#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "simplifycfg"
cl::opt<bool> llvm::RequireAndPreserveDomTree(
"simplifycfg-require-and-preserve-domtree", cl::Hidden,
cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
"into preserving DomTree,"));
static cl::opt<unsigned> PHINodeFoldingThreshold(
"phi-node-folding-threshold", cl::Hidden, cl::init(2),
cl::desc(
"Control the amount of phi node folding to perform (default = 2)"));
static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
"two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
cl::desc("Control the maximal total instruction cost that we are willing "
"to speculatively execute to fold a 2-entry PHI node into a "
"select (default = 4)"));
static cl::opt<bool>
HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
cl::desc("Hoist common instructions up to the parent block"));
static cl::opt<bool>
SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
cl::desc("Sink common instructions down to the end block"));
static cl::opt<bool> HoistCondStores(
"simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
cl::desc("Hoist conditional stores if an unconditional store precedes"));
static cl::opt<bool> MergeCondStores(
"simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
cl::desc("Hoist conditional stores even if an unconditional store does not "
"precede - hoist multiple conditional stores into a single "
"predicated store"));
static cl::opt<bool> MergeCondStoresAggressively(
"simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
cl::desc("When merging conditional stores, do so even if the resultant "
"basic blocks are unlikely to be if-converted as a result"));
static cl::opt<bool> SpeculateOneExpensiveInst(
"speculate-one-expensive-inst", cl::Hidden, cl::init(true),
cl::desc("Allow exactly one expensive instruction to be speculatively "
"executed"));
static cl::opt<unsigned> MaxSpeculationDepth(
"max-speculation-depth", cl::Hidden, cl::init(10),
cl::desc("Limit maximum recursion depth when calculating costs of "
"speculatively executed instructions"));
static cl::opt<int>
MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
cl::init(10),
cl::desc("Max size of a block which is still considered "
"small enough to thread through"));
static cl::opt<unsigned>
BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
cl::init(2),
cl::desc("Maximum cost of combining conditions when "
"folding branches"));
static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
"simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
cl::init(2),
cl::desc("Multiplier to apply to threshold when determining whether or not "
"to fold branch to common destination when vector operations are "
"present"));
static cl::opt<bool> EnableMergeCompatibleInvokes(
"simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
static cl::opt<unsigned> MaxSwitchCasesPerResult(
"max-switch-cases-per-result", cl::Hidden, cl::init(16),
cl::desc("Limit cases to analyze when converting a switch to select"));
STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
STATISTIC(NumLinearMaps,
"Number of switch instructions turned into linear mapping");
STATISTIC(NumLookupTables,
"Number of switch instructions turned into lookup tables");
STATISTIC(
NumLookupTablesHoles,
"Number of switch instructions turned into lookup tables (holes checked)");
STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
STATISTIC(NumFoldValueComparisonIntoPredecessors,
"Number of value comparisons folded into predecessor basic blocks");
STATISTIC(NumFoldBranchToCommonDest,
"Number of branches folded into predecessor basic block");
STATISTIC(
NumHoistCommonCode,
"Number of common instruction 'blocks' hoisted up to the begin block");
STATISTIC(NumHoistCommonInstrs,
"Number of common instructions hoisted up to the begin block");
STATISTIC(NumSinkCommonCode,
"Number of common instruction 'blocks' sunk down to the end block");
STATISTIC(NumSinkCommonInstrs,
"Number of common instructions sunk down to the end block");
STATISTIC(NumSpeculations, "Number of speculative executed instructions");
STATISTIC(NumInvokes,
"Number of invokes with empty resume blocks simplified into calls");
STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
namespace {
using SwitchCaseResultVectorTy =
SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
struct ValueEqualityComparisonCase {
ConstantInt *Value;
BasicBlock *Dest;
ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
: Value(Value), Dest(Dest) {}
bool operator<(ValueEqualityComparisonCase RHS) const {
return Value < RHS.Value;
}
bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
};
class SimplifyCFGOpt {
const TargetTransformInfo &TTI;
DomTreeUpdater *DTU;
const DataLayout &DL;
ArrayRef<WeakVH> LoopHeaders;
const SimplifyCFGOptions &Options;
bool Resimplify;
Value *isValueEqualityComparison(Instruction *TI);
BasicBlock *GetValueEqualityComparisonCases(
Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
BasicBlock *Pred,
IRBuilder<> &Builder);
bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
Instruction *PTI,
IRBuilder<> &Builder);
bool FoldValueComparisonIntoPredecessors(Instruction *TI,
IRBuilder<> &Builder);
bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
bool simplifySingleResume(ResumeInst *RI);
bool simplifyCommonResume(ResumeInst *RI);
bool simplifyCleanupReturn(CleanupReturnInst *RI);
bool simplifyUnreachable(UnreachableInst *UI);
bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
bool simplifyIndirectBr(IndirectBrInst *IBI);
bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
IRBuilder<> &Builder);
bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
bool EqTermsOnly);
bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
const TargetTransformInfo &TTI);
bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
BasicBlock *TrueBB, BasicBlock *FalseBB,
uint32_t TrueWeight, uint32_t FalseWeight);
bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
const DataLayout &DL);
bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
public:
SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
const SimplifyCFGOptions &Opts)
: TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
assert((!DTU || !DTU->hasPostDomTree()) &&
"SimplifyCFG is not yet capable of maintaining validity of a "
"PostDomTree, so don't ask for it.");
}
bool simplifyOnce(BasicBlock *BB);
bool run(BasicBlock *BB);
bool requestResimplify() {
Resimplify = true;
return true;
}
};
}
static bool IncomingValuesAreCompatible(
BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
assert(IncomingBlocks.size() == 2 &&
"Only for a pair of incoming blocks at the time!");
return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
if (IV0 == IV1)
return true;
if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
EquivalenceSet->contains(IV1))
return true;
return false;
});
}
static bool
SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
if (SI1 == SI2)
return false;
BasicBlock *SI1BB = SI1->getParent();
BasicBlock *SI2BB = SI2->getParent();
SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
bool Fail = false;
for (BasicBlock *Succ : successors(SI2BB)) {
if (!SI1Succs.count(Succ))
continue;
if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
continue;
Fail = true;
if (FailBlocks)
FailBlocks->insert(Succ);
else
break;
}
return !Fail;
}
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
BasicBlock *ExistPred,
MemorySSAUpdater *MSSAU = nullptr) {
for (PHINode &PN : Succ->phis())
PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
if (MSSAU)
if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
}
static InstructionCost computeSpeculationCost(const User *I,
const TargetTransformInfo &TTI) {
assert((!isa<Instruction>(I) ||
isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
"Instruction is not safe to speculatively execute!");
return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
}
static bool dominatesMergePoint(Value *V, BasicBlock *BB,
SmallPtrSetImpl<Instruction *> &AggressiveInsts,
InstructionCost &Cost,
InstructionCost Budget,
const TargetTransformInfo &TTI,
unsigned Depth = 0) {
if (Depth == MaxSpeculationDepth)
return false;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
return true;
}
BasicBlock *PBB = I->getParent();
if (PBB == BB)
return false;
BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
return true;
if (AggressiveInsts.count(I))
return true;
if (!isSafeToSpeculativelyExecute(I))
return false;
Cost += computeSpeculationCost(I, TTI);
if (Cost > Budget &&
(!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
!Cost.isValid()))
return false;
for (Use &Op : I->operands())
if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
Depth + 1))
return false;
AggressiveInsts.insert(I);
return true;
}
static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
return CI;
IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
if (isa<ConstantPointerNull>(V))
return ConstantInt::get(PtrTy, 0);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
if (CE->getOpcode() == Instruction::IntToPtr)
if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
if (CI->getType() == PtrTy)
return CI;
else
return cast<ConstantInt>(
ConstantExpr::getIntegerCast(CI, PtrTy, false));
}
return nullptr;
}
namespace {
struct ConstantComparesGatherer {
const DataLayout &DL;
Value *CompValue = nullptr;
Value *Extra = nullptr;
SmallVector<ConstantInt *, 8> Vals;
unsigned UsedICmps = 0;
ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
gather(Cond);
}
ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
ConstantComparesGatherer &
operator=(const ConstantComparesGatherer &) = delete;
private:
bool setValueOnce(Value *NewVal) {
if (CompValue && CompValue != NewVal)
return false;
CompValue = NewVal;
return (CompValue != nullptr);
}
bool matchInstruction(Instruction *I, bool isEQ) {
ICmpInst *ICI;
ConstantInt *C;
if (!((ICI = dyn_cast<ICmpInst>(I)) &&
(C = GetConstantInt(I->getOperand(1), DL)))) {
return false;
}
Value *RHSVal;
const APInt *RHSC;
if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
if (match(ICI->getOperand(0),
m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
APInt Mask = ~*RHSC;
if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
if (!setValueOnce(RHSVal))
return false;
Vals.push_back(C);
Vals.push_back(
ConstantInt::get(C->getContext(),
C->getValue() | Mask));
UsedICmps++;
return true;
}
}
if (match(ICI->getOperand(0),
m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
APInt Mask = *RHSC;
if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
if (!setValueOnce(RHSVal))
return false;
Vals.push_back(C);
Vals.push_back(ConstantInt::get(C->getContext(),
C->getValue() & ~Mask));
UsedICmps++;
return true;
}
}
if (!setValueOnce(ICI->getOperand(0)))
return false;
UsedICmps++;
Vals.push_back(C);
return ICI->getOperand(0);
}
ConstantRange Span =
ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
Value *CandidateVal = I->getOperand(0);
if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
Span = Span.subtract(*RHSC);
CandidateVal = RHSVal;
}
if (!isEQ)
Span = Span.inverse();
if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
return false;
}
if (!setValueOnce(CandidateVal))
return false;
for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
UsedICmps++;
return true;
}
void gather(Value *V) {
bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
SmallVector<Value *, 8> DFT;
SmallPtrSet<Value *, 8> Visited;
Visited.insert(V);
DFT.push_back(V);
while (!DFT.empty()) {
V = DFT.pop_back_val();
if (Instruction *I = dyn_cast<Instruction>(V)) {
Value *Op0, *Op1;
if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
: match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
if (Visited.insert(Op1).second)
DFT.push_back(Op1);
if (Visited.insert(Op0).second)
DFT.push_back(Op0);
continue;
}
if (matchInstruction(I, isEQ))
continue;
}
if (!Extra) {
Extra = V;
continue;
}
CompValue = nullptr;
break;
}
}
};
}
static void EraseTerminatorAndDCECond(Instruction *TI,
MemorySSAUpdater *MSSAU = nullptr) {
Instruction *Cond = nullptr;
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Cond = dyn_cast<Instruction>(SI->getCondition());
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional())
Cond = dyn_cast<Instruction>(BI->getCondition());
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
Cond = dyn_cast<Instruction>(IBI->getAddress());
}
TI->eraseFromParent();
if (Cond)
RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
}
Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
Value *CV = nullptr;
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
CV = SI->getCondition();
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
if (BI->isConditional() && BI->getCondition()->hasOneUse())
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
CV = ICI->getOperand(0);
}
if (CV) {
if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
Value *Ptr = PTII->getPointerOperand();
if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
CV = Ptr;
}
}
return CV;
}
BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Cases.reserve(SI->getNumCases());
for (auto Case : SI->cases())
Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
Case.getCaseSuccessor()));
return SI->getDefaultDest();
}
BranchInst *BI = cast<BranchInst>(TI);
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
Cases.push_back(ValueEqualityComparisonCase(
GetConstantInt(ICI->getOperand(1), DL), Succ));
return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}
static void
EliminateBlockCases(BasicBlock *BB,
std::vector<ValueEqualityComparisonCase> &Cases) {
llvm::erase_value(Cases, BB);
}
static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
std::vector<ValueEqualityComparisonCase> &C2) {
std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
if (V1->size() > V2->size())
std::swap(V1, V2);
if (V1->empty())
return false;
if (V1->size() == 1) {
ConstantInt *TheVal = (*V1)[0].Value;
for (unsigned i = 0, e = V2->size(); i != e; ++i)
if (TheVal == (*V2)[i].Value)
return true;
}
array_pod_sort(V1->begin(), V1->end());
array_pod_sort(V2->begin(), V2->end());
unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
while (i1 != e1 && i2 != e2) {
if ((*V1)[i1].Value == (*V2)[i2].Value)
return true;
if ((*V1)[i1].Value < (*V2)[i2].Value)
++i1;
else
++i2;
}
return false;
}
static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
MDNode *N = nullptr;
if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
SI->setMetadata(LLVMContext::MD_prof, N);
}
static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
uint32_t FalseWeight) {
assert(isa<BranchInst>(I) || isa<SelectInst>(I));
MDNode *N = nullptr;
if (TrueWeight || FalseWeight)
N = MDBuilder(I->getParent()->getContext())
.createBranchWeights(TrueWeight, FalseWeight);
I->setMetadata(LLVMContext::MD_prof, N);
}
bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
if (!PredVal)
return false;
Value *ThisVal = isValueEqualityComparison(TI);
assert(ThisVal && "This isn't a value comparison!!");
if (ThisVal != PredVal)
return false;
std::vector<ValueEqualityComparisonCase> PredCases;
BasicBlock *PredDef =
GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
EliminateBlockCases(PredDef, PredCases);
std::vector<ValueEqualityComparisonCase> ThisCases;
BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
EliminateBlockCases(ThisDef, ThisCases);
if (PredDef == TI->getParent()) {
if (!ValuesOverlap(PredCases, ThisCases))
return false;
if (isa<BranchInst>(TI)) {
assert(ThisCases.size() == 1 && "Branch can only have one case!");
Instruction *NI = Builder.CreateBr(ThisDef);
(void)NI;
ThisCases[0].Dest->removePredecessor(PredDef);
LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI
<< "\n");
EraseTerminatorAndDCECond(TI);
if (DTU)
DTU->applyUpdates(
{{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
return true;
}
SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
SmallPtrSet<Constant *, 16> DeadCases;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
DeadCases.insert(PredCases[i].Value);
LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI);
SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
--i;
auto *Successor = i->getCaseSuccessor();
if (DTU)
