; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instcombine -S | FileCheck %s define i32 @foo(i32 %a, i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @foo( ; CHECK-NEXT: [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]] ; CHECK-NEXT: ret i32 [[TMP1]] ; %e = icmp slt i32 %a, %b %f = sext i1 %e to i32 %g = and i32 %c, %f %h = xor i32 %f, -1 %i = and i32 %d, %h %j = or i32 %g, %i ret i32 %j } define i32 @bar(i32 %a, i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @bar( ; CHECK-NEXT: [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]] ; CHECK-NEXT: ret i32 [[TMP1]] ; %e = icmp slt i32 %a, %b %f = sext i1 %e to i32 %g = and i32 %c, %f %h = xor i32 %f, -1 %i = and i32 %d, %h %j = or i32 %i, %g ret i32 %j } define i32 @goo(i32 %a, i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @goo( ; CHECK-NEXT: [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]] ; CHECK-NEXT: ret i32 [[TMP1]] ; %t0 = icmp slt i32 %a, %b %iftmp.0.0 = select i1 %t0, i32 -1, i32 0 %t1 = and i32 %iftmp.0.0, %c %not = xor i32 %iftmp.0.0, -1 %t2 = and i32 %not, %d %t3 = or i32 %t1, %t2 ret i32 %t3 } define i32 @poo(i32 %a, i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @poo( ; CHECK-NEXT: [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[T3:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]] ; CHECK-NEXT: ret i32 [[T3]] ; %t0 = icmp slt i32 %a, %b %iftmp.0.0 = select i1 %t0, i32 -1, i32 0 %t1 = and i32 %iftmp.0.0, %c %iftmp = select i1 %t0, i32 0, i32 -1 %t2 = and i32 %iftmp, %d %t3 = or i32 %t1, %t2 ret i32 %t3 } ; PR32791 - https://bugs.llvm.org//show_bug.cgi?id=32791 ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this. define i32 @fold_inverted_icmp_preds(i32 %a, i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @fold_inverted_icmp_preds( ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0 ; CHECK-NEXT: [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]] ; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 0, i32 [[D:%.*]] ; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]] ; CHECK-NEXT: ret i32 [[OR]] ; %cmp1 = icmp slt i32 %a, %b %sel1 = select i1 %cmp1, i32 %c, i32 0 %cmp2 = icmp sge i32 %a, %b %sel2 = select i1 %cmp2, i32 %d, i32 0 %or = or i32 %sel1, %sel2 ret i32 %or } ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this. define i32 @fold_inverted_icmp_preds_reverse(i32 %a, i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @fold_inverted_icmp_preds_reverse( ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 0, i32 [[C:%.*]] ; CHECK-NEXT: [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]] ; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 [[D:%.*]], i32 0 ; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]] ; CHECK-NEXT: ret i32 [[OR]] ; %cmp1 = icmp slt i32 %a, %b %sel1 = select i1 %cmp1, i32 0, i32 %c %cmp2 = icmp sge i32 %a, %b %sel2 = select i1 %cmp2, i32 0, i32 %d %or = or i32 %sel1, %sel2 ret i32 %or } ; TODO: Should fcmp have the same sort of predicate canonicalization as icmp? define i32 @fold_inverted_fcmp_preds(float %a, float %b, i32 %c, i32 %d) { ; CHECK-LABEL: @fold_inverted_fcmp_preds( ; CHECK-NEXT: [[CMP1:%.*]] = fcmp olt float [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0 ; CHECK-NEXT: [[CMP2:%.*]] = fcmp uge float [[A]], [[B]] ; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0 ; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]] ; CHECK-NEXT: ret i32 [[OR]] ; %cmp1 = fcmp olt float %a, %b %sel1 = select i1 %cmp1, i32 %c, i32 0 %cmp2 = fcmp uge float %a, %b %sel2 = select i1 %cmp2, i32 %d, i32 0 %or = or i32 %sel1, %sel2 ret i32 %or } ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this. define <2 x i32> @fold_inverted_icmp_vector_preds(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c, <2 x i32> %d) { ; CHECK-LABEL: @fold_inverted_icmp_vector_preds( ; CHECK-NEXT: [[CMP1_NOT:%.