS1, m_APInt(C2)) &&
         PredR == CmpInst::ICMP_SGT && match(RHS1, m_APInt(C1))))
      if (LHS0 == RHS0 && *C1 + 2 == *C2 &&
          (C1->isNegative() || C2->isNonNegative()))
        return Builder.CreateICmpNE(LHS0,
                                    ConstantInt::get(LHS0->getType(), *C1 + 1));
  }
              if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
            if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
            ICmpInst *X = nullptr, *Y = nullptr;
      if (OrICmp == LHS && AndICmp == RHS) {
                X = LHS;
        Y = RHS;
      }
      if (OrICmp == RHS && AndICmp == LHS) {
                X = RHS;
        Y = LHS;
      }
      if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
                Y->setPredicate(Y->getInversePredicate());
                if (!Y->hasOneUse()) {
                                                  BuilderTy::InsertPointGuard Guard(Builder);
                    Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
          Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
                    Worklist.pushUsersToWorkList(*Y);
          Y->replaceUsesWithIf(NotY,
                               [NotY](Use &U) { return U.getUser() != NotY; });
        }
                return Builder.CreateAnd(LHS, RHS);
      }
    }
  }
  return nullptr;
}
static Instruction *visitMaskedMerge(BinaryOperator &I,
                                     InstCombiner::BuilderTy &Builder) {
  Value *B, *X, *D;
  Value *M;
  if (!match(&I, m_c_Xor(m_Value(B),
                         m_OneUse(m_c_And(
                             m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
                                          m_Value(D)),
                             m_Value(M))))))
    return nullptr;
  Value *NotM;
  if (match(M, m_Not(m_Value(NotM)))) {
        Value *NewA = Builder.CreateAnd(D, NotM);
    return BinaryOperator::CreateXor(NewA, X);
  }
  Constant *C;
  if (D->hasOneUse() && match(M, m_Constant(C))) {
        Type *EltTy = C->getType()->getScalarType();
    C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
        Value *LHS = Builder.CreateAnd(X, C);
    Value *NotC = Builder.CreateNot(C);
    Value *RHS = Builder.CreateAnd(B, NotC);
    return BinaryOperator::CreateOr(LHS, RHS);
  }
  return nullptr;
}
static Instruction *sinkNotIntoXor(BinaryOperator &I,
                                   InstCombiner::BuilderTy &Builder) {
  Value *X, *Y;
      if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
    return nullptr;
    if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
      } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
    std::swap(X, Y);
  } else
    return nullptr;
  Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
  return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
}
static Instruction *canonicalizeAbs(BinaryOperator &Xor,
                                    InstCombiner::BuilderTy &Builder) {
  assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
          Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
  if (Op0->hasNUses(2))
    std::swap(Op0, Op1);
  Type *Ty = Xor.getType();
  Value *A;
  const APInt *ShAmt;
  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
      match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
                Value *IsNeg = Builder.CreateIsNeg(A);
        auto *Add = cast<BinaryOperator>(Op0);
    Value *NegA = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
                                   Add->hasNoSignedWrap());
    return SelectInst::Create(IsNeg, NegA, A);
  }
  return nullptr;
}
bool InstCombinerImpl::sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I) {
  Instruction::BinaryOps NewOpc;
  switch (I.getOpcode()) {
  case Instruction::And:
    NewOpc = Instruction::Or;
    break;
  case Instruction::Or:
    NewOpc = Instruction::And;
    break;
  default:
    return false;
  };
  Value *X, *Y;
  if (!match(&I, m_c_BinOp(m_Not(m_Value(X)), m_Value(Y))))
    return false;
    if (!InstCombiner::isFreeToInvert(Y, Y->hasOneUse()))
    return false;
    if (!InstCombiner::canFreelyInvertAllUsersOf(&I, nullptr))
    return false;
  Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
  Value *NewBinOp =
      BinaryOperator::Create(NewOpc, X, NotY, I.getName() + ".not");
  Builder.Insert(NewBinOp);
  replaceInstUsesWith(I, NewBinOp);
        freelyInvertAllUsersOf(NewBinOp);
  return true;
}
Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
  Value *NotOp;
  if (!match(&I, m_Not(m_Value(NotOp))))
    return nullptr;
                    Type *Ty = I.getType();
  Value *X, *Y;
  if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
    return BinaryOperator::CreateOr(X, NotY);
  }
  if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
    return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
  }
      if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
    return BinaryOperator::CreateAnd(X, NotY);
  }
  if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
    return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
  }
    BinaryOperator *NotVal;
  if (match(NotOp, m_BinOp(NotVal))) {
    if (NotVal->getOpcode() == Instruction::And ||
        NotVal->getOpcode() == Instruction::Or) {
                        if (isFreeToInvert(NotVal->getOperand(0),
                         NotVal->getOperand(0)->hasOneUse()) &&
          isFreeToInvert(NotVal->getOperand(1),
                         NotVal->getOperand(1)->hasOneUse())) {
        Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
        Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
        if (NotVal->getOpcode() == Instruction::And)
          return BinaryOperator::CreateOr(NotX, NotY);
        return BinaryOperator::CreateAnd(NotX, NotY);
      }
    }
        if (match(NotVal,
              m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
      Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
      Value *NotY = Builder.CreateNot(Y);
      return BinaryOperator::CreateAnd(DecX, NotY);
    }
        if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
      return BinaryOperator::CreateAShr(X, Y);
                
        Constant *C;
    if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
        match(C, m_Negative())) {
                  Type *EltTy = Ty->getScalarType();
      C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
      return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
    }
        if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
        match(C, m_NonNegative())) {
                  Type *EltTy = Ty->getScalarType();
      C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
      return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
    }
        if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
      return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
            if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
      if (isa<Constant>(X) || NotVal->hasOneUse())
        return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
        if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
      return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
                                                   NotVal);
  }
    CmpInst::Predicate Pred;
  if (match(NotOp, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
    cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
    return replaceInstUsesWith(I, NotOp);
  }
        auto *II = dyn_cast<IntrinsicInst>(NotOp);
  if (II && II->hasOneUse()) {
    if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) &&
        isFreeToInvert(X, X->hasOneUse()) &&
        isFreeToInvert(Y, Y->hasOneUse())) {
      Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
      Value *NotX = Builder.CreateNot(X);
      Value *NotY = Builder.CreateNot(Y);
      Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY);
      return replaceInstUsesWith(I, InvMaxMin);
    }
    if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
      Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
      Value *NotY = Builder.CreateNot(Y);
      Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
      return replaceInstUsesWith(I, InvMaxMin);
    }
  }
  if (NotOp->hasOneUse()) {
                                    if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
      Value *TV = Sel->getTrueValue();
      Value *FV = Sel->getFalseValue();
      auto *CmpT = dyn_cast<CmpInst>(TV);
      auto *CmpF = dyn_cast<CmpInst>(FV);
      bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
      bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
      if (InvertibleT && InvertibleF) {
        if (CmpT)
          CmpT->setPredicate(CmpT->getInversePredicate());
        else
          Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
        if (CmpF)
          CmpF->setPredicate(CmpF->getInversePredicate());
        else
          Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
        return replaceInstUsesWith(I, Sel);
      }
    }
  }
  if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
    return NewXor;
  return nullptr;
}
Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
  if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
                                 SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);
  if (SimplifyAssociativeOrCommutative(I))
    return &I;
  if (Instruction *X = foldVectorBinop(I))
    return X;
  if (Instruction *Phi = foldBinopWithPhiOperands(I))
    return Phi;
  if (Instruction *NewXor = foldXorToXor(I, Builder))
    return NewXor;
    if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);
      if (SimplifyDemandedInstructionBits(I))
    return &I;
  if (Value *V = SimplifyBSwap(I, Builder))
    return replaceInstUsesWith(I, V);
  if (Instruction *R = foldNot(I))
    return R;
          Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Value *M;
  if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
                        m_c_And(m_Deferred(M), m_Value()))))
    return BinaryOperator::CreateOr(Op0, Op1);
  if (Instruction *Xor = visitMaskedMerge(I, Builder))
    return Xor;
  Value *X, *Y;
  Constant *C1;
  if (match(Op1, m_Constant(C1))) {
    Constant *C2;
    if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
        match(C1, m_ImmConstant())) {
            C2 = Constant::replaceUndefsWith(
          C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
      Value *And = Builder.CreateAnd(
          X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
      return BinaryOperator::CreateXor(
          And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
    }
        if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
            Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
      return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
    }
    if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
            Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
      return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
    }
                    const APInt *CA;
    if (match(Op0, m_OneUse(m_TruncOrSelf(
                       m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
        *CA == X->getType()->getScalarSizeInBits() - 1 &&
        !match(C1, m_AllOnes())) {
      assert(!C1->isZeroValue() && "Unexpected xor with 0");
      Value *IsNotNeg = Builder.CreateIsNotNeg(X);
      return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
    }
  }
  Type *Ty = I.getType();
  {
    const APInt *RHSC;
    if (match(Op1, m_APInt(RHSC))) {
      Value *X;
      const APInt *C;
            if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
        return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
            if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
        return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
            if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
          MaskedValueIsZero(X, *C, 0, &I))
        return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
                        if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
          *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
        Value *NotX = Builder.CreateNot(X);
        return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
      }
            if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
          *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
        Value *NotX = Builder.CreateNot(X);
        return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
      }
                      }
  }
    {
    Value *X;
    ConstantInt *C1, *C2, *C3;
        if (match(Op1, m_ConstantInt(C3)) &&
        match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
                          m_ConstantInt(C2))) &&
        Op0->hasOneUse()) {
            APInt FoldConst = C1->getValue().lshr(C2->getValue());
      FoldConst ^= C3->getValue();
            auto *Opnd0 = Builder.CreateLShr(X, C2);
      Opnd0->takeName(Op0);
      return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
    }
  }
  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
    return FoldedLogic;
      if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
      if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
      if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
    return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
            if (!match(Op1, m_Constant()) &&
      match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
    return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
  Value *A, *B, *C;
    if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
                        m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
      return BinaryOperator::CreateXor(
          Builder.CreateAnd(Builder.CreateNot(A), C), B);
    if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
                        m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
      return BinaryOperator::CreateXor(
          Builder.CreateAnd(Builder.CreateNot(B), C), A);
    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
      match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
    return BinaryOperator::CreateOr(A, B);
    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
      match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
    return BinaryOperator::CreateOr(A, B);
      if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
      match(Op1, m_Not(m_Specific(A))))
    return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
    if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
    return BinaryOperator::CreateOr(A, B);
    if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
    return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
    if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
    return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
      Value *D;
  if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
      match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
    if (B == C || B == D)
      std::swap(A, B);
    if (A == C)
      std::swap(C, D);
    if (A == D) {
      Value *NotA = Builder.CreateNot(A);
      return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
    }
  }
  if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
    if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
      if (Value *V = foldXorOfICmps(LHS, RHS, I))
        return replaceInstUsesWith(I, V);
  if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
    return CastedXor;
  if (Instruction *Abs = canonicalizeAbs(I, Builder))
    return Abs;
          if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
                                                    m_Unless(m_ConstantExpr())),
                                       m_ImmConstant(C1))),
                        m_Value(Y))))
    return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
  return nullptr;
}