++NumPerSuccessorCases[Successor];
if (DeadCases.count(i->getCaseValue())) {
Successor->removePredecessor(PredDef);
SI.removeCase(i);
if (DTU)
--NumPerSuccessorCases[Successor];
}
}
if (DTU) {
std::vector<DominatorTree::UpdateType> Updates;
for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
if (I.second == 0)
Updates.push_back({DominatorTree::Delete, PredDef, I.first});
DTU->applyUpdates(Updates);
}
LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
return true;
}
ConstantInt *TIV = nullptr;
BasicBlock *TIBB = TI->getParent();
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].Dest == TIBB) {
if (TIV)
return false; TIV = PredCases[i].Value;
}
assert(TIV && "No edge from pred to succ?");
BasicBlock *TheRealDest = nullptr;
for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
if (ThisCases[i].Value == TIV) {
TheRealDest = ThisCases[i].Dest;
break;
}
if (!TheRealDest)
TheRealDest = ThisDef;
SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
BasicBlock *CheckEdge = TheRealDest;
for (BasicBlock *Succ : successors(TIBB))
if (Succ != CheckEdge) {
if (Succ != TheRealDest)
RemovedSuccs.insert(Succ);
Succ->removePredecessor(TIBB);
} else
CheckEdge = nullptr;
Instruction *NI = Builder.CreateBr(TheRealDest);
(void)NI;
LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI
<< "\n");
EraseTerminatorAndDCECond(TI);
if (DTU) {
SmallVector<DominatorTree::UpdateType, 2> Updates;
Updates.reserve(RemovedSuccs.size());
for (auto *RemovedSucc : RemovedSuccs)
Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
DTU->applyUpdates(Updates);
}
return true;
}
namespace {
struct ConstantIntOrdering {
bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
return LHS->getValue().ult(RHS->getValue());
}
};
}
static int ConstantIntSortPredicate(ConstantInt *const *P1,
ConstantInt *const *P2) {
const ConstantInt *LHS = *P1;
const ConstantInt *RHS = *P2;
if (LHS == RHS)
return 0;
return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
}
static inline bool HasBranchWeights(const Instruction *I) {
MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
if (ProfMD && ProfMD->getOperand(0))
if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
return MDS->getString().equals("branch_weights");
return false;
}
static void GetBranchWeights(Instruction *TI,
SmallVectorImpl<uint64_t> &Weights) {
MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
assert(MD);
for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
Weights.push_back(CI->getValue().getZExtValue());
}
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
assert(Weights.size() == 2);
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
std::swap(Weights.front(), Weights.back());
}
}
static void FitWeights(MutableArrayRef<uint64_t> Weights) {
uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
if (Max > UINT_MAX) {
unsigned Offset = 32 - countLeadingZeros(Max);
for (uint64_t &I : Weights)
I >>= Offset;
}
}
static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
Instruction *PTI = PredBlock->getTerminator();
for (Instruction &BonusInst : *BB) {
if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
continue;
Instruction *NewBonusInst = BonusInst.clone();
if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
NewBonusInst->setDebugLoc(DebugLoc());
}
RemapInstruction(NewBonusInst, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
VMap[&BonusInst] = NewBonusInst;
NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
LLVMContext::MD_annotation);
PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
NewBonusInst->takeName(&BonusInst);
BonusInst.setName(NewBonusInst->getName() + ".old");
for (Use &U : make_early_inc_range(BonusInst.uses())) {
auto *UI = cast<Instruction>(U.getUser());
auto *PN = dyn_cast<PHINode>(UI);
if (!PN) {
assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
"If the user is not a PHI node, then it should be in the same "
"block as, and come after, the original bonus instruction.");
continue; }
if (PN->getIncomingBlock(U) == BB)
continue; assert(PN->getIncomingBlock(U) == PredBlock &&
"Not in block-closed SSA form?");
U.set(NewBonusInst);
}
}
}
bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
BasicBlock *BB = TI->getParent();
BasicBlock *Pred = PTI->getParent();
SmallVector<DominatorTree::UpdateType, 32> Updates;
std::vector<ValueEqualityComparisonCase> BBCases;
BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
std::vector<ValueEqualityComparisonCase> PredCases;
BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
SmallVector<uint64_t, 8> Weights;
bool PredHasWeights = HasBranchWeights(PTI);
bool SuccHasWeights = HasBranchWeights(TI);
if (PredHasWeights) {
GetBranchWeights(PTI, Weights);
if (Weights.size() != 1 + PredCases.size())
PredHasWeights = SuccHasWeights = false;
} else if (SuccHasWeights)
Weights.assign(1 + PredCases.size(), 1);
SmallVector<uint64_t, 8> SuccWeights;
if (SuccHasWeights) {
GetBranchWeights(TI, SuccWeights);
if (SuccWeights.size() != 1 + BBCases.size())
PredHasWeights = SuccHasWeights = false;
} else if (PredHasWeights)
SuccWeights.assign(1 + BBCases.size(), 1);
if (PredDefault == BB) {
std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].Dest != BB)
PTIHandled.insert(PredCases[i].Value);
else {
std::swap(PredCases[i], PredCases.back());
if (PredHasWeights || SuccHasWeights) {
Weights[0] += Weights[i + 1];
std::swap(Weights[i + 1], Weights.back());
Weights.pop_back();
}
PredCases.pop_back();
--i;
--e;
}
if (PredDefault != BBDefault) {
PredDefault->removePredecessor(Pred);
if (DTU && PredDefault != BB)
Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
PredDefault = BBDefault;
++NewSuccessors[BBDefault];
}
unsigned CasesFromPred = Weights.size();
uint64_t ValidTotalSuccWeight = 0;
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
PredCases.push_back(BBCases[i]);
++NewSuccessors[BBCases[i].Dest];
if (SuccHasWeights || PredHasWeights) {
Weights.push_back(Weights[0] * SuccWeights[i + 1]);
ValidTotalSuccWeight += SuccWeights[i + 1];
}
}
if (SuccHasWeights || PredHasWeights) {
ValidTotalSuccWeight += SuccWeights[0];
for (unsigned i = 1; i < CasesFromPred; ++i)
Weights[i] *= ValidTotalSuccWeight;
Weights[0] *= SuccWeights[0];
}
} else {
std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
std::map<ConstantInt *, uint64_t> WeightsForHandled;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].Dest == BB) {
PTIHandled.insert(PredCases[i].Value);
if (PredHasWeights || SuccHasWeights) {
WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
std::swap(Weights[i + 1], Weights.back());
Weights.pop_back();
}
std::swap(PredCases[i], PredCases.back());
PredCases.pop_back();
--i;
--e;
}
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (PTIHandled.count(BBCases[i].Value)) {
if (PredHasWeights || SuccHasWeights)
Weights.push_back(WeightsForHandled[BBCases[i].Value]);
PredCases.push_back(BBCases[i]);
++NewSuccessors[BBCases[i].Dest];
PTIHandled.erase(BBCases[i].Value); }
for (ConstantInt *I : PTIHandled) {
if (PredHasWeights || SuccHasWeights)
Weights.push_back(WeightsForHandled[I]);
PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
++NewSuccessors[BBDefault];
}
}
SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
if (DTU) {
SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
Updates.reserve(Updates.size() + NewSuccessors.size());
}
for (const std::pair<BasicBlock *, int > &NewSuccessor :
NewSuccessors) {
for (auto I : seq(0, NewSuccessor.second)) {
(void)I;
AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
}
if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
}
Builder.SetInsertPoint(PTI);
if (CV->getType()->isPointerTy()) {
CV =
Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
}
SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
NewSI->setDebugLoc(PTI->getDebugLoc());
for (ValueEqualityComparisonCase &V : PredCases)
NewSI->addCase(V.Value, V.Dest);
if (PredHasWeights || SuccHasWeights) {
FitWeights(Weights);
SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
setBranchWeights(NewSI, MDWeights);
}
EraseTerminatorAndDCECond(PTI);
BasicBlock *InfLoopBlock = nullptr;
for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
if (NewSI->getSuccessor(i) == BB) {
if (!InfLoopBlock) {
InfLoopBlock =
BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
BranchInst::Create(InfLoopBlock, InfLoopBlock);
if (DTU)
Updates.push_back(
{DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
}
NewSI->setSuccessor(i, InfLoopBlock);
}
if (DTU) {
if (InfLoopBlock)
Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
Updates.push_back({DominatorTree::Delete, Pred, BB});
DTU->applyUpdates(Updates);
}
++NumFoldValueComparisonIntoPredecessors;
return true;
}
bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
IRBuilder<> &Builder) {
BasicBlock *BB = TI->getParent();
Value *CV = isValueEqualityComparison(TI); assert(CV && "Not a comparison?");
bool Changed = false;
SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
while (!Preds.empty()) {
BasicBlock *Pred = Preds.pop_back_val();
Instruction *PTI = Pred->getTerminator();
if (Pred == BB)
continue;
Value *PCV = isValueEqualityComparison(PTI); if (PCV != CV)
continue;
SmallSetVector<BasicBlock *, 4> FailBlocks;
if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
for (auto *Succ : FailBlocks) {
if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
return false;
}
}
PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
Changed = true;
}
return Changed;
}
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
Instruction *I1, Instruction *I2) {
for (BasicBlock *Succ : successors(BB1)) {
for (const PHINode &PN : Succ->phis()) {
Value *BB1V = PN.getIncomingValueForBlock(BB1);
Value *BB2V = PN.getIncomingValueForBlock(BB2);
if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
return false;
}
}
}
return true;
}
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
const TargetTransformInfo &TTI,
bool EqTermsOnly) {
BasicBlock *BB1 = BI->getSuccessor(0); BasicBlock *BB2 = BI->getSuccessor(1);
if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
return false;
BasicBlock::iterator BB1_Itr = BB1->begin();
BasicBlock::iterator BB2_Itr = BB2->begin();
Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
while (isa<DbgInfoIntrinsic>(I1))
I1 = &*BB1_Itr++;
while (isa<DbgInfoIntrinsic>(I2))
I2 = &*BB2_Itr++;
}
if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2))
return false;
BasicBlock *BIParent = BI->getParent();
bool Changed = false;
auto _ = make_scope_exit([&]() {
if (Changed)
++NumHoistCommonCode;
});
if (EqTermsOnly) {
auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
return false;
if (!I1NonDbg->isTerminator())
return false;
}
do {
if (I1->isTerminator())
goto HoistTerminator;
auto *C1 = dyn_cast<CallInst>(I1);
auto *C2 = dyn_cast<CallInst>(I2);
if (C1 && C2)
if (C1->isMustTailCall() != C2->isMustTailCall())
return Changed;
if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
return Changed;
if (const auto *CB1 = dyn_cast<CallBase>(I1))
if (CB1->cannotMerge())
return Changed;
if (const auto *CB2 = dyn_cast<CallBase>(I2))
if (CB2->cannotMerge())
return Changed;
if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
BIParent->getInstList().splice(BI->getIterator(),
BB1->getInstList(), I1);
BIParent->getInstList().splice(BI->getIterator(),
BB2->getInstList(), I2);
Changed = true;
} else {
BIParent->getInstList().splice(BI->getIterator(),
BB1->getInstList(), I1);
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
I1->andIRFlags(I2);
unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
LLVMContext::MD_range,
LLVMContext::MD_fpmath,
LLVMContext::MD_invariant_load,
LLVMContext::MD_nonnull,
LLVMContext::MD_invariant_group,
LLVMContext::MD_align,
LLVMContext::MD_dereferenceable,
LLVMContext::MD_dereferenceable_or_null,
LLVMContext::MD_mem_parallel_loop_access,
LLVMContext::MD_access_group,
LLVMContext::MD_preserve_access_index};
combineMetadata(I1, I2, KnownIDs, true);
I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
I2->eraseFromParent();
Changed = true;
}
++NumHoistCommonInstrs;
I1 = &*BB1_Itr++;
I2 = &*BB2_Itr++;
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
while (isa<DbgInfoIntrinsic>(I1))
I1 = &*BB1_Itr++;
while (isa<DbgInfoIntrinsic>(I2))
I2 = &*BB2_Itr++;
}
} while (I1->isIdenticalToWhenDefined(I2));
return true;
HoistTerminator:
if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
return Changed;
if (isa<CallBrInst>(I1))
return Changed;
for (BasicBlock *Succ : successors(BB1)) {
for (PHINode &PN : Succ->phis()) {
Value *BB1V = PN.getIncomingValueForBlock(BB1);
Value *BB2V = PN.getIncomingValueForBlock(BB2);
if (BB1V == BB2V)
continue;
if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
passingValueIsAlwaysUndefined(BB2V, &PN))
return Changed;
}
}
Instruction *NT = I1->clone();
BIParent->getInstList().insert(BI->getIterator(), NT);
if (!NT->getType()->isVoidTy()) {
I1->replaceAllUsesWith(NT);
I2->replaceAllUsesWith(NT);
NT->takeName(I1);
}
Changed = true;
++NumHoistCommonInstrs;
NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
IRBuilder<NoFolder> Builder(NT);
std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
for (BasicBlock *Succ : successors(BB1)) {
for (PHINode &PN : Succ->phis()) {
Value *BB1V = PN.getIncomingValueForBlock(BB1);
Value *BB2V = PN.getIncomingValueForBlock(BB2);
if (BB1V == BB2V)
continue;
SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
if (!SI) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
if (isa<FPMathOperator>(PN))
Builder.setFastMathFlags(PN.getFastMathFlags());
SI = cast<SelectInst>(
Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
BB1V->getName() + "." + BB2V->getName(), BI));
}
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
PN.setIncomingValue(i, SI);
}
}
SmallVector<DominatorTree::UpdateType, 4> Updates;
for (BasicBlock *Succ : successors(BB1)) {
AddPredecessorToBlock(Succ, BIParent, BB1);
if (DTU)
Updates.push_back({DominatorTree::Insert, BIParent, Succ});
}
if (DTU)
for (BasicBlock *Succ : successors(BI))
Updates.push_back({DominatorTree::Delete, BIParent, Succ});
EraseTerminatorAndDCECond(BI);
if (DTU)
DTU->applyUpdates(Updates);
return Changed;
}
static bool isLifeTimeMarker(const Instruction *I) {
if (auto II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default:
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
return true;
}
}
return false;
}
static bool replacingOperandWithVariableIsCheap(const Instruction *I,
int OpIdx) {
return !isa<IntrinsicInst>(I);
}
static bool canSinkInstructions(
ArrayRef<Instruction *> Insts,
DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
bool HasUse = !Insts.front()->user_empty();
for (auto *I : Insts) {
if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
I->getType()->isTokenTy())
return false;
if (I->getParent()->getSingleSuccessor() == I->getParent())
return false;
if (const auto *C = dyn_cast<CallBase>(I))
if (C->isInlineAsm() || C->cannotMerge())
return false;
if (HasUse && !I->hasOneUse())
return false;
if (!HasUse && !I->user_empty())
return false;
}
const Instruction *I0 = Insts.front();
for (auto *I : Insts)
if (!I->isSameOperationAs(I0))
return false;
if (HasUse) {
auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
auto *U = cast<Instruction>(*I->user_begin());
return (PNUse &&
PNUse->getParent() == Succ &&
PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
U->getParent() == I->getParent();
}))
return false;
}
if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
}))
return false;
if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
}))
return false;
if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
}))
return false;
if (isa<CallBase>(I0)) {
auto IsIndirectCall = [](const Instruction *I) {
return cast<CallBase>(I)->isIndirectCall();
};
bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
if (HaveIndirectCalls) {
if (!AllCallsAreIndirect)
return false;
} else {
Value *Callee = nullptr;
for (const Instruction *I : Insts) {
Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
if (!Callee)
Callee = CurrCallee;
else if (Callee != CurrCallee)
return false;
}
}
}
for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
Value *Op = I0->getOperand(OI);