*]] = icmp eq <2 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[SEL1:%.*]] = select <2 x i1> [[CMP1_NOT]], <2 x i32> zeroinitializer, <2 x i32> [[C:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp eq <2 x i32> [[A]], [[B]] ; CHECK-NEXT: [[SEL2:%.*]] = select <2 x i1> [[CMP2]], <2 x i32> [[D:%.*]], <2 x i32> zeroinitializer ; CHECK-NEXT: [[OR:%.*]] = or <2 x i32> [[SEL1]], [[SEL2]] ; CHECK-NEXT: ret <2 x i32> [[OR]] ; %cmp1 = icmp ne <2 x i32> %a, %b %sel1 = select <2 x i1> %cmp1, <2 x i32> %c, <2 x i32> <i32 0, i32 0> %cmp2 = icmp eq <2 x i32> %a, %b %sel2 = select <2 x i1> %cmp2, <2 x i32> %d, <2 x i32> <i32 0, i32 0> %or = or <2 x i32> %sel1, %sel2 ret <2 x i32> %or } define i32 @par(i32 %a, i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @par( ; CHECK-NEXT: [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]] ; CHECK-NEXT: ret i32 [[TMP1]] ; %t0 = icmp slt i32 %a, %b %iftmp.1.0 = select i1 %t0, i32 -1, i32 0 %t1 = and i32 %iftmp.1.0, %c %not = xor i32 %iftmp.1.0, -1 %t2 = and i32 %not, %d %t3 = or i32 %t1, %t2 ret i32 %t3 } ; In the following tests (8 commutation variants), verify that a bitcast doesn't get ; in the way of a select transform. These bitcasts are common in SSE/AVX and possibly ; other vector code because of canonicalization to i64 elements for vectors. ; The fptosi instructions are included to avoid commutation canonicalization based on ; operator weight. Using another cast operator ensures that both operands of all logic ; ops are equally weighted, and this ensures that we're testing all commutation ; possibilities. define <2 x i64> @bitcast_select_swap0(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap0( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %bc1, %sia %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %bc2, %sib %or = or <2 x i64> %and1, %and2 ret <2 x i64> %or } define <2 x i64> @bitcast_select_swap1(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap1( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %bc1, %sia %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %bc2, %sib %or = or <2 x i64> %and2, %and1 ret <2 x i64> %or } define <2 x i64> @bitcast_select_swap2(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap2( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %bc1, %sia %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %sib, %bc2 %or = or <2 x i64> %and1, %and2 ret <2 x i64> %or } define <2 x i64> @bitcast_select_swap3(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap3( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %bc1, %sia %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %sib, %bc2 %or = or <2 x i64> %and2, %and1 ret <2 x i64> %or } define <2 x i64> @bitcast_select_swap4(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap4( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %sia, %bc1 %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %bc2, %sib %or = or <2 x i64> %and1, %and2 ret <2 x i64> %or } define <2 x i64> @bitcast_select_swap5(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap5( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %sia, %bc1 %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %bc2, %sib %or = or <2 x i64> %and2, %and1 ret <2 x i64> %or } define <2 x i64> @bitcast_select_swap6(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap6( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %sia, %bc1 %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %sib, %bc2 %or = or <2 x