if (Op->getType()->isTokenTy())
return false;
auto SameAsI0 = [&I0, OI](const Instruction *I) {
assert(I->getNumOperands() == I0->getNumOperands());
return I->getOperand(OI) == I0->getOperand(OI);
};
if (!all_of(Insts, SameAsI0)) {
if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
!canReplaceOperandWithVariable(I0, OI))
return false;
for (auto *I : Insts)
PHIOperands[I].push_back(I->getOperand(OI));
}
}
return true;
}
static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
SmallVector<Instruction*,4> Insts;
for (auto *BB : Blocks) {
Instruction *I = BB->getTerminator();
do {
I = I->getPrevNode();
} while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
if (!isa<DbgInfoIntrinsic>(I))
Insts.push_back(I);
}
Instruction *I0 = Insts.front();
if (!I0->user_empty()) {
auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
auto *U = cast<Instruction>(*I->user_begin());
return U == PNUse;
}))
return false;
}
SmallVector<Value*, 4> NewOperands;
for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
return I->getOperand(O) != I0->getOperand(O);
});
if (!NeedPHI) {
NewOperands.push_back(I0->getOperand(O));
continue;
}
auto *Op = I0->getOperand(O);
assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
auto *PN = PHINode::Create(Op->getType(), Insts.size(),
Op->getName() + ".sink", &BBEnd->front());
for (auto *I : Insts)
PN->addIncoming(I->getOperand(O), I->getParent());
NewOperands.push_back(PN);
}
for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
I0->getOperandUse(O).set(NewOperands[O]);
I0->moveBefore(&*BBEnd->getFirstInsertionPt());
for (auto *I : Insts)
if (I != I0) {
I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
combineMetadataForCSE(I0, I, true);
I0->andIRFlags(I);
}
if (!I0->user_empty()) {
auto *PN = cast<PHINode>(*I0->user_begin());
PN->replaceAllUsesWith(I0);
PN->eraseFromParent();
}
for (auto *I : Insts)
if (I != I0)
I->eraseFromParent();
return true;
}
namespace {
class LockstepReverseIterator {
ArrayRef<BasicBlock*> Blocks;
SmallVector<Instruction*,4> Insts;
bool Fail;
public:
LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
reset();
}
void reset() {
Fail = false;
Insts.clear();
for (auto *BB : Blocks) {
Instruction *Inst = BB->getTerminator();
for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
Inst = Inst->getPrevNode();
if (!Inst) {
Fail = true;
return;
}
Insts.push_back(Inst);
}
}
bool isValid() const {
return !Fail;
}
void operator--() {
if (Fail)
return;
for (auto *&Inst : Insts) {
for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
Inst = Inst->getPrevNode();
if (!Inst) {
Fail = true;
return;
}
}
}
void operator++() {
if (Fail)
return;
for (auto *&Inst : Insts) {
for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
Inst = Inst->getNextNode();
if (!Inst) {
Fail = true;
return;
}
}
}
ArrayRef<Instruction*> operator * () const {
return Insts;
}
};
}
static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
DomTreeUpdater *DTU) {
SmallVector<BasicBlock*,4> UnconditionalPreds;
bool HaveNonUnconditionalPredecessors = false;
for (auto *PredBB : predecessors(BB)) {
auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
if (PredBr && PredBr->isUnconditional())
UnconditionalPreds.push_back(PredBB);
else
HaveNonUnconditionalPredecessors = true;
}
if (UnconditionalPreds.size() < 2)
return false;
int ScanIdx = 0;
SmallPtrSet<Value*,4> InstructionsToSink;
DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
LockstepReverseIterator LRI(UnconditionalPreds);
while (LRI.isValid() &&
canSinkInstructions(*LRI, PHIOperands)) {
LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
<< "\n");
InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
++ScanIdx;
--LRI;
}
if (ScanIdx == 0)
return false;
bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
if (!followedByDeoptOrUnreachable) {
auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
unsigned NumPHIdValues = 0;
for (auto *I : *LRI)
for (auto *V : PHIOperands[I]) {
if (!InstructionsToSink.contains(V))
++NumPHIdValues;
}
LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
NumPHIInsts++;
return NumPHIInsts <= 1;
};
LRI.reset();
int Idx = 0;
SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
while (Idx < ScanIdx) {
if (!ProfitableToSinkInstruction(LRI)) {
LLVM_DEBUG(
dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
break;
}
InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
--LRI;
++Idx;
}
if (Idx == 0)
return false;
if (Idx < ScanIdx) {
ScanIdx = Idx;
InstructionsToSink = InstructionsProfitableToSink;
assert(
!ProfitableToSinkInstruction(LRI) &&
"We already know that the last instruction is unprofitable to sink");
++LRI;
--Idx;
while (Idx >= 0) {
for (auto *I : *LRI)
InstructionsProfitableToSink.erase(I);
if (!ProfitableToSinkInstruction(LRI)) {
ScanIdx = Idx;
InstructionsToSink = InstructionsProfitableToSink;
}
++LRI;
--Idx;
}
}
if (ScanIdx == 0)
return false;
}
bool Changed = false;
if (HaveNonUnconditionalPredecessors) {
if (!followedByDeoptOrUnreachable) {
LRI.reset();
int Idx = 0;
bool Profitable = false;
while (Idx < ScanIdx) {
if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
Profitable = true;
break;
}
--LRI;
++Idx;
}
if (!Profitable)
return false;
}
LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
return false;
Changed = true;
}
int SinkIdx = 0;
for (; SinkIdx != ScanIdx; ++SinkIdx) {
LLVM_DEBUG(dbgs() << "SINK: Sink: "
<< *UnconditionalPreds[0]->getTerminator()->getPrevNode()
<< "\n");
LRI.reset();
if (!sinkLastInstruction(UnconditionalPreds)) {
LLVM_DEBUG(
dbgs()
<< "SINK: stopping here, failed to actually sink instruction!\n");
break;
}
NumSinkCommonInstrs++;
Changed = true;
}
if (SinkIdx != 0)
++NumSinkCommonCode;
return Changed;
}
namespace {
struct CompatibleSets {
using SetTy = SmallVector<InvokeInst *, 2>;
SmallVector<SetTy, 1> Sets;
static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
SetTy &getCompatibleSet(InvokeInst *II);
void insert(InvokeInst *II);
};
CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
for (CompatibleSets::SetTy &Set : Sets) {
if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
return Set;
}
return Sets.emplace_back();
}
void CompatibleSets::insert(InvokeInst *II) {
getCompatibleSet(II).emplace_back(II);
}
bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
auto IsIllegalToMerge = [](InvokeInst *II) {
return II->cannotMerge() || II->isInlineAsm();
};
if (any_of(Invokes, IsIllegalToMerge))
return false;
auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
if (HaveIndirectCalls) {
if (!AllCallsAreIndirect)
return false;
} else {
Value *Callee = nullptr;
for (InvokeInst *II : Invokes) {
Value *CurrCallee = II->getCalledOperand();
assert(CurrCallee && "There is always a called operand.");
if (!Callee)
Callee = CurrCallee;
else if (Callee != CurrCallee)
return false;
}
}
auto HasNormalDest = [](InvokeInst *II) {
return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
};
if (any_of(Invokes, HasNormalDest)) {
if (!all_of(Invokes, HasNormalDest))
return false;
BasicBlock *NormalBB = nullptr;
for (InvokeInst *II : Invokes) {
BasicBlock *CurrNormalBB = II->getNormalDest();
assert(CurrNormalBB && "There is always a 'continue to' basic block.");
if (!NormalBB)
NormalBB = CurrNormalBB;
else if (NormalBB != CurrNormalBB)
return false;
}
SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
if (!IncomingValuesAreCompatible(
NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
&EquivalenceSet))
return false;
}
#ifndef NDEBUG
BasicBlock *UnwindBB = nullptr;
for (InvokeInst *II : Invokes) {
BasicBlock *CurrUnwindBB = II->getUnwindDest();
assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
if (!UnwindBB)
UnwindBB = CurrUnwindBB;
else
assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
}
#endif
if (!IncomingValuesAreCompatible(
Invokes.front()->getUnwindDest(),
{Invokes[0]->getParent(), Invokes[1]->getParent()}))
return false;
const InvokeInst *II0 = Invokes.front();
for (auto *II : Invokes.drop_front())
if (!II->isSameOperationAs(II0))
return false;
auto IsIllegalToMergeArguments = [](auto Ops) {
Type *Ty = std::get<0>(Ops)->getType();
assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
};
assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
IsIllegalToMergeArguments))
return false;
return true;
}
}
static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
DomTreeUpdater *DTU) {
assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
SmallVector<DominatorTree::UpdateType, 8> Updates;
if (DTU)
Updates.reserve(2 + 3 * Invokes.size());
bool HasNormalDest =
!isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
InvokeInst *II0 = Invokes.front();
BasicBlock *II0BB = II0->getParent();
BasicBlock *InsertBeforeBlock =
II0->getParent()->getIterator()->getNextNode();
Function *Func = II0BB->getParent();
LLVMContext &Ctx = II0->getContext();
BasicBlock *MergedInvokeBB = BasicBlock::Create(
Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
auto *MergedInvoke = cast<InvokeInst>(II0->clone());
MergedInvokeBB->getInstList().push_back(MergedInvoke);
if (!HasNormalDest) {
BasicBlock *MergedNormalDest = BasicBlock::Create(
Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
new UnreachableInst(Ctx, MergedNormalDest);
MergedInvoke->setNormalDest(MergedNormalDest);
}
return MergedInvoke;
}();
if (DTU) {
for (InvokeInst *II : Invokes)
Updates.push_back(
{DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
SuccBBOfMergedInvoke});
for (InvokeInst *II : Invokes)
for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
Updates.push_back(
{DominatorTree::Delete, II->getParent(), SuccOfPredBB});
}
bool IsIndirectCall = Invokes[0]->isIndirectCall();
for (Use &U : MergedInvoke->operands()) {
if (MergedInvoke->isCallee(&U)) {
if (!IsIndirectCall)
continue;
} else if (!MergedInvoke->isDataOperand(&U))
continue;
bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
return II->getOperand(U.getOperandNo()) != U.get();
});
if (!NeedPHI)
continue;
PHINode *PN = PHINode::Create(
U->getType(), Invokes.size(), "", MergedInvoke);
for (InvokeInst *II : Invokes)
PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
U.set(PN);
}
for (BasicBlock *Succ : successors(MergedInvoke))
AddPredecessorToBlock(Succ, MergedInvoke->getParent(),
Invokes.front()->getParent());
const DILocation *MergedDebugLoc = nullptr;
for (InvokeInst *II : Invokes) {
if (!MergedDebugLoc)
MergedDebugLoc = II->getDebugLoc();
else
MergedDebugLoc =
DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
for (BasicBlock *OrigSuccBB : successors(II->getParent()))
OrigSuccBB->removePredecessor(II->getParent());
BranchInst::Create(MergedInvoke->getParent(), II->getParent());
II->replaceAllUsesWith(MergedInvoke);
II->eraseFromParent();
++NumInvokesMerged;
}
MergedInvoke->setDebugLoc(MergedDebugLoc);
++NumInvokeSetsFormed;
if (DTU)
DTU->applyUpdates(Updates);
}
static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
if (!EnableMergeCompatibleInvokes)
return false;
bool Changed = false;
if (!BB->isLandingPad())
return Changed;
CompatibleSets Grouper;
for (BasicBlock *PredBB : predecessors(BB))
Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
if (Invokes.size() < 2)
continue;
Changed = true;
MergeCompatibleInvokesImpl(Invokes, DTU);
}
return Changed;
}
static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
BasicBlock *StoreBB, BasicBlock *EndBB) {
StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
if (!StoreToHoist)
return nullptr;
if (!StoreToHoist->isSimple())
return nullptr;
Value *StorePtr = StoreToHoist->getPointerOperand();
Type *StoreTy = StoreToHoist->getValueOperand()->getType();
unsigned MaxNumInstToLookAt = 9;
for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
if (!MaxNumInstToLookAt)
break;
--MaxNumInstToLookAt;
if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
return nullptr;
if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
if (SI->getPointerOperand() == StorePtr &&
SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
return SI->getValueOperand();
return nullptr; }
if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
LI->isSimple()) {
auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
if (AI && !PointerMayBeCaptured(AI, false, true))
return LI;
}
}
}
return nullptr;
}
static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
BasicBlock *EndBB,
unsigned &SpeculatedInstructions,
InstructionCost &Cost,
const TargetTransformInfo &TTI) {
TargetTransformInfo::TargetCostKind CostKind =
BB->getParent()->hasMinSize()
? TargetTransformInfo::TCK_CodeSize
: TargetTransformInfo::TCK_SizeAndLatency;
bool HaveRewritablePHIs = false;
for (PHINode &PN : EndBB->phis()) {
Value *OrigV = PN.getIncomingValueForBlock(BB);
Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
if (ThenV == OrigV)
continue;
Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
passingValueIsAlwaysUndefined(ThenV, &PN))
return false;
HaveRewritablePHIs = true;
ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
if (!OrigCE && !ThenCE)
continue;
InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
InstructionCost MaxCost =
2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
if (OrigCost + ThenCost > MaxCost)
return false;
++SpeculatedInstructions;
if (SpeculatedInstructions > 1)
return false;
}
return HaveRewritablePHIs;
}
bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
const TargetTransformInfo &TTI) {
Value *BrCond = BI->getCondition();
if (isa<FCmpInst>(BrCond))
return false;
BasicBlock *BB = BI->getParent();
BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
InstructionCost Budget =
PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
bool Invert = false;
if (ThenBB != BI->getSuccessor(0)) {
assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
Invert = true;
}
assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
uint64_t TWeight, FWeight;
if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
uint64_t EndWeight = Invert ? TWeight : FWeight;
BranchProbability BIEndProb =
BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
BranchProbability Likely = TTI.getPredictableBranchThreshold();
if (BIEndProb >= Likely)
return false;
}
}
SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
unsigned SpeculatedInstructions = 0;
Value *SpeculatedStoreValue = nullptr;
StoreInst *SpeculatedStore = nullptr;
for (BasicBlock::iterator BBI = ThenBB->begin(),
BBE = std::prev(ThenBB->end());
BBI != BBE; ++BBI) {
Instruction *I = &*BBI;
if (isa<DbgInfoIntrinsic>(I)) {
SpeculatedDbgIntrinsics.push_back(I);
continue;
}
if (isa<PseudoProbeInst>(I)) {
SpeculatedDbgIntrinsics.push_back(I);
continue;
}
++SpeculatedInstructions;
if (SpeculatedInstructions > 1)
return false;
if (!isSafeToSpeculativelyExecute(I) &&
!(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
I, BB, ThenBB, EndBB))))
return false;
if (!SpeculatedStoreValue &&
computeSpeculationCost(I, TTI) >
PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
return false;
if (SpeculatedStoreValue)
SpeculatedStore = cast<StoreInst>(I);
for (Use &Op : I->operands()) {
Instruction *OpI = dyn_cast<Instruction>(Op);
if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
continue;
++SinkCandidateUseCounts[OpI];
}
}
for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
I = SinkCandidateUseCounts.begin(),
E = SinkCandidateUseCounts.end();
I != E; ++I)
if (I->first->hasNUses(I->second)) {
++SpeculatedInstructions;
if (SpeculatedInstructions > 1)
return false;
}
bool Convert = SpeculatedStore != nullptr;
InstructionCost Cost = 0;
Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
SpeculatedInstructions,
Cost, TTI);
if (!Convert || Cost > Budget)
return false;
LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
if (SpeculatedStoreValue) {
IRBuilder<NoFolder> Builder(BI);
Value *TrueV = SpeculatedStore->getValueOperand();
Value *FalseV = SpeculatedStoreValue;
if (Invert)
std::swap(TrueV, FalseV);
Value *S = Builder.CreateSelect(
BrCond, TrueV, FalseV, "spec.store.select", BI);
SpeculatedStore->setOperand(0, S);
SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
SpeculatedStore->getDebugLoc());
}
for (auto &I : *ThenBB) {
if (!SpeculatedStoreValue || &I != SpeculatedStore)
I.setDebugLoc(DebugLoc());
I.dropUndefImplyingAttrsAndUnknownMetadata();
}
BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
ThenBB->begin(), std::prev(ThenBB->end()));
IRBuilder<NoFolder> Builder(BI);
for (PHINode &PN : EndBB->phis()) {
unsigned OrigI = PN.getBasicBlockIndex(BB);
unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
Value *OrigV = PN.getIncomingValue(OrigI);
Value *ThenV = PN.getIncomingValue(ThenI);
if (OrigV == ThenV)
continue;
Value *TrueV = ThenV, *FalseV = OrigV;
if (Invert)
std::swap(TrueV, FalseV);
Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
PN.setIncomingValue(OrigI, V);
PN.setIncomingValue(ThenI, V);
}
for (Instruction *I : SpeculatedDbgIntrinsics)
I->eraseFromParent();
++NumSpeculations;
return true;
}
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
int Size = 0;
SmallPtrSet<const Value *, 32> EphValues;
auto IsEphemeral = [&](const Instruction *I) {
if (isa<AssumeInst>(I))
return true;
return !I->mayHaveSideEffects() && !I->isTerminator() &&
all_of(I->users(),
[&](const User *U) { return EphValues.count(U); });
};
for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
if (CallInst *CI = dyn_cast<CallInst>(&I))
if (CI->cannotDuplicate() || CI->isConvergent())
return false;
if (IsEphemeral(&I))
EphValues.insert(&I);
else if (!isa<PHINode>(I)) {
if (Size++ > MaxSmallBlockSize)
return false; }
for (User *U : I.users()) {
Instruction *UI = cast<Instruction>(U);
if (UI->getParent() != BB || isa<PHINode>(UI))
return false;
}
}
return true;
}
static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
BasicBlock *To) {
auto *I = dyn_cast<Instruction>(V);
if (I && I->getParent() == To)
return nullptr;
auto *BI = dyn_cast<BranchInst>(From->getTerminator());
if (BI && BI->isConditional() && BI->getCondition() == V &&
BI->getSuccessor(0) != BI->getSuccessor(1))
return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
: ConstantInt::getFalse(BI->getContext());
return nullptr;
}
static Optional<bool>
FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
const DataLayout &DL,
AssumptionCache *AC) {
SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
BasicBlock *BB = BI->getParent();
Value *Cond = BI->getCondition();
PHINode *PN = dyn_cast<PHINode>(Cond);
if (PN && PN->getParent() == BB) {
if (PN->getNumIncomingValues() == 1) {
FoldSingleEntryPHINodes(PN->getParent());
return true;
}
for (Use &U : PN->incoming_values())
if (auto *CB = dyn_cast<ConstantInt>(U))
KnownValues[CB].insert(PN->getIncomingBlock(U));
} else {
for (BasicBlock *Pred : predecessors(BB)) {
if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
KnownValues[CB].insert(Pred);
}
}
if (KnownValues.empty())
return false;
if (!BlockIsSimpleEnoughToThreadThrough(BB))
return false;
for (const auto &Pair : KnownValues) {
ConstantInt *CB = Pair.first;
ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
if (RealDest == BB)
continue;
if (any_of(PredBBs, [](BasicBlock *PredBB) {
return isa<IndirectBrInst>(PredBB->getTerminator());
}))
continue;
LLVM_DEBUG({
dbgs() << "Condition " << *Cond << " in " << BB->getName()
<< " has value " << *Pair.first << " in predecessors:\n";
for (const BasicBlock *PredBB : Pair.second)
dbgs() << " " << PredBB->getName() << "\n";
dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
});
BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
EdgeBB->setName(RealDest->getName() + ".critedge");
EdgeBB->moveBefore(RealDest);
AddPredecessorToBlock(RealDest, EdgeBB, BB);
BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
DenseMap<Value *, Value *> TranslateMap; TranslateMap[Cond] = CB;
for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
continue;
}
Instruction *N = BBI->clone();
if (BBI->hasName())
N->setName(BBI->getName() + ".c");
for (Use &Op : N->operands()) {
DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
if (PI != TranslateMap.end())
Op = PI->second;
}
if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
if (!BBI->use_empty())
TranslateMap[&*BBI] = V;
if (!N->mayHaveSideEffects()) {
N->deleteValue(); N = nullptr;
}
} else {
if (!BBI->use_empty())
TranslateMap[&*BBI] = N;
}
if (N) {
EdgeBB->getInstList().insert(InsertPt, N);
if (auto *Assume = dyn_cast<AssumeInst>(N))
if (AC)
AC->registerAssumption(Assume);
}
}
BB->removePredecessor(EdgeBB);
BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
EdgeBI->setSuccessor(0, RealDest);
EdgeBI->setDebugLoc(BI->getDebugLoc());
if (DTU) {
SmallVector<DominatorTree::UpdateType, 2> Updates;
Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
DTU->applyUpdates(Updates);
}
MergeBlockIntoPredecessor(EdgeBB, DTU);
return None;
}
return false;
}
static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
DomTreeUpdater *DTU,
const DataLayout &DL,
AssumptionCache *AC) {
Optional<bool> Result;
bool EverChanged = false;
do {
Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
EverChanged |= Result == None || *Result;
} while (Result == None);
return EverChanged;
}
static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
DomTreeUpdater *DTU, const DataLayout &DL) {
BasicBlock *BB = PN->getParent();
BasicBlock *IfTrue, *IfFalse;
BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
if (!DomBI)
return false;
Value *IfCond = DomBI->getCondition();
if (isa<ConstantInt>(IfCond))
return false;
BasicBlock *DomBlock = DomBI->getParent();
SmallVector<BasicBlock *, 2> IfBlocks;
llvm::copy_if(
PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
});
assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
"Will have either one or two blocks to speculate.");
if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
uint64_t TWeight, FWeight;
if (DomBI->extractProfMetadata(TWeight, FWeight) &&
(TWeight + FWeight) != 0) {
BranchProbability BITrueProb =
BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
BranchProbability Likely = TTI.getPredictableBranchThreshold();
BranchProbability BIFalseProb = BITrueProb.getCompl();
if (IfBlocks.size() == 1) {
BranchProbability BIBBProb =
DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
if (BIBBProb >= Likely)
return false;
} else {
if (BITrueProb >= Likely || BIFalseProb >= Likely)
return false;
}
}
}
if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
if (IfCondPhiInst->getParent() == BB)
return false;
unsigned NumPhis = 0;
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
if (NumPhis > 2)
return false;
SmallPtrSet<Instruction *, 4> AggressiveInsts;
InstructionCost Cost = 0;
InstructionCost Budget =
TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
bool Changed = false;
for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
PHINode *PN = cast<PHINode>(II++);
if (Value *V = simplifyInstruction(PN, {DL, PN})) {
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
Changed = true;
continue;
}
if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
Cost, Budget, TTI) ||
!dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
Cost, Budget, TTI))
return Changed;
}
PN = dyn_cast<PHINode>(BB->begin());
if (!PN)
return true;
auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
if (!match(V0, m_Not(m_Value())))
std::swap(V0, V1);
auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
return match(V0, m_Not(m_Value())) && match(V1, Invertible);
};
auto IsBinOpOrAnd = [](Value *V) {
return match(
V, m_CombineOr(
m_BinOp(),
m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
m_Select(m_Value(), m_Value(), m_ImmConstant()))));
};
if (PN->getType()->isIntegerTy(1) &&
(IsBinOpOrAnd(PN->getIncomingValue(0)) ||
IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
!CanHoistNotFromBothValues(PN->getIncomingValue(0),
PN->getIncomingValue(1)))
return Changed;
for (BasicBlock *IfBlock : IfBlocks)
for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
return Changed;
}
if (any_of(IfBlocks,
[](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
return Changed;
LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
<< " T: " << IfTrue->getName()
<< " F: " << IfFalse->getName() << "\n");
for (BasicBlock *IfBlock : IfBlocks)
hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
IRBuilder<NoFolder> Builder(DomBI);
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
if (isa<FPMathOperator>(PN))
Builder.setFastMathFlags(PN->getFastMathFlags());
Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
PN->replaceAllUsesWith(Sel);
Sel->takeName(PN);
PN->eraseFromParent();
}
Builder.CreateBr(BB);
SmallVector<DominatorTree::UpdateType, 3> Updates;
if (DTU) {
Updates.push_back({DominatorTree::Insert, DomBlock, BB});
for (auto *Successor : successors(DomBlock))
Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
}
DomBI->eraseFromParent();
if (DTU)
DTU->applyUpdates(Updates);
return true;
}
static Value *createLogicalOp(IRBuilderBase &Builder,
Instruction::BinaryOps Opc, Value *LHS,
Value *RHS, const Twine &Name = "") {
if (impliesPoison(RHS, LHS))
return Builder.CreateBinOp(Opc, LHS, RHS, Name);
if (Opc == Instruction::And)
return Builder.CreateLogicalAnd(LHS, RHS, Name);
if (Opc == Instruction::Or)
return Builder.CreateLogicalOr(LHS, RHS, Name);
llvm_unreachable("Invalid logical opcode");
}
static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
uint64_t &PredTrueWeight,
uint64_t &PredFalseWeight,
uint64_t &SuccTrueWeight,
uint64_t &SuccFalseWeight) {
bool PredHasWeights =
PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
bool SuccHasWeights =
BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
if (PredHasWeights || SuccHasWeights) {
if (!PredHasWeights)
PredTrueWeight = PredFalseWeight = 1;
if (!SuccHasWeights)
SuccTrueWeight = SuccFalseWeight = 1;
return true;
} else {
return false;
}
}
static Optional<std::pair<Instruction::BinaryOps, bool>>
shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
const TargetTransformInfo *TTI) {
assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
"Both blocks must end with a conditional branches.");
assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
"PredBB must be a predecessor of BB.");
uint64_t PTWeight, PFWeight;
BranchProbability PBITrueProb, Likely;
if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
PBI->extractProfMetadata(PTWeight, PFWeight) &&
(PTWeight + PFWeight) != 0) {
PBITrueProb =
BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
Likely = TTI->getPredictableBranchThreshold();
}
if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
return {{Instruction::Or, false}};
} else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
return {{Instruction::And, false}};
} else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
return {{Instruction::And, true}};
} else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
return {{Instruction::Or, true}};
}
return None;
}
static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
DomTreeUpdater *DTU,
MemorySSAUpdater *MSSAU,
const TargetTransformInfo *TTI) {
BasicBlock *BB = BI->getParent();
BasicBlock *PredBlock = PBI->getParent();
Instruction::BinaryOps Opc;
bool InvertPredCond;
std::tie(Opc, InvertPredCond) =
*shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
IRBuilder<> Builder(PBI);
Builder.CollectMetadataToCopy(BB->getTerminator(),
{LLVMContext::MD_annotation});
if (InvertPredCond) {
Value *NewCond = PBI->getCondition();
if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
CmpInst *CI = cast<CmpInst>(NewCond);
CI->setPredicate(CI->getInversePredicate());
} else {
NewCond =
Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
}
PBI->setCondition(NewCond);
PBI->swapSuccessors();
}
BasicBlock *UniqueSucc =
PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
SuccTrueWeight, SuccFalseWeight)) {
SmallVector<uint64_t, 8> NewWeights;
if (PBI->getSuccessor(0) == BB) {
NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
NewWeights.push_back(PredFalseWeight *
(SuccFalseWeight + SuccTrueWeight) +
PredTrueWeight * SuccFalseWeight);
} else {
NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
PredFalseWeight * SuccTrueWeight);
NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
}
FitWeights(NewWeights);
SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
} else
PBI->setMetadata(LLVMContext::MD_prof, nullptr);
PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
if (DTU)
DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
{DominatorTree::Delete, PredBlock, BB}});
if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
ValueToValueMapTy VMap; CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
Value *BICond = VMap[BI->getCondition()];
PBI->setCondition(
createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
for (Instruction &I : *BB) {
if (isa<DbgInfoIntrinsic>(I)) {
Instruction *NewI = I.clone();
RemapInstruction(NewI, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
NewI->insertBefore(PBI);
}
}
++NumFoldBranchToCommonDest;
return true;
}
static bool isVectorOp(Instruction &I) {
return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
return U->getType()->isVectorTy();
});
}
bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
MemorySSAUpdater *MSSAU,
const TargetTransformInfo *TTI,
unsigned BonusInstThreshold) {
if (!BI->isConditional())
return false;
BasicBlock *BB = BI->getParent();
TargetTransformInfo::TargetCostKind CostKind =
BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
: TargetTransformInfo::TCK_SizeAndLatency;
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
if (!Cond ||
(!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
!isa<SelectInst>(Cond)) ||
Cond->getParent() != BB || !Cond->hasOneUse())
return false;
if (is_contained(successors(BB), BB))
return false;
SmallVector<BasicBlock *, 8> Preds;
for (BasicBlock *PredBlock : predecessors(BB)) {
BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
continue;
Instruction::BinaryOps Opc;
bool InvertPredCond;
if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
std::tie(Opc, InvertPredCond) = *Recipe;
else
continue;
if (TTI) {
Type *Ty = BI->getCondition()->getType();
InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
!isa<CmpInst>(PBI->getCondition())))
Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
if (Cost > BranchFoldThreshold)
continue;
}
Preds.emplace_back(PredBlock);
}
if (Preds.empty())
return false;
unsigned NumBonusInsts = 0;
bool SawVectorOp = false;
const unsigned PredCount = Preds.size();
for (Instruction &I : *BB) {
if (&I == Cond)
continue;
if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
continue;
if (!isSafeToSpeculativelyExecute(&I))
return false;
SawVectorOp |= isVectorOp(I);
if (!TTI ||
TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
NumBonusInsts += PredCount;
if (NumBonusInsts >
BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
return false;
}
auto IsBCSSAUse = [BB, &I](Use &U) {
auto *UI = cast<Instruction>(U.getUser());
if (auto *PN = dyn_cast<PHINode>(UI))
return PN->getIncomingBlock(U) == BB;
return UI->getParent() == BB && I.comesBefore(UI);
};
if (!all_of(I.uses(), IsBCSSAUse))
return false;
}
if (NumBonusInsts >
BonusInstThreshold *
(SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
return false;
for (BasicBlock *PredBlock : Preds) {
auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
}
return false;
}
static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
StoreInst *S = nullptr;
for (auto *BB : {BB1, BB2}) {
if (!BB)
continue;
for (auto &I : *BB)
if (auto *SI = dyn_cast<StoreInst>(&I)) {
if (S)
return nullptr;
else
S = SI;
}
}
return S;
}
static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
Value *AlternativeV = nullptr) {
PHINode *PHI = nullptr;
BasicBlock *Succ = BB->getSingleSuccessor();
for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
PHI = cast<PHINode>(I);
if (!AlternativeV)
break;
assert(Succ->hasNPredecessors(2));
auto PredI = pred_begin(Succ);
BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
break;
PHI = nullptr;
}
if (PHI)
return PHI;
if (!AlternativeV &&
(!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
return V;
PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
PHI->addIncoming(V, BB);
for (BasicBlock *PredBB : predecessors(Succ))
if (PredBB != BB)
PHI->addIncoming(
AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
return PHI;
}
static bool mergeConditionalStoreToAddress(
BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