i64> %and1, %and2 ret <2 x i64> %or } define <2 x i64> @bitcast_select_swap7(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @bitcast_select_swap7( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64> ; CHECK-NEXT: ret <2 x i64> [[TMP4]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %sia, %bc1 %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %sib, %bc2 %or = or <2 x i64> %and2, %and1 ret <2 x i64> %or } define <2 x i64> @bitcast_select_multi_uses(<4 x i1> %cmp, <2 x i64> %a, <2 x i64> %b) { ; CHECK-LABEL: @bitcast_select_multi_uses( ; CHECK-NEXT: [[SEXT:%.*]] = sext <4 x i1> [[CMP:%.*]] to <4 x i32> ; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64> ; CHECK-NEXT: [[AND1:%.*]] = and <2 x i64> [[BC1]], [[A:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64> ; CHECK-NEXT: [[BC2:%.*]] = xor <2 x i64> [[TMP1]], <i64 -1, i64 -1> ; CHECK-NEXT: [[AND2:%.*]] = and <2 x i64> [[BC2]], [[B:%.*]] ; CHECK-NEXT: [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]] ; CHECK-NEXT: [[ADD:%.*]] = add <2 x i64> [[AND2]], [[BC2]] ; CHECK-NEXT: [[SUB:%.*]] = sub <2 x i64> [[OR]], [[ADD]] ; CHECK-NEXT: ret <2 x i64> [[SUB]] ; %sext = sext <4 x i1> %cmp to <4 x i32> %bc1 = bitcast <4 x i32> %sext to <2 x i64> %and1 = and <2 x i64> %a, %bc1 %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1> %bc2 = bitcast <4 x i32> %neg to <2 x i64> %and2 = and <2 x i64> %b, %bc2 %or = or <2 x i64> %and2, %and1 %add = add <2 x i64> %and2, %bc2 %sub = sub <2 x i64> %or, %add ret <2 x i64> %sub } define i1 @bools(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @bools( ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]] ; CHECK-NEXT: ret i1 [[TMP1]] ; %not = xor i1 %c, -1 %and1 = and i1 %not, %a %and2 = and i1 %c, %b %or = or i1 %and1, %and2 ret i1 %or } define i1 @bools_logical(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @bools_logical( ; CHECK-NEXT: [[OR:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]] ; CHECK-NEXT: ret i1 [[OR]] ; %not = xor i1 %c, -1 %and1 = select i1 %not, i1 %a, i1 false %and2 = select i1 %c, i1 %b, i1 false %or = select i1 %and1, i1 true, i1 %and2 ret i1 %or } ; Form a select if we know we can get replace 2 simple logic ops. define i1 @bools_multi_uses1(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @bools_multi_uses1( ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[C:%.*]], true ; CHECK-NEXT: [[AND1:%.*]] = and i1 [[NOT]], [[A:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]] ; CHECK-NEXT: [[XOR:%.*]] = xor i1 [[TMP1]], [[AND1]] ; CHECK-NEXT: ret i1 [[XOR]] ; %not = xor i1 %c, -1 %and1 = and i1 %not, %a %and2 = and i1 %c, %b %or = or i1 %and1, %and2 %xor = xor i1 %or, %and1 ret i1 %xor } define i1 @bools_multi_uses1_logical(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @bools_multi_uses1_logical( ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[C:%.*]], true ; CHECK-NEXT: [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false ; CHECK-NEXT: [[OR:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]] ; CHECK-NEXT: [[XOR:%.*]] = xor i1 [[OR]], [[AND1]] ; CHECK-NEXT: ret i1 [[XOR]] ; %not = xor i1 %c, -1 %and1 = select i1 %not, i1 %a, i1 false %and2 = select i1 %c, i1 %b, i1 false %or = select i1 %and1, i1 true, i1 %and2 %xor = xor i1 %or, %and1 ret i1 %xor } ; Don't replace a cheap logic op with a potentially expensive select ; unless we can also eliminate one of the other original ops. define i1 @bools_multi_uses2(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @bools_multi_uses2( ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]] ; CHECK-NEXT: ret i1 [[TMP1]] ; %not = xor i1 %c, -1 %and1 = and i1 %not, %a %and2 = and i1 %c, %b %or = or i1 %and1, %and2 %add = add i1 %and1, %and2 %and3 = and i1 %or, %add ret i1 %and3 } define i1 @bools_multi_uses2_logical(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @bools_multi_uses2_logical( ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[C:%.