if (!PStore || !QStore)
return false;
if (!QStore->isUnordered() || !PStore->isUnordered() ||
PStore->getValueOperand()->getType() !=
QStore->getValueOperand()->getType())
return false;
for (auto &I : *QFB->getSinglePredecessor())
if (I.mayReadOrWriteMemory())
return false;
for (auto &I : *QFB)
if (&I != QStore && I.mayReadOrWriteMemory())
return false;
if (QTB)
for (auto &I : *QTB)
if (&I != QStore && I.mayReadOrWriteMemory())
return false;
for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
I != E; ++I)
if (&*I != PStore && I->mayReadOrWriteMemory())
return false;
auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
if (!BB)
return true;
InstructionCost Cost = 0;
InstructionCost Budget =
PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
for (auto &I : BB->instructionsWithoutDebug(false)) {
if (I.isTerminator())
continue;
if (auto *S = dyn_cast<StoreInst>(&I))
if (llvm::find(FreeStores, S))
continue;
if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
return false; Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
if (Cost > Budget)
return false; }
assert(Cost <= Budget &&
"When we run out of budget we will eagerly return from within the "
"per-instruction loop.");
return true;
};
const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
if (!MergeCondStoresAggressively &&
(!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
!IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
return false;
if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
BasicBlock *NewBB =
SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
if (!NewBB)
return false;
PostBB = NewBB;
}
Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
->getCondition();
Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
->getCondition();
Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
PStore->getParent());
Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
QStore->getParent(), PPHI);
IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
if (InvertPCond)
PPred = QB.CreateNot(PPred);
if (InvertQCond)
QPred = QB.CreateNot(QPred);
Value *CombinedPred = QB.CreateOr(PPred, QPred);
auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
false,
nullptr, DTU);
QB.SetInsertPoint(T);
StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
QStore->eraseFromParent();
PStore->eraseFromParent();
return true;
}
static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
DomTreeUpdater *DTU, const DataLayout &DL,
const TargetTransformInfo &TTI) {
BasicBlock *PTB = PBI->getSuccessor(0);
BasicBlock *PFB = PBI->getSuccessor(1);
BasicBlock *QTB = QBI->getSuccessor(0);
BasicBlock *QFB = QBI->getSuccessor(1);
BasicBlock *PostBB = QFB->getSingleSuccessor();
if (QTB->getSingleSuccessor() == QFB)
PostBB = QFB;
if (!PostBB)
return false;
bool InvertPCond = false, InvertQCond = false;
if (PFB == QBI->getParent()) {
std::swap(PFB, PTB);
InvertPCond = true;
}
if (QFB == PostBB) {
std::swap(QFB, QTB);
InvertQCond = true;
}
if (PTB == QBI->getParent())
PTB = nullptr;
if (QTB == PostBB)
QTB = nullptr;
auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
};
if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
!HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
return false;
if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
(QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
return false;
if (!QBI->getParent()->hasNUses(2))
return false;
SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
for (auto *BB : {PTB, PFB}) {
if (!BB)
continue;
for (auto &I : *BB)
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
PStoreAddresses.insert(SI->getPointerOperand());
}
for (auto *BB : {QTB, QFB}) {
if (!BB)
continue;
for (auto &I : *BB)
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
QStoreAddresses.insert(SI->getPointerOperand());
}
set_intersect(PStoreAddresses, QStoreAddresses);
auto &CommonAddresses = PStoreAddresses;
bool Changed = false;
for (auto *Address : CommonAddresses)
Changed |=
mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
InvertPCond, InvertQCond, DTU, DL, TTI);
return Changed;
}
static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
DomTreeUpdater *DTU) {
Value *CondWB, *WC;
BasicBlock *IfTrueBB, *IfFalseBB;
if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
return false;
if (!IfFalseBB->phis().empty())
return false; auto NoSideEffects = [](BasicBlock &BB) {
return llvm::none_of(BB, [](const Instruction &I) {
return I.mayWriteToMemory() || I.mayHaveSideEffects();
});
};
if (BI->getSuccessor(1) != IfFalseBB && BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && NoSideEffects(*BI->getParent())) {
auto *OldSuccessor = BI->getSuccessor(1);
OldSuccessor->removePredecessor(BI->getParent());
BI->setSuccessor(1, IfFalseBB);
if (DTU)
DTU->applyUpdates(
{{DominatorTree::Insert, BI->getParent(), IfFalseBB},
{DominatorTree::Delete, BI->getParent(), OldSuccessor}});
return true;
}
if (BI->getSuccessor(0) != IfFalseBB && BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && NoSideEffects(*BI->getParent())) {
auto *OldSuccessor = BI->getSuccessor(0);
OldSuccessor->removePredecessor(BI->getParent());
BI->setSuccessor(0, IfFalseBB);
if (DTU)
DTU->applyUpdates(
{{DominatorTree::Insert, BI->getParent(), IfFalseBB},
{DominatorTree::Delete, BI->getParent(), OldSuccessor}});
return true;
}
return false;
}
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
DomTreeUpdater *DTU,
const DataLayout &DL,
const TargetTransformInfo &TTI) {
assert(PBI->isConditional() && BI->isConditional());
BasicBlock *BB = BI->getParent();
if (PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
if (BB->getSinglePredecessor()) {
bool CondIsTrue = PBI->getSuccessor(0) == BB;
BI->setCondition(
ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
return true; }
}
if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
return true;
if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
return true;
if (&*BB->instructionsWithoutDebug(false).begin() != BI)
return false;
int PBIOp, BIOp;
if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
PBIOp = 0;
BIOp = 0;
} else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
PBIOp = 0;
BIOp = 1;
} else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
PBIOp = 1;
BIOp = 0;
} else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
PBIOp = 1;
BIOp = 1;
} else {
return false;
}
if (PBI->getSuccessor(PBIOp) == BB)
return false;
BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
unsigned NumPhis = 0;
for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
++II, ++NumPhis) {
if (NumPhis > 2) return false;
}
BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
<< "AND: " << *BI->getParent());
SmallVector<DominatorTree::UpdateType, 5> Updates;
if (OtherDest == BB) {
BasicBlock *InfLoopBlock =
BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
BranchInst::Create(InfLoopBlock, InfLoopBlock);
if (DTU)
Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
OtherDest = InfLoopBlock;
}
LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
Value *PBICond = PBI->getCondition();
IRBuilder<NoFolder> Builder(PBI);
if (PBIOp)
PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
Value *BICond = BI->getCondition();
if (BIOp)
BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
Value *Cond =
createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
PBI->setCondition(Cond);
PBI->setSuccessor(0, CommonDest);
PBI->setSuccessor(1, OtherDest);
if (DTU) {
Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
DTU->applyUpdates(Updates);
}
uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
bool HasWeights =
extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
SuccTrueWeight, SuccFalseWeight);
if (HasWeights) {
PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
PredOther * SuccCommon,
PredOther * SuccOther};
FitWeights(NewWeights);
setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
}
AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
for (PHINode &PN : CommonDest->phis()) {
Value *BIV = PN.getIncomingValueForBlock(BB);
unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
Value *PBIV = PN.getIncomingValue(PBBIdx);
if (BIV != PBIV) {
SelectInst *NV = cast<SelectInst>(
Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
PN.setIncomingValue(PBBIdx, NV);
if (HasWeights) {
uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
PredOther * SuccCommon};
FitWeights(NewWeights);
setBranchWeights(NV, NewWeights[0], NewWeights[1]);
}
}
}
LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
return true;
}
bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
Value *Cond, BasicBlock *TrueBB,
BasicBlock *FalseBB,
uint32_t TrueWeight,
uint32_t FalseWeight) {
auto *BB = OldTerm->getParent();
BasicBlock *KeepEdge1 = TrueBB;
BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
for (BasicBlock *Succ : successors(OldTerm)) {
if (Succ == KeepEdge1)
KeepEdge1 = nullptr;
else if (Succ == KeepEdge2)
KeepEdge2 = nullptr;
else {
Succ->removePredecessor(BB,
true);
if (Succ != TrueBB && Succ != FalseBB)
RemovedSuccessors.insert(Succ);
}
}
IRBuilder<> Builder(OldTerm);
Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
if (!KeepEdge1 && !KeepEdge2) {
if (TrueBB == FalseBB) {
Builder.CreateBr(TrueBB);
} else {
BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
if (TrueWeight != FalseWeight)
setBranchWeights(NewBI, TrueWeight, FalseWeight);
}
} else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
new UnreachableInst(OldTerm->getContext(), OldTerm);
} else {
if (!KeepEdge1) {
Builder.CreateBr(TrueBB);
} else {
Builder.CreateBr(FalseBB);
}
}
EraseTerminatorAndDCECond(OldTerm);
if (DTU) {
SmallVector<DominatorTree::UpdateType, 2> Updates;
Updates.reserve(RemovedSuccessors.size());
for (auto *RemovedSuccessor : RemovedSuccessors)
Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
DTU->applyUpdates(Updates);
}
return true;
}
bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
SelectInst *Select) {
ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
if (!TrueVal || !FalseVal)
return false;
Value *Condition = Select->getCondition();
BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
uint32_t TrueWeight = 0, FalseWeight = 0;
SmallVector<uint64_t, 8> Weights;
bool HasWeights = HasBranchWeights(SI);
if (HasWeights) {
GetBranchWeights(SI, Weights);
if (Weights.size() == 1 + SI->getNumCases()) {
TrueWeight =
(uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
FalseWeight =
(uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
}
}
return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
FalseWeight);
}
bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
SelectInst *SI) {
BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
if (!TBA || !FBA)
return false;
BasicBlock *TrueBB = TBA->getBasicBlock();
BasicBlock *FalseBB = FBA->getBasicBlock();
return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
0);
}
bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
ICmpInst *ICI, IRBuilder<> &Builder) {
BasicBlock *BB = ICI->getParent();
if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
return false;
Value *V = ICI->getOperand(0);
ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
BasicBlock *Pred = BB->getSinglePredecessor();
if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
return false;
SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
if (SI->getCondition() != V)
return false;
if (SI->getDefaultDest() != BB) {
ConstantInt *VVal = SI->findCaseDest(BB);
assert(VVal && "Should have a unique destination value");
ICI->setOperand(0, VVal);
if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
}
return requestResimplify();
}
if (SI->findCaseValue(Cst) != SI->case_default()) {
Value *V;
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
V = ConstantInt::getFalse(BB->getContext());
else
V = ConstantInt::getTrue(BB->getContext());
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
return requestResimplify();
}
BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
isa<PHINode>(++BasicBlock::iterator(PHIUse)))
return false;
Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
Constant *NewCst = ConstantInt::getFalse(BB->getContext());
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
std::swap(DefaultCst, NewCst);
ICI->replaceAllUsesWith(DefaultCst);
ICI->eraseFromParent();
SmallVector<DominatorTree::UpdateType, 2> Updates;
BasicBlock *NewBB =
BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
{
SwitchInstProfUpdateWrapper SIW(*SI);
auto W0 = SIW.getSuccessorWeight(0);
SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
if (W0) {
NewW = ((uint64_t(*W0) + 1) >> 1);
SIW.setSuccessorWeight(0, *NewW);
}
SIW.addCase(Cst, NewBB, NewW);
if (DTU)
Updates.push_back({DominatorTree::Insert, Pred, NewBB});
}
Builder.SetInsertPoint(NewBB);
Builder.SetCurrentDebugLocation(SI->getDebugLoc());
Builder.CreateBr(SuccBlock);
PHIUse->addIncoming(NewCst, NewBB);
if (DTU) {
Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
DTU->applyUpdates(Updates);
}
return true;
}
bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
IRBuilder<> &Builder,
const DataLayout &DL) {
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
if (!Cond)
return false;
ConstantComparesGatherer ConstantCompare(Cond, DL);
SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
Value *CompVal = ConstantCompare.CompValue;
unsigned UsedICmps = ConstantCompare.UsedICmps;
Value *ExtraCase = ConstantCompare.Extra;
if (!CompVal)
return false;
if (UsedICmps <= 1)
return false;
bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
if (ExtraCase && Values.size() < 2)
return false;
BasicBlock *DefaultBB = BI->getSuccessor(1);
BasicBlock *EdgeBB = BI->getSuccessor(0);
if (!TrueWhenEqual)
std::swap(DefaultBB, EdgeBB);
BasicBlock *BB = BI->getParent();
LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
<< " cases into SWITCH. BB is:\n"
<< *BB);
SmallVector<DominatorTree::UpdateType, 2> Updates;
if (ExtraCase) {
BasicBlock *NewBB = SplitBlock(BB, BI, DTU, nullptr,
nullptr, "switch.early.test");
Instruction *OldTI = BB->getTerminator();
Builder.SetInsertPoint(OldTI);
AssumptionCache *AC = Options.AC;
if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
ExtraCase = Builder.CreateFreeze(ExtraCase);
if (TrueWhenEqual)
Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
else
Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
OldTI->eraseFromParent();
if (DTU)
Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
AddPredecessorToBlock(EdgeBB, BB, NewBB);
LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
<< "\nEXTRABB = " << *BB);
BB = NewBB;
}
Builder.SetInsertPoint(BI);
if (CompVal->getType()->isPointerTy()) {
CompVal = Builder.CreatePtrToInt(
CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
}
SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
for (unsigned i = 0, e = Values.size(); i != e; ++i)
New->addCase(Values[i], EdgeBB);
for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
Value *InVal = PN->getIncomingValueForBlock(BB);
for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
PN->addIncoming(InVal, BB);
}
EraseTerminatorAndDCECond(BI);
if (DTU)
DTU->applyUpdates(Updates);
LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
return true;
}
bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
if (isa<PHINode>(RI->getValue()))
return simplifyCommonResume(RI);
else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
RI->getValue() == RI->getParent()->getFirstNonPHI())
return simplifySingleResume(RI);
return false;
}
static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
for (Instruction &I : R) {
auto *II = dyn_cast<IntrinsicInst>(&I);
if (!II)
return false;
Intrinsic::ID IntrinsicID = II->getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::dbg_label:
case Intrinsic::lifetime_end:
break;
default:
return false;
}
}
return true;
}
bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
BasicBlock *BB = RI->getParent();
if (!isCleanupBlockEmpty(
make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
return false;
SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
auto *PhiLPInst = cast<PHINode>(RI->getValue());
for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
Idx++) {
auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
if (IncomingBB->getUniqueSuccessor() != BB)
continue;
auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
if (IncomingValue != LandingPad)
continue;
if (isCleanupBlockEmpty(
make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
TrivialUnwindBlocks.insert(IncomingBB);
}
if (TrivialUnwindBlocks.empty())
return false;
for (auto *TrivialBB : TrivialUnwindBlocks) {
while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
BB->removePredecessor(TrivialBB, true);
for (BasicBlock *Pred :
llvm::make_early_inc_range(predecessors(TrivialBB))) {
removeUnwindEdge(Pred, DTU);
++NumInvokes;
}
TrivialBB->getTerminator()->eraseFromParent();
new UnreachableInst(RI->getContext(), TrivialBB);
if (DTU)
DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
}
if (pred_empty(BB))
DeleteDeadBlock(BB, DTU);
return !TrivialUnwindBlocks.empty();
}
bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
BasicBlock *BB = RI->getParent();
auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
assert(RI->getValue() == LPInst &&
"Resume must unwind the exception that caused control to here");
if (!isCleanupBlockEmpty(
make_range<Instruction *>(LPInst->getNextNode(), RI)))
return false;
for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
removeUnwindEdge(Pred, DTU);
++NumInvokes;
}
DeleteDeadBlock(BB, DTU);
return true;
}
static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
BasicBlock *BB = RI->getParent();
CleanupPadInst *CPInst = RI->getCleanupPad();
if (CPInst->getParent() != BB)
return false;
if (!CPInst->hasOneUse())
return false;
if (!isCleanupBlockEmpty(
make_range<Instruction *>(CPInst->getNextNode(), RI)))
return false;
BasicBlock *UnwindDest = RI->getUnwindDest();
Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
if (UnwindDest) {
for (PHINode &DestPN : UnwindDest->phis()) {
int Idx = DestPN.getBasicBlockIndex(BB);
assert(Idx != -1);
Value *SrcVal = DestPN.getIncomingValue(Idx);
PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
for (auto *Pred : predecessors(BB)) {
Value *Incoming =
NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
DestPN.addIncoming(Incoming, Pred);
}
}
Instruction *InsertPt = DestEHPad;
for (PHINode &PN : make_early_inc_range(BB->phis())) {
if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
continue;
for (auto *pred : predecessors(UnwindDest))
if (pred != BB)
PN.addIncoming(&PN, pred);
PN.moveBefore(InsertPt);
PN.addIncoming(PoisonValue::get(PN.getType()), BB);
}
}
std::vector<DominatorTree::UpdateType> Updates;
for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
if (UnwindDest == nullptr) {
if (DTU) {
DTU->applyUpdates(Updates);
Updates.clear();
}
removeUnwindEdge(PredBB, DTU);
++NumInvokes;
} else {
BB->removePredecessor(PredBB);
Instruction *TI = PredBB->getTerminator();
TI->replaceUsesOfWith(BB, UnwindDest);
if (DTU) {
Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
Updates.push_back({DominatorTree::Delete, PredBB, BB});
}
}
}
if (DTU)
DTU->applyUpdates(Updates);
DeleteDeadBlock(BB, DTU);
return true;
}
static bool mergeCleanupPad(CleanupReturnInst *RI) {
BasicBlock *UnwindDest = RI->getUnwindDest();
if (!UnwindDest)
return false;
if (UnwindDest->getSinglePredecessor() != RI->getParent())
return false;
auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
if (!SuccessorCleanupPad)
return false;
CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
SuccessorCleanupPad->eraseFromParent();
BranchInst::Create(UnwindDest, RI->getParent());
RI->eraseFromParent();
return true;
}
bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
if (isa<UndefValue>(RI->getOperand(0)))
return false;
if (mergeCleanupPad(RI))
return true;
if (removeEmptyCleanup(RI, DTU))
return true;
return false;
}
bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
BasicBlock *BB = UI->getParent();
bool Changed = false;
while (UI->getIterator() != BB->begin()) {
BasicBlock::iterator BBI = UI->getIterator();
--BBI;
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
break;
BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
BBI->eraseFromParent();
Changed = true;
}
if (&BB->front() != UI)
return Changed;
std::vector<DominatorTree::UpdateType> Updates;
SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
auto *Predecessor = Preds[i];
Instruction *TI = Predecessor->getTerminator();
IRBuilder<> Builder(TI);
if (auto *BI = dyn_cast<BranchInst>(TI)) {
if (all_of(BI->successors(),
[BB](auto *Successor) { return Successor == BB; })) {
new UnreachableInst(TI->getContext(), TI);
TI->eraseFromParent();
Changed = true;
} else {
assert(BI->isConditional() && "Can't get here with an uncond branch.");
Value* Cond = BI->getCondition();
assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
"The destinations are guaranteed to be different here.");
if (BI->getSuccessor(0) == BB) {
Builder.CreateAssumption(Builder.CreateNot(Cond));
Builder.CreateBr(BI->getSuccessor(1));
} else {
assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
Builder.CreateAssumption(Cond);
Builder.CreateBr(BI->getSuccessor(0));
}
EraseTerminatorAndDCECond(BI);
Changed = true;
}
if (DTU)
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
} else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
SwitchInstProfUpdateWrapper SU(*SI);
for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
if (i->getCaseSuccessor() != BB) {
++i;
continue;
}
BB->removePredecessor(SU->getParent());
i = SU.removeCase(i);
e = SU->case_end();
Changed = true;
}
if (DTU && SI->getDefaultDest() != BB)
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
} else if (auto *II = dyn_cast<InvokeInst>(TI)) {
if (II->getUnwindDest() == BB) {
if (DTU) {
DTU->applyUpdates(Updates);
Updates.clear();
}
removeUnwindEdge(TI->getParent(), DTU);
Changed = true;
}
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
if (CSI->getUnwindDest() == BB) {
if (DTU) {
DTU->applyUpdates(Updates);
Updates.clear();
}
removeUnwindEdge(TI->getParent(), DTU);
Changed = true;
continue;
}
for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
E = CSI->handler_end();
I != E; ++I) {
if (*I == BB) {
CSI->removeHandler(I);
--I;
--E;
Changed = true;
}
}
if (DTU)
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
if (CSI->getNumHandlers() == 0) {
if (CSI->hasUnwindDest()) {
if (DTU) {
for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
Updates.push_back({DominatorTree::Insert,
PredecessorOfPredecessor,
CSI->getUnwindDest()});
Updates.push_back({DominatorTree::Delete,
PredecessorOfPredecessor, Predecessor});
}
}
Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
} else {
if (DTU) {
DTU->applyUpdates(Updates);
Updates.clear();
}
SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
for (BasicBlock *EHPred : EHPreds)
removeUnwindEdge(EHPred, DTU);
}
new UnreachableInst(CSI->getContext(), CSI);
CSI->eraseFromParent();
Changed = true;
}
} else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
(void)CRI;
assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
"Expected to always have an unwind to BB.");
if (DTU)
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
new UnreachableInst(TI->getContext(), TI);
TI->eraseFromParent();
Changed = true;
}
}
if (DTU)
DTU->applyUpdates(Updates);
if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
DeleteDeadBlock(BB, DTU);
return true;
}
return Changed;
}
static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
assert(Cases.size() >= 1);
array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
for (size_t I = 1, E = Cases.size(); I != E; ++I) {
if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
return false;
}
return true;
}
static void createUnreachableSwitchDefault(SwitchInst *Switch,
DomTreeUpdater *DTU) {
LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
auto *BB = Switch->getParent();
auto *OrigDefaultBlock = Switch->getDefaultDest();
OrigDefaultBlock->removePredecessor(BB);
BasicBlock *NewDefaultBlock = BasicBlock::Create(
BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
OrigDefaultBlock);
new UnreachableInst(Switch->getContext(), NewDefaultBlock);
Switch->setDefaultDest(&*NewDefaultBlock);
if (DTU) {
SmallVector<DominatorTree::UpdateType, 2> Updates;
Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
if (!is_contained(successors(BB), OrigDefaultBlock))
Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
DTU->applyUpdates(Updates);
}
}
bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
IRBuilder<> &Builder) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
bool HasDefault =
!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
auto *BB = SI->getParent();
BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
BasicBlock *DestB = nullptr;
SmallVector<ConstantInt *, 16> CasesA;
SmallVector<ConstantInt *, 16> CasesB;
for (auto Case : SI->cases()) {
BasicBlock *Dest = Case.getCaseSuccessor();
if (!DestA)
DestA = Dest;
if (Dest == DestA) {
CasesA.push_back(Case.getCaseValue());
continue;
}
if (!DestB)
DestB = Dest;
if (Dest == DestB) {
CasesB.push_back(Case.getCaseValue());
continue;
}
return false; }
if (!DestB)
return false;
assert(DestA && DestB &&
"Single-destination switch should have been folded.");
assert(DestA != DestB);
assert(DestB != SI->getDefaultDest());
assert(!CasesB.empty() && "There must be non-default cases.");
assert(!CasesA.empty() || HasDefault);
SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
BasicBlock *ContiguousDest = nullptr;
BasicBlock *OtherDest = nullptr;
if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
ContiguousCases = &CasesA;
ContiguousDest = DestA;
OtherDest = DestB;
} else if (CasesAreContiguous(CasesB)) {
ContiguousCases = &CasesB;
ContiguousDest = DestB;
OtherDest = DestA;
} else
return false;
Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
Constant *NumCases =
ConstantInt::get(Offset->getType(), ContiguousCases->size());
Value *Sub = SI->getCondition();
if (!Offset->isNullValue())
Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
Value *Cmp;
if (NumCases->isNullValue() && !ContiguousCases->empty())
Cmp = ConstantInt::getTrue(SI->getContext());
else
Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
if (HasBranchWeights(SI)) {
SmallVector<uint64_t, 8> Weights;
GetBranchWeights(SI, Weights);
if (Weights.size() == 1 + SI->getNumCases()) {
uint64_t TrueWeight = 0;
uint64_t FalseWeight = 0;
for (size_t I = 0, E = Weights.size(); I != E; ++I) {
if (SI->getSuccessor(I) == ContiguousDest)
TrueWeight += Weights[I];
else
FalseWeight += Weights[I];
}
while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
TrueWeight /= 2;
FalseWeight /= 2;
}
setBranchWeights(NewBI, TrueWeight, FalseWeight);
}
}
for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
unsigned PreviousEdges = ContiguousCases->size();
if (ContiguousDest == SI->getDefaultDest())
++PreviousEdges;
for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
}
for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
if (OtherDest == SI->getDefaultDest())
++PreviousEdges;
for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
}
if (!HasDefault)
createUnreachableSwitchDefault(SI, DTU);
auto *UnreachableDefault = SI->getDefaultDest();
SI->eraseFromParent();
if (!HasDefault && DTU)
DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
return true;
}
static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
AssumptionCache *AC,
const DataLayout &DL) {
Value *Cond = SI->getCondition();
KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
unsigned MaxSignificantBitsInCond =
ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
SmallVector<ConstantInt *, 8> DeadCases;
SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
SmallVector<BasicBlock *, 8> UniqueSuccessors;
for (auto &Case : SI->cases()) {
auto *Successor = Case.getCaseSuccessor();
if (DTU) {
if (!NumPerSuccessorCases.count(Successor))
UniqueSuccessors.push_back(Successor);
++NumPerSuccessorCases[Successor];
}
const APInt &CaseVal = Case.getCaseValue()->getValue();
if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
(CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
DeadCases.push_back(Case.getCaseValue());
if (DTU)
--NumPerSuccessorCases[Successor];
LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
<< " is dead.\n");
}
}
bool HasDefault =
!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
const unsigned NumUnknownBits =
Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
assert(NumUnknownBits <= Known.getBitWidth());
if (HasDefault && DeadCases.empty() &&
NumUnknownBits < 64 &&
SI->getNumCases() == (1ULL << NumUnknownBits)) {
createUnreachableSwitchDefault(SI, DTU);
return true;
}
if (DeadCases.empty())
return false;
SwitchInstProfUpdateWrapper SIW(*SI);
for (ConstantInt *DeadCase : DeadCases) {
SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
assert(CaseI != SI->case_default() &&
"Case was not found. Probably mistake in DeadCases forming.");
CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
SIW.removeCase(CaseI);
}
if (DTU) {
std::vector<DominatorTree::UpdateType> Updates;
for (auto *Successor : UniqueSuccessors)
if (NumPerSuccessorCases[Successor] == 0)
Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
DTU->applyUpdates(Updates);
}
return true;
}
static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
BasicBlock *BB, int *PhiIndex) {
if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
return nullptr; if (!BB->getSinglePredecessor())
return nullptr;
BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
if (!Branch || !Branch->isUnconditional())
return nullptr;
BasicBlock *Succ = Branch->getSuccessor(0);
for (PHINode &PHI : Succ->phis()) {
int Idx = PHI.getBasicBlockIndex(BB);
assert(Idx >= 0 && "PHI has no entry for predecessor?");
Value *InValue = PHI.getIncomingValue(Idx);
if (InValue != CaseValue)
continue;
*PhiIndex = Idx;
return &PHI;
}
return nullptr;
}
static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
ForwardingNodesMap ForwardingNodes;
BasicBlock *SwitchBlock = SI->getParent();
bool Changed = false;
for (auto &Case : SI->cases()) {
ConstantInt *CaseValue = Case.getCaseValue();
BasicBlock *CaseDest = Case.getCaseSuccessor();
for (PHINode &Phi : CaseDest->phis()) {
int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
count(Phi.blocks(), SwitchBlock) == 1) {
Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
Changed = true;
}
}
int PhiIdx;
if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
ForwardingNodes[Phi].push_back(PhiIdx);
}
for (auto &ForwardingNode : ForwardingNodes) {
PHINode *Phi = ForwardingNode.first;
SmallVectorImpl<int> &Indexes = ForwardingNode.second;
if (Indexes.size() < 2)
continue;
for (int Index : Indexes)
Phi->setIncomingValue(Index, SI->getCondition());
Changed = true;
}
return Changed;
}
static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
if (C->isThreadDependent())
return false;
if (C->isDLLImportDependent())
return false;
if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
!isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
!isa<UndefValue>(C) && !isa<ConstantExpr>(C))
return false;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
return false;
}
if (!TTI.shouldBuildLookupTablesForConstant(C))
return false;
return true;
}
static Constant *
LookupConstant(Value *V,
const SmallDenseMap<Value *, Constant *> &ConstantPool) {
if (Constant *C = dyn_cast<Constant>(V))
return C;
return ConstantPool.lookup(V);
}
static Constant *
ConstantFold(Instruction *I, const DataLayout &DL,
const SmallDenseMap<Value *, Constant *> &ConstantPool) {
if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
if (!A)
return nullptr;
if (A->isAllOnesValue())
return LookupConstant(Select->getTrueValue(), ConstantPool);
if (A->isNullValue())
return LookupConstant(Select->getFalseValue(), ConstantPool);
return nullptr;
}
SmallVector<Constant *, 4> COps;
for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
COps.push_back(A);
else
return nullptr;
}
return ConstantFoldInstOperands(I, COps, DL);
}
static bool
getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
BasicBlock **CommonDest,
SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
const DataLayout &DL, const TargetTransformInfo &TTI) {
BasicBlock *Pred = SI->getParent();
SmallDenseMap<Value *, Constant *> ConstantPool;
ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
if (I.isTerminator()) {
if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
return false;
Pred = CaseDest;
CaseDest = I.getSuccessor(0);
} else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
for (auto &Use : I.uses()) {
User *User = Use.getUser();
if (Instruction *I = dyn_cast<Instruction>(User))
if (I->getParent() == CaseDest)
continue;
if (PHINode *Phi = dyn_cast<PHINode>(User))
if (Phi->getIncomingBlock(Use) == CaseDest)
continue;
return false;
}
ConstantPool.insert(std::make_pair(&I, C));
} else {
break;
}
}
if (!*CommonDest)
*CommonDest = CaseDest;
if (CaseDest != *CommonDest)
return false;
for (PHINode &PHI : (*CommonDest)->phis()) {
int Idx = PHI.getBasicBlockIndex(Pred);
if (Idx == -1)
continue;
Constant *ConstVal =
LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
if (!ConstVal)
return false;
if (!ValidLookupTableConstant(ConstVal, TTI))
return false;
Res.push_back(std::make_pair(&PHI, ConstVal));
}
return Res.size() > 0;
}
static size_t mapCaseToResult(ConstantInt *CaseVal,
SwitchCaseResultVectorTy &UniqueResults,
Constant *Result) {
for (auto &I : UniqueResults) {
if (I.first == Result) {
I.second.push_back(CaseVal);
return I.second.size();
}
}
UniqueResults.push_back(
std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
return 1;
}
static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
BasicBlock *&CommonDest,
SwitchCaseResultVectorTy &UniqueResults,
Constant *&DefaultResult,
const DataLayout &DL,
const TargetTransformInfo &TTI,
uintptr_t MaxUniqueResults) {
for (auto &I : SI->cases()) {
ConstantInt *CaseVal = I.getCaseValue();
SwitchCaseResultsTy Results;
if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
DL, TTI))
return false;
if (Results.size() > 1)
return false;
const size_t NumCasesForResult =
mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
if (NumCasesForResult > MaxSwitchCasesPerResult)
return false;
if (UniqueResults.size() > MaxUniqueResults)
return false;
if (!PHI)
PHI = Results[0].first;
else if (PHI != Results[0].first)
return false;
}
SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
BasicBlock *DefaultDest = SI->getDefaultDest();
getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
DL, TTI);
DefaultResult =
DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
if ((!DefaultResult &&
!isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
return false;
return true;
}
static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
Constant *DefaultResult, Value *Condition,
IRBuilder<> &Builder) {
if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
ResultVector[1].second.size() == 1) {
ConstantInt *FirstCase = ResultVector[0].second[0];
ConstantInt *SecondCase = ResultVector[1].second[0];
Value *SelectValue = ResultVector[1].first;
if (DefaultResult) {
Value *ValueCompare =
Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
DefaultResult, "switch.select");
}
Value *ValueCompare =
Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
SelectValue, "switch.select");
}
if (ResultVector.size() == 1 && DefaultResult) {
ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
unsigned CaseCount = CaseValues.size();
if (isPowerOf2_32(CaseCount)) {
ConstantInt *MinCaseVal = CaseValues[0];
for (auto Case : CaseValues)
if (Case->getValue().slt(MinCaseVal->getValue()))
MinCaseVal = Case;
APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
for (auto Case : CaseValues)
BitMask |= (Case->getValue() - MinCaseVal->getValue());
if (BitMask.countPopulation() == Log2_32(CaseCount)) {
if (!MinCaseVal->isNullValue())
Condition = Builder.CreateSub(Condition, MinCaseVal);
Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
Value *Cmp = Builder.CreateICmpEQ(
And, Constant::getNullValue(And->getType()), "switch.selectcmp");
return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
}
}
if (CaseValues.size() == 2) {
Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
"switch.selectcmp.case1");
Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
"switch.selectcmp.case2");
Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
}
}
return nullptr;
}
static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
Value *SelectValue,
IRBuilder<> &Builder,
DomTreeUpdater *DTU) {
std::vector<DominatorTree::UpdateType> Updates;
BasicBlock *SelectBB = SI->getParent();
BasicBlock *DestBB = PHI->getParent();
if (DTU && !is_contained(predecessors(DestBB), SelectBB))
Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
Builder.CreateBr(DestBB);
while (PHI->getBasicBlockIndex(SelectBB) >= 0)
PHI->removeIncomingValue(SelectBB);
PHI->addIncoming(SelectValue, SelectBB);
SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
BasicBlock *Succ = SI->getSuccessor(i);
if (Succ == DestBB)
continue;
Succ->removePredecessor(SelectBB);
if (DTU && RemovedSuccessors.insert(Succ).second)
Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
}
SI->eraseFromParent();
if (DTU)
DTU->applyUpdates(Updates);
}
static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
DomTreeUpdater *DTU, const DataLayout &DL,
const TargetTransformInfo &TTI) {
Value *const Cond = SI->getCondition();
PHINode *PHI = nullptr;
BasicBlock *CommonDest = nullptr;
Constant *DefaultResult;
SwitchCaseResultVectorTy UniqueResults;
if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
DL, TTI, 2))
return false;
assert(PHI != nullptr && "PHI for value select not found");
Builder.SetInsertPoint(SI);
Value *SelectValue =
foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
if (!SelectValue)
return false;
removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
return true;
}
namespace {
class SwitchLookupTable {
public:
SwitchLookupTable(
Module &M, uint64_t TableSize, ConstantInt *Offset,
const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
Type *ElementType);
private:
enum {
SingleValueKind,
LinearMapKind,
BitMapKind,
ArrayKind
} Kind;
Constant *SingleValue = nullptr;
ConstantInt *BitMap = nullptr;
IntegerType *BitMapElementTy = nullptr;
ConstantInt *LinearOffset = nullptr;
ConstantInt *LinearMultiplier = nullptr;
GlobalVariable *Array = nullptr;
};
}
SwitchLookupTable::SwitchLookupTable(
Module &M, uint64_t TableSize, ConstantInt *Offset,
const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
assert(Values.size() && "Can't build lookup table without values!");
assert(TableSize >= Values.size() && "Can't fit values in table!");
SingleValue = Values.begin()->second;
Type *ValueType = Values.begin()->second->getType();
SmallVector<Constant *, 64> TableContents(TableSize);
for (size_t I = 0, E = Values.size(); I != E; ++I) {
ConstantInt *CaseVal = Values[I].first;
Constant *CaseRes = Values[I].second;
assert(CaseRes->getType() == ValueType);
uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
TableContents[Idx] = CaseRes;
if (CaseRes != SingleValue)
SingleValue = nullptr;
}
if (Values.size() < TableSize) {
assert(DefaultValue &&
"Need a default value to fill the lookup table holes.");
assert(DefaultValue->getType() == ValueType);
for (uint64_t I = 0; I < TableSize; ++I) {
if (!TableContents[I])
TableContents[I] = DefaultValue;
}
if (DefaultValue != SingleValue)
SingleValue = nullptr;
}
if (SingleValue) {
Kind = SingleValueKind;
return;
}
if (isa<IntegerType>(ValueType)) {
bool LinearMappingPossible = true;
APInt PrevVal;
APInt DistToPrev;
assert(TableSize >= 2 && "Should be a SingleValue table.");
for (uint64_t I = 0; I < TableSize; ++I) {
ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
if (!ConstVal) {
LinearMappingPossible = false;
break;
}
const APInt &Val = ConstVal->getValue();
if (I != 0) {
APInt Dist = Val - PrevVal;
if (I == 1) {
DistToPrev = Dist;
} else if (Dist != DistToPrev) {
LinearMappingPossible = false;
break;
}
}
PrevVal = Val;
}
if (LinearMappingPossible) {
LinearOffset = cast<ConstantInt>(TableContents[0]);
LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
Kind = LinearMapKind;
++NumLinearMaps;
return;
}
}
if (WouldFitInRegister(DL, TableSize, ValueType)) {
IntegerType *IT = cast<IntegerType>(ValueType);
APInt TableInt(TableSize * IT->getBitWidth(), 0);
for (uint64_t I = TableSize; I > 0; --I) {
TableInt <<= IT->getBitWidth();
if (!isa<UndefValue>(TableContents[I - 1])) {
ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
TableInt |= Val->getValue().zext(TableInt.getBitWidth());
}
}
BitMap = ConstantInt::get(M.getContext(), TableInt);
BitMapElementTy = IT;
Kind = BitMapKind;
++NumBitMaps;
return;
}
ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
Array = new GlobalVariable(M, ArrayTy, true,
GlobalVariable::PrivateLinkage, Initializer,
"switch.table." + FuncName);
Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
Kind = ArrayKind;
}
Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
switch (Kind) {
case SingleValueKind:
return SingleValue;
case LinearMapKind: {
Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
false, "switch.idx.cast");
if (!LinearMultiplier->isOne())
Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
if (!LinearOffset->isZero())
Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
return Result;
}
case BitMapKind: {
IntegerType *MapTy = BitMap->getType();
Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
ShiftAmt = Builder.CreateMul(
ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
"switch.shiftamt");
Value *DownShifted =
Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
}
case ArrayKind: {
IntegerType *IT = cast<IntegerType>(Index->getType());
uint64_t TableSize =
Array->getInitializer()->getType()->getArrayNumElements();
if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
Index = Builder.CreateZExt(
Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
"switch.tableidx.zext");
Value *GEPIndices[] = {Builder.getInt32(0), Index};
Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
GEPIndices, "switch.gep");
return Builder.CreateLoad(
cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
"switch.load");
}
}
llvm_unreachable("Unknown lookup table kind!");
}
bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
uint64_t TableSize,
Type *ElementType) {
auto *IT = dyn_cast<IntegerType>(ElementType);
if (!IT)
return false;
if (TableSize >= UINT_MAX / IT->getBitWidth())
return false;
return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
}
static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
const DataLayout &DL) {
if (TTI.isTypeLegal(Ty))
return true;
auto *IT = dyn_cast<IntegerType>(Ty);
if (!IT)
return false;
unsigned BitWidth = IT->getBitWidth();
return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
DL.fitsInLegalInteger(IT->getBitWidth());
}
static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
const uint64_t MinDensity = 40;
if (CaseRange >= UINT64_MAX / 100)
return false;
return NumCases * 100 >= CaseRange * MinDensity;
}
static bool isSwitchDense(ArrayRef<int64_t> Values) {
uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
uint64_t Range = Diff + 1;
if (Range < Diff)
return false;
return isSwitchDense(Values.size(), Range);
}
static bool
ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
const TargetTransformInfo &TTI, const DataLayout &DL,
const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
if (SI->getNumCases() > TableSize)
return false;
bool AllTablesFitInRegister = true;
bool HasIllegalType = false;
for (const auto &I : ResultTypes) {
Type *Ty = I.second;
HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
AllTablesFitInRegister =
AllTablesFitInRegister &&
SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
if (HasIllegalType && !AllTablesFitInRegister)
break;
}
if (AllTablesFitInRegister)
return true;
if (HasIllegalType)
return false;
return isSwitchDense(SI->getNumCases(), TableSize);
}
static bool ShouldUseSwitchConditionAsTableIndex(
ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
const DataLayout &DL, const TargetTransformInfo &TTI) {
if (MinCaseVal.isNullValue())
return true;
if (MinCaseVal.isNegative() ||
MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
!HasDefaultResults)
return false;
return all_of(ResultTypes, [&](const auto &KV) {
return SwitchLookupTable::WouldFitInRegister(
DL, MaxCaseVal.getLimitedValue() + 1 ,
KV.second );
});
}
static void reuseTableCompare(
User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
Constant *DefaultValue,
const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
if (!CmpInst)
return;
if (CmpInst->getParent() != PhiBlock)
return;
Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
if (!CmpOp1)
return;
Value *RangeCmp = RangeCheckBranch->getCondition();
Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
DefaultValue, CmpOp1, true);
if (DefaultConst != TrueConst && DefaultConst != FalseConst)
return;
for (auto ValuePair : Values) {
Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
ValuePair.second, CmpOp1, true);
if (!CaseConst || CaseConst == DefaultConst ||
(CaseConst != TrueConst && CaseConst != FalseConst))
return;
}
BasicBlock *BranchBlock = RangeCheckBranch->getParent();
for (BasicBlock *Pred : predecessors(PhiBlock)) {
if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
return;
}
if (DefaultConst == FalseConst) {
CmpInst->replaceAllUsesWith(RangeCmp);
++NumTableCmpReuses;
} else {
Value *InvertedTableCmp = BinaryOperator::CreateXor(
RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
RangeCheckBranch);
CmpInst->replaceAllUsesWith(InvertedTableCmp);
++NumTableCmpReuses;
}
}
static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
DomTreeUpdater *DTU, const DataLayout &DL,
const TargetTransformInfo &TTI) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
BasicBlock *BB = SI->getParent();
Function *Fn = BB->getParent();
if (!TTI.shouldBuildLookupTables() ||
(Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
return false;
if (SI->getNumCases() < 3)
return false;
assert(!SI->cases().empty());
SwitchInst::CaseIt CI = SI->case_begin();
ConstantInt *MinCaseVal = CI->getCaseValue();
ConstantInt *MaxCaseVal = CI->getCaseValue();
BasicBlock *CommonDest = nullptr;
using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
SmallDenseMap<PHINode *, ResultListTy> ResultLists;
SmallDenseMap<PHINode *, Constant *> DefaultResults;
SmallDenseMap<PHINode *, Type *> ResultTypes;
SmallVector<PHINode *, 4> PHIs;
for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
ConstantInt *CaseVal = CI->getCaseValue();
if (CaseVal->getValue().slt(MinCaseVal->getValue()))
MinCaseVal = CaseVal;
if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
MaxCaseVal = CaseVal;
using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
ResultsTy Results;
if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
Results, DL, TTI))
return false;
for (const auto &I : Results) {
PHINode *PHI = I.first;
Constant *Value = I.second;
if (!ResultLists.count(PHI))
PHIs.push_back(PHI);
ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
}
}
for (PHINode *PHI : PHIs) {
ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
}
uint64_t NumResults = ResultLists[PHIs[0]].size();
SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
bool HasDefaultResults =
getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
DefaultResultsList, DL, TTI);
for (const auto &I : DefaultResultsList) {
PHINode *PHI = I.first;
Constant *Result = I.second;
DefaultResults[PHI] = Result;
}
bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
*MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
uint64_t TableSize;
if (UseSwitchConditionAsTableIndex)
TableSize = MaxCaseVal->getLimitedValue() + 1;
else
TableSize =
(MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
bool TableHasHoles = (NumResults < TableSize);
bool NeedMask = (TableHasHoles && !HasDefaultResults);
if (NeedMask) {
if (SI->getNumCases() < 4) return false;
if (!DL.fitsInLegalInteger(TableSize))
return false;
}
if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
return false;
std::vector<DominatorTree::UpdateType> Updates;
Module &Mod = *CommonDest->getParent()->getParent();
BasicBlock *LookupBB = BasicBlock::Create(
Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
Builder.SetInsertPoint(SI);