*]], true ; CHECK-NEXT: [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false ; CHECK-NEXT: [[AND2:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 false ; CHECK-NEXT: [[OR:%.*]] = select i1 [[C]], i1 [[B]], i1 [[A]] ; CHECK-NEXT: [[ADD:%.*]] = xor i1 [[AND1]], [[AND2]] ; CHECK-NEXT: [[AND3:%.*]] = select i1 [[OR]], i1 [[ADD]], i1 false ; CHECK-NEXT: ret i1 [[AND3]] ; %not = xor i1 %c, -1 %and1 = select i1 %not, i1 %a, i1 false %and2 = select i1 %c, i1 %b, i1 false %or = select i1 %and1, i1 true, i1 %and2 %add = add i1 %and1, %and2 %and3 = select i1 %or, i1 %add, i1 false ret i1 %and3 } define <4 x i1> @vec_of_bools(<4 x i1> %a, <4 x i1> %b, <4 x i1> %c) { ; CHECK-LABEL: @vec_of_bools( ; CHECK-NEXT: [[TMP1:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[B:%.*]], <4 x i1> [[A:%.*]] ; CHECK-NEXT: ret <4 x i1> [[TMP1]] ; %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true> %and1 = and <4 x i1> %not, %a %and2 = and <4 x i1> %b, %c %or = or <4 x i1> %and2, %and1 ret <4 x i1> %or } define i4 @vec_of_casted_bools(i4 %a, i4 %b, <4 x i1> %c) { ; CHECK-LABEL: @vec_of_casted_bools( ; CHECK-NEXT: [[TMP1:%.*]] = bitcast i4 [[B:%.*]] to <4 x i1> ; CHECK-NEXT: [[TMP2:%.*]] = bitcast i4 [[A:%.*]] to <4 x i1> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[TMP1]], <4 x i1> [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i1> [[TMP3]] to i4 ; CHECK-NEXT: ret i4 [[TMP4]] ; %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true> %bc1 = bitcast <4 x i1> %not to i4 %bc2 = bitcast <4 x i1> %c to i4 %and1 = and i4 %a, %bc1 %and2 = and i4 %bc2, %b %or = or i4 %and1, %and2 ret i4 %or } ; Inverted 'and' constants mean this is a select which is canonicalized to a shuffle. define <4 x i32> @vec_sel_consts(<4 x i32> %a, <4 x i32> %b) { ; CHECK-LABEL: @vec_sel_consts( ; CHECK-NEXT: [[TMP1:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]], <4 x i32> <i32 0, i32 5, i32 6, i32 3> ; CHECK-NEXT: ret <4 x i32> [[TMP1]] ; %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 -1> %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 -1, i32 0> %or = or <4 x i32> %and1, %and2 ret <4 x i32> %or } define <3 x i129> @vec_sel_consts_weird(<3 x i129> %a, <3 x i129> %b) { ; CHECK-LABEL: @vec_sel_consts_weird( ; CHECK-NEXT: [[TMP1:%.*]] = shufflevector <3 x i129> [[A:%.*]], <3 x i129> [[B:%.*]], <3 x i32> <i32 0, i32 4, i32 2> ; CHECK-NEXT: ret <3 x i129> [[TMP1]] ; %and1 = and <3 x i129> %a, <i129 -1, i129 0, i129 -1> %and2 = and <3 x i129> %b, <i129 0, i129 -1, i129 0> %or = or <3 x i129> %and2, %and1 ret <3 x i129> %or } ; The mask elements must be inverted for this to be a select. define <4 x i32> @vec_not_sel_consts(<4 x i32> %a, <4 x i32> %b) { ; CHECK-LABEL: @vec_not_sel_consts( ; CHECK-NEXT: [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 0, i32 0, i32 0> ; CHECK-NEXT: [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 -1> ; CHECK-NEXT: [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]] ; CHECK-NEXT: ret <4 x i32> [[OR]] ; %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 0> %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 -1> %or = or <4 x i32> %and1, %and2 ret <4 x i32> %or } define <4 x i32> @vec_not_sel_consts_undef_elts(<4 x i32> %a, <4 x i32> %b) { ; CHECK-LABEL: @vec_not_sel_consts_undef_elts( ; CHECK-NEXT: [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 undef, i32 0, i32 0> ; CHECK-NEXT: [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 undef> ; CHECK-NEXT: [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]] ; CHECK-NEXT: ret <4 x i32> [[OR]] ; %and1 = and <4 x i32> %a, <i32 -1, i32 undef, i32 0, i32 0> %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 undef> %or = or <4 x i32> %and1, %and2 ret <4 x i32> %or } ; The inverted constants may be operands of xor instructions. define <4 x i32> @vec_sel_xor(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) { ; CHECK-LABEL: @vec_sel_xor( ; CHECK-NEXT: [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 false, i1 true, i1 true, i1 true> ; CHECK-NEXT: [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]] ; CHECK-NEXT: ret <4 x i32> [[TMP2]] ; %mask = sext <4 x i1> %c to <4 x i32> %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0> %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1> %and1 = and <4 x i32> %not_mask_flip1, %a %and2 = and <4 x i32> %mask_flip1, %b %or = or <4 x i32> %and1, %and2 ret <4 x i32> %or } ; Allow the transform even if the mask values have multiple uses because ; there's still a net reduction of instructions from removing the and/and/or. define <4 x i32> @vec_sel_xor_multi_use(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) { ; CHECK-LABEL: @vec_sel_xor_multi_use( ; CHECK-NEXT: [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 true, i1 false, i1 false, i1 false> ; CHECK-NEXT: [[MASK_FLIP1:%.*]] = sext <4 x i1> [[TMP1]] to <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = xor <4 x i1> [[C]], <i1 false, i1 true, i1 true, i1 true> ; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]] ; CHECK-NEXT: [[ADD:%.*]] = add <4 x i32> [[TMP3]], [[MASK_FLIP1]] ; CHECK-NEXT: ret <4 x i32> [[ADD]] ; %mask = sext <4 x i1> %c to <4 x i32> %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0> %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1> %and1 = and <4 x i32> %not_mask_flip1, %a %and2 = and <4 x i32> %mask_flip1, %b %or = or <4 x i32> %and1, %and2 %add = add <4 x i32> %or, %mask_flip1 ret <4 x i32> %add } ; The 'ashr' guarantees that we have a bitmask, so this is select with truncated condition. define i32 @allSignBits(i32 %cond, i32 %tval, i32 %fval) { ; CHECK-LABEL: @allSignBits( ; CHECK-NEXT: [[ISNEG1:%.*]] = icmp slt i32 [[COND:%.*]], 0 ; CHECK-NEXT: [[A1:%.*]] = select i1 [[ISNEG1]], i32 [[TVAL:%.*]], i32 0 ; CHECK-NEXT: [[ISNEG:%.*]] = icmp slt i32 [[COND]], 0 ; CHECK-NEXT: [[A2:%.*]] = select i1 [[ISNEG]], i32 0, i32 [[FVAL:%.*]] ; CHECK-NEXT: [[SEL:%.*]] = or i32 [[A1]], [[A2]] ; CHECK-NEXT: ret i32 [[SEL]] ; %bitmask = ashr i32 %cond, 31 %not_bitmask = xor i32 %bitmask, -1 %a1 = and i32 %tval, %bitmask %a2 = and i32 %not_bitmask, %fval %sel = or i32 %a1, %a2 ret i32 %sel } define <4 x i8> @allSignBits_vec(<4 x i8> %cond, <4 x i8> %tval, <4 x i8> %fval) { ; CHECK-LABEL: @allSignBits_vec( ; CHECK-NEXT: [[ISNEG1:%.*]] = icmp slt <4 x i8> [[COND:%.*]], zeroinitializer ; CHECK-NEXT: [[A1:%.*]] = select <4 x i1> [[ISNEG1]], <4 x i8> [[TVAL:%.*]], <4 x i8> zeroinitializer ; CHECK-NEXT: [[ISNEG:%.*]] = icmp slt <4 x i8> [[COND]], zeroinitializer ; CHECK-NEXT: [[A2:%.*]] = select <4 x i1> [[ISNEG]], <4 x i8> zeroinitializer, <4 x i8> [[FVAL:%.*]] ; CHECK-NEXT: [[SEL:%.*]] = or <4 x i8> [[A2]], [[A1]] ; CHECK-NEXT: ret <4 x i8> [[SEL]] ; %bitmask = ashr <4 x i8> %cond, <i8 7, i8 7, i8 7, i8 7> %not_bitmask = xor <4 x i8> %bitmask, <i8 -1, i8 -1, i8 -1, i8 -1> %a1 = and <4 x i8> %tval, %bitmask %a2 = and <4 x i8> %fval, %not_bitmask %sel = or <4 x i8> %a2, %a1 ret <4 x i8> %sel } ; Negative test - make sure that bitcasts from FP do not cause a crash. define <2 x i64> @fp_bitcast(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @fp_bitcast( ; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64> ; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64> ; CHECK-NEXT: [[BC1:%.