Value *TableIndex;
ConstantInt *TableIndexOffset;
if (UseSwitchConditionAsTableIndex) {
TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0);
TableIndex = SI->getCondition();
} else {
TableIndexOffset = MinCaseVal;
TableIndex =
Builder.CreateSub(SI->getCondition(), TableIndexOffset, "switch.tableidx");
}
unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
assert(MaxTableSize >= TableSize &&
"It is impossible for a switch to have more entries than the max "
"representable value of its input integer type's size.");
const bool DefaultIsReachable =
!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
BranchInst *RangeCheckBranch = nullptr;
if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
Builder.CreateBr(LookupBB);
if (DTU)
Updates.push_back({DominatorTree::Insert, BB, LookupBB});
} else {
Value *Cmp = Builder.CreateICmpULT(
TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
RangeCheckBranch =
Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
if (DTU)
Updates.push_back({DominatorTree::Insert, BB, LookupBB});
}
Builder.SetInsertPoint(LookupBB);
if (NeedMask) {
BasicBlock *MaskBB = LookupBB;
MaskBB->setName("switch.hole_check");
LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
CommonDest->getParent(), CommonDest);
uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
APInt MaskInt(TableSizePowOf2, 0);
APInt One(TableSizePowOf2, 1);
const ResultListTy &ResultList = ResultLists[PHIs[0]];
for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
.getLimitedValue();
MaskInt |= One << Idx;
}
ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
IntegerType *MapTy = TableMask->getType();
Value *MaskIndex =
Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
Value *LoBit = Builder.CreateTrunc(
Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
if (DTU) {
Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
}
Builder.SetInsertPoint(LookupBB);
AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
}
if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
SI->getDefaultDest()->removePredecessor(BB,
true);
if (DTU)
Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
}
for (PHINode *PHI : PHIs) {
const ResultListTy &ResultList = ResultLists[PHI];
Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
StringRef FuncName = Fn->getName();
SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
DL, FuncName);
Value *Result = Table.BuildLookup(TableIndex, Builder);
if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
BasicBlock *PhiBlock = PHI->getParent();
for (auto *User : PHI->users()) {
reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
}
}
PHI->addIncoming(Result, LookupBB);
}
Builder.CreateBr(CommonDest);
if (DTU)
Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
BasicBlock *Succ = SI->getSuccessor(i);
if (Succ == SI->getDefaultDest())
continue;
Succ->removePredecessor(BB);
if (DTU && RemovedSuccessors.insert(Succ).second)
Updates.push_back({DominatorTree::Delete, BB, Succ});
}
SI->eraseFromParent();
if (DTU)
DTU->applyUpdates(Updates);
++NumLookupTables;
if (NeedMask)
++NumLookupTablesHoles;
return true;
}
static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
const DataLayout &DL,
const TargetTransformInfo &TTI) {
auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
if (CondTy->getIntegerBitWidth() > 64 ||
!DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
return false;
if (SI->getNumCases() < 4)
return false;
SmallVector<int64_t,4> Values;
for (auto &C : SI->cases())
Values.push_back(C.getCaseValue()->getValue().getSExtValue());
llvm::sort(Values);
if (isSwitchDense(Values))
return false;
int64_t Base = Values[0];
for (auto &V : Values)
V -= (uint64_t)(Base);
unsigned Shift = 64;
for (auto &V : Values)
Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
assert(Shift < 64);
if (Shift > 0)
for (auto &V : Values)
V = (int64_t)((uint64_t)V >> Shift);
if (!isSwitchDense(Values))
return false;
auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
Builder.SetInsertPoint(SI);
auto *ShiftC = ConstantInt::get(Ty, Shift);
auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
auto *LShr = Builder.CreateLShr(Sub, ShiftC);
auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
auto *Rot = Builder.CreateOr(LShr, Shl);
SI->replaceUsesOfWith(SI->getCondition(), Rot);
for (auto Case : SI->cases()) {
auto *Orig = Case.getCaseValue();
auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
Case.setValue(
cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
}
return true;
}
bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
BasicBlock *BB = SI->getParent();
if (isValueEqualityComparison(SI)) {
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
return requestResimplify();
Value *Cond = SI->getCondition();
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
if (SimplifySwitchOnSelect(SI, Select))
return requestResimplify();
if (SI == &*BB->instructionsWithoutDebug(false).begin())
if (FoldValueComparisonIntoPredecessors(SI, Builder))
return requestResimplify();
}
if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
return requestResimplify();
if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
return requestResimplify();
if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
return requestResimplify();
if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
return requestResimplify();
if (Options.ConvertSwitchToLookupTable &&
SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
return requestResimplify();
if (ReduceSwitchRange(SI, Builder, DL, TTI))
return requestResimplify();
return false;
}
bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
BasicBlock *BB = IBI->getParent();
bool Changed = false;
SmallPtrSet<Value *, 8> Succs;
SmallSetVector<BasicBlock *, 8> RemovedSuccs;
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
BasicBlock *Dest = IBI->getDestination(i);
if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
if (!Dest->hasAddressTaken())
RemovedSuccs.insert(Dest);
Dest->removePredecessor(BB);
IBI->removeDestination(i);
--i;
--e;
Changed = true;
}
}
if (DTU) {
std::vector<DominatorTree::UpdateType> Updates;
Updates.reserve(RemovedSuccs.size());
for (auto *RemovedSucc : RemovedSuccs)
Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
DTU->applyUpdates(Updates);
}
if (IBI->getNumDestinations() == 0) {
new UnreachableInst(IBI->getContext(), IBI);
EraseTerminatorAndDCECond(IBI);
return true;
}
if (IBI->getNumDestinations() == 1) {
BranchInst::Create(IBI->getDestination(0), IBI);
EraseTerminatorAndDCECond(IBI);
return true;
}
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
return requestResimplify();
}
return Changed;
}
static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
BasicBlock *BB, DomTreeUpdater *DTU) {
auto Succ = BB->getUniqueSuccessor();
assert(Succ);
if (isa<PHINode>(*Succ->begin()))
return false;
for (BasicBlock *OtherPred : predecessors(Succ)) {
if (BB == OtherPred)
continue;
BasicBlock::iterator I = OtherPred->begin();
LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
if (!LPad2 || !LPad2->isIdenticalTo(LPad))
continue;
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
BranchInst *BI2 = dyn_cast<BranchInst>(I);
if (!BI2 || !BI2->isIdenticalTo(BI))
continue;
std::vector<DominatorTree::UpdateType> Updates;
SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
for (BasicBlock *Pred : UniquePreds) {
InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
"unexpected successor");
II->setUnwindDest(OtherPred);
if (DTU) {
Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
Updates.push_back({DominatorTree::Delete, Pred, BB});
}
}
for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
if (isa<DbgInfoIntrinsic>(Inst))
Inst.eraseFromParent();
SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
for (BasicBlock *Succ : UniqueSuccs) {
Succ->removePredecessor(BB);
if (DTU)
Updates.push_back({DominatorTree::Delete, BB, Succ});
}
IRBuilder<> Builder(BI);
Builder.CreateUnreachable();
BI->eraseFromParent();
if (DTU)
DTU->applyUpdates(Updates);
return true;
}
return false;
}
bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
: simplifyCondBranch(Branch, Builder);
}
bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
IRBuilder<> &Builder) {
BasicBlock *BB = BI->getParent();
BasicBlock *Succ = BI->getSuccessor(0);
bool NeedCanonicalLoop =
Options.NeedCanonicalLoop &&
(!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
(is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
!NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
return true;
if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
return true;
}
if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
return true;
}
if (FoldBranchToCommonDest(BI, DTU, nullptr, &TTI,
Options.BonusInstThreshold))
return requestResimplify();
return false;
}
static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
BasicBlock *PredPred = nullptr;
for (auto *P : predecessors(BB)) {
BasicBlock *PPred = P->getSinglePredecessor();
if (!PPred || (PredPred && PredPred != PPred))
return nullptr;
PredPred = PPred;
}
return PredPred;
}
bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
assert(
!isa<ConstantInt>(BI->getCondition()) &&
BI->getSuccessor(0) != BI->getSuccessor(1) &&
"Tautological conditional branch should have been eliminated already.");
BasicBlock *BB = BI->getParent();
if (!Options.SimplifyCondBranch)
return false;
if (isValueEqualityComparison(BI)) {
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
return requestResimplify();
auto I = BB->instructionsWithoutDebug(true).begin();
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
return requestResimplify();
} else if (&*I == cast<Instruction>(BI->getCondition())) {
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
return requestResimplify();
}
}
if (SimplifyBranchOnICmpChain(BI, Builder, DL))
return true;
Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
if (Imp) {
auto *OldCond = BI->getCondition();
ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
: ConstantInt::getFalse(BB->getContext());
BI->setCondition(TorF);
RecursivelyDeleteTriviallyDeadInstructions(OldCond);
return requestResimplify();
}
if (FoldBranchToCommonDest(BI, DTU, nullptr, &TTI,
Options.BonusInstThreshold))
return requestResimplify();
if (BI->getSuccessor(0)->getSinglePredecessor()) {
if (BI->getSuccessor(1)->getSinglePredecessor()) {
if (HoistCommon &&
HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
return requestResimplify();
} else {
Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
return requestResimplify();
}
} else if (BI->getSuccessor(1)->getSinglePredecessor()) {
Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
return requestResimplify();
}
if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
return requestResimplify();
for (BasicBlock *Pred : predecessors(BB))
if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
return requestResimplify();
if (MergeCondStores)
if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
return requestResimplify();
return false;
}
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
Constant *C = dyn_cast<Constant>(V);
if (!C)
return false;
if (I->use_empty())
return false;
if (C->isNullValue() || isa<UndefValue>(C)) {
auto *Use = cast<Instruction>(*I->user_begin());
if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
return false;
auto InstrRange =
make_range(std::next(I->getIterator()), Use->getIterator());
if (any_of(InstrRange, [](Instruction &I) {
return !isGuaranteedToTransferExecutionToSuccessor(&I);
}))
return false;
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
if (GEP->getPointerOperand() == I) {
if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
PtrValueMayBeModified = true;
return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
}
if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
if (LoadInst *LI = dyn_cast<LoadInst>(Use))
if (!LI->isVolatile())
return !NullPointerIsDefined(LI->getFunction(),
LI->getPointerAddressSpace());
if (StoreInst *SI = dyn_cast<StoreInst>(Use))
if (!SI->isVolatile())
return (!NullPointerIsDefined(SI->getFunction(),
SI->getPointerAddressSpace())) &&
SI->getPointerOperand() == I;
if (auto *CB = dyn_cast<CallBase>(Use)) {
if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
return false;
if (CB->getCalledOperand() == I)
return true;
if (C->isNullValue()) {
for (const llvm::Use &Arg : CB->args())
if (Arg == I) {
unsigned ArgIdx = CB->getArgOperandNo(&Arg);
if (CB->isPassingUndefUB(ArgIdx) &&
CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
return !PtrValueMayBeModified;
}
}
} else if (isa<UndefValue>(C)) {
for (const llvm::Use &Arg : CB->args())
if (Arg == I) {
unsigned ArgIdx = CB->getArgOperandNo(&Arg);
if (CB->isPassingUndefUB(ArgIdx)) {
return true;
}
}
}
}
}
return false;
}
static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
DomTreeUpdater *DTU) {
for (PHINode &PHI : BB->phis())
for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
BasicBlock *Predecessor = PHI.getIncomingBlock(i);
Instruction *T = Predecessor->getTerminator();
IRBuilder<> Builder(T);
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
BB->removePredecessor(Predecessor);
if (BI->isUnconditional())
Builder.CreateUnreachable();
else {
Value *Cond = BI->getCondition();
if (BI->getSuccessor(0) == BB)
Builder.CreateAssumption(Builder.CreateNot(Cond));
else
Builder.CreateAssumption(Cond);
Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
: BI->getSuccessor(0));
}
BI->eraseFromParent();
if (DTU)
DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
return true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
BasicBlock *Unreachable = BasicBlock::Create(
Predecessor->getContext(), "unreachable", BB->getParent(), BB);
Builder.SetInsertPoint(Unreachable);
Builder.CreateUnreachable();
for (auto &Case : SI->cases())
if (Case.getCaseSuccessor() == BB) {
BB->removePredecessor(Predecessor);
Case.setSuccessor(Unreachable);
}
if (SI->getDefaultDest() == BB) {
BB->removePredecessor(Predecessor);
SI->setDefaultDest(Unreachable);
}
if (DTU)
DTU->applyUpdates(
{ { DominatorTree::Insert, Predecessor, Unreachable },
{ DominatorTree::Delete, Predecessor, BB } });
return true;
}
}
return false;
}
bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
bool Changed = false;
assert(BB && BB->getParent() && "Block not embedded in function!");
assert(BB->getTerminator() && "Degenerate basic block encountered!");
if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
BB->getSinglePredecessor() == BB) {
LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
DeleteDeadBlock(BB, DTU);
return true;
}
Changed |= ConstantFoldTerminator(BB, true,
nullptr, DTU);
Changed |= EliminateDuplicatePHINodes(BB);
if (removeUndefIntroducingPredecessor(BB, DTU))
return requestResimplify();
if (MergeBlockIntoPredecessor(BB, DTU))
return true;
if (SinkCommon && Options.SinkCommonInsts)
if (SinkCommonCodeFromPredecessors(BB, DTU) ||
MergeCompatibleInvokes(BB, DTU)) {
return true;
}
IRBuilder<> Builder(BB);
if (Options.FoldTwoEntryPHINode) {
if (auto *PN = dyn_cast<PHINode>(BB->begin()))
if (PN->getNumIncomingValues() == 2)
if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
return true;
}
Instruction *Terminator = BB->getTerminator();
Builder.SetInsertPoint(Terminator);
switch (Terminator->getOpcode()) {
case Instruction::Br:
Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
break;
case Instruction::Resume:
Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
break;
case Instruction::CleanupRet:
Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
break;
case Instruction::Switch:
Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
break;
case Instruction::Unreachable:
Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
break;
case Instruction::IndirectBr:
Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
break;
}
return Changed;
}
bool SimplifyCFGOpt::run(BasicBlock *BB) {
bool Changed = false;
do {
Resimplify = false;
Changed |= simplifyOnce(BB);
} while (Resimplify);
return Changed;
}
bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
ArrayRef<WeakVH> LoopHeaders) {
return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
Options)
.run(BB);
}