*]] = bitcast <2 x double> [[A]] to <2 x i64> ; CHECK-NEXT: [[AND1:%.*]] = and <2 x i64> [[SIA]], [[BC1]] ; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x double> [[B]] to <2 x i64> ; CHECK-NEXT: [[AND2:%.*]] = and <2 x i64> [[SIB]], [[BC2]] ; CHECK-NEXT: [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]] ; CHECK-NEXT: ret <2 x i64> [[OR]] ; %sia = fptosi <2 x double> %a to <2 x i64> %sib = fptosi <2 x double> %b to <2 x i64> %bc1 = bitcast <2 x double> %a to <2 x i64> %and1 = and <2 x i64> %sia, %bc1 %bc2 = bitcast <2 x double> %b to <2 x i64> %and2 = and <2 x i64> %sib, %bc2 %or = or <2 x i64> %and2, %and1 ret <2 x i64> %or } define <4 x i32> @computesignbits_through_shuffles(<4 x float> %x, <4 x float> %y, <4 x float> %z) { ; CHECK-LABEL: @computesignbits_through_shuffles( ; CHECK-NEXT: [[CMP:%.*]] = fcmp ole <4 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[SEXT:%.*]] = sext <4 x i1> [[CMP]] to <4 x i32> ; CHECK-NEXT: [[S1:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1> ; CHECK-NEXT: [[S2:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3> ; CHECK-NEXT: [[SHUF_OR1:%.*]] = or <4 x i32> [[S1]], [[S2]] ; CHECK-NEXT: [[S3:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1> ; CHECK-NEXT: [[S4:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3> ; CHECK-NEXT: [[SHUF_OR2:%.*]] = or <4 x i32> [[S3]], [[S4]] ; CHECK-NEXT: [[TMP1:%.*]] = trunc <4 x i32> [[SHUF_OR2]] to <4 x i1> ; CHECK-NEXT: [[DOTV:%.*]] = select <4 x i1> [[TMP1]], <4 x float> [[Z:%.*]], <4 x float> [[X]] ; CHECK-NEXT: [[TMP2:%.*]] = bitcast <4 x float> [[DOTV]] to <4 x i32> ; CHECK-NEXT: ret <4 x i32> [[TMP2]] ; %cmp = fcmp ole <4 x float> %x, %y %sext = sext <4 x i1> %cmp to <4 x i32> %s1 = shufflevector <4 x i32> %sext, <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1> %s2 = shufflevector <4 x i32> %sext, <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3> %shuf_or1 = or <4 x i32> %s1, %s2 %s3 = shufflevector <4 x i32> %shuf_or1, <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1> %s4 = shufflevector <4 x i32> %shuf_or1, <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3> %shuf_or2 = or <4 x i32> %s3, %s4 %not_or2 = xor <4 x i32> %shuf_or2, <i32 -1, i32 -1, i32 -1, i32 -1> %xbc = bitcast <4 x float> %x to <4 x i32> %zbc = bitcast <4 x float> %z to <4 x i32> %and1 = and <4 x i32> %not_or2, %xbc %and2 = and <4 x i32> %shuf_or2, %zbc %sel = or <4 x i32> %and1, %and2 ret <4 x i32> %sel } define <4 x i32> @computesignbits_through_two_input_shuffle(<4 x i32> %x, <4 x i32> %y, <4 x i1> %cond1, <4 x i1> %cond2) { ; CHECK-LABEL: @computesignbits_through_two_input_shuffle( ; CHECK-NEXT: [[SEXT1:%.*]] = sext <4 x i1> [[COND1:%.*]] to <4 x i32> ; CHECK-NEXT: [[SEXT2:%.*]] = sext <4 x i1> [[COND2:%.*]] to <4 x i32> ; CHECK-NEXT: [[COND:%.*]] = shufflevector <4 x i32> [[SEXT1]], <4 x i32> [[SEXT2]], <4 x i32> <i32 0, i32 2, i32 4, i32 6> ; CHECK-NEXT: [[TMP1:%.*]] = trunc <4 x i32> [[COND]] to <4 x i1> ; CHECK-NEXT: [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[Y:%.*]], <4 x i32> [[X:%.*]] ; CHECK-NEXT: ret <4 x i32> [[TMP2]] ; %sext1 = sext <4 x i1> %cond1 to <4 x i32> %sext2 = sext <4 x i1> %cond2 to <4 x i32> %cond = shufflevector <4 x i32> %sext1, <4 x i32> %sext2, <4 x i32> <i32 0, i32 2, i32 4, i32 6> %notcond = xor <4 x i32> %cond, <i32 -1, i32 -1, i32 -1, i32 -1> %and1 = and <4 x i32> %notcond, %x %and2 = and <4 x i32> %cond, %y %sel = or <4 x i32> %and1, %and2 ret <4 x i32> %sel }