; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instsimplify -S | FileCheck %s ; Infinity define i1 @inf0(double %arg) { ; CHECK-LABEL: @inf0( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp ogt double %arg, 0x7FF0000000000000 ret i1 %tmp } define i1 @inf1(double %arg) { ; CHECK-LABEL: @inf1( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp ule double %arg, 0x7FF0000000000000 ret i1 %tmp } ; Negative infinity define i1 @ninf0(double %arg) { ; CHECK-LABEL: @ninf0( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp olt double %arg, 0xFFF0000000000000 ret i1 %tmp } define i1 @ninf1(double %arg) { ; CHECK-LABEL: @ninf1( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp uge double %arg, 0xFFF0000000000000 ret i1 %tmp } ; NaNs define i1 @nan0(double %arg) { ; CHECK-LABEL: @nan0( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp ord double %arg, 0x7FF00000FFFFFFFF ret i1 %tmp } define i1 @nan1(double %arg) { ; CHECK-LABEL: @nan1( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp oeq double %arg, 0x7FF00000FFFFFFFF ret i1 %tmp } define i1 @nan2(double %arg) { ; CHECK-LABEL: @nan2( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp olt double %arg, 0x7FF00000FFFFFFFF ret i1 %tmp } define i1 @nan3(double %arg) { ; CHECK-LABEL: @nan3( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp uno double %arg, 0x7FF00000FFFFFFFF ret i1 %tmp } define i1 @nan4(double %arg) { ; CHECK-LABEL: @nan4( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp une double %arg, 0x7FF00000FFFFFFFF ret i1 %tmp } define i1 @nan5(double %arg) { ; CHECK-LABEL: @nan5( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp ult double %arg, 0x7FF00000FFFFFFFF ret i1 %tmp } ; Negative NaN. define i1 @nnan0(double %arg) { ; CHECK-LABEL: @nnan0( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp ord double %arg, 0xFFF00000FFFFFFFF ret i1 %tmp } define i1 @nnan1(double %arg) { ; CHECK-LABEL: @nnan1( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp oeq double %arg, 0xFFF00000FFFFFFFF ret i1 %tmp } define i1 @nnan2(double %arg) { ; CHECK-LABEL: @nnan2( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp olt double %arg, 0xFFF00000FFFFFFFF ret i1 %tmp } define i1 @nnan3(double %arg) { ; CHECK-LABEL: @nnan3( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp uno double %arg, 0xFFF00000FFFFFFFF ret i1 %tmp } define i1 @nnan4(double %arg) { ; CHECK-LABEL: @nnan4( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp une double %arg, 0xFFF00000FFFFFFFF ret i1 %tmp } define i1 @nnan5(double %arg) { ; CHECK-LABEL: @nnan5( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp ult double %arg, 0xFFF00000FFFFFFFF ret i1 %tmp } ; Negative zero. define i1 @nzero0() { ; CHECK-LABEL: @nzero0( ; CHECK-NEXT: ret i1 true ; %tmp = fcmp oeq double 0.0, -0.0 ret i1 %tmp } define i1 @nzero1() { ; CHECK-LABEL: @nzero1( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp ogt double 0.0, -0.0 ret i1 %tmp } ; No enlightenment here. define i1 @one_with_self(double %arg) { ; CHECK-LABEL: @one_with_self( ; CHECK-NEXT: ret i1 false ; %tmp = fcmp one double %arg, %arg ret i1 %tmp } ; These tests choose arbitrarily between float and double, ; and between uge and olt, to give reasonble coverage ; without combinatorial explosion. declare half @llvm.fabs.f16(half) declare float @llvm.fabs.f32(float) declare double @llvm.fabs.f64(double) declare <2 x float> @llvm.fabs.v2f32(<2 x float>) declare <3 x float> @llvm.fabs.v3f32(<3 x float>) declare <2 x double> @llvm.fabs.v2f64(<2 x double>) declare float @llvm.sqrt.f32(float) declare double @llvm.powi.f64.i32(double,i32) declare float @llvm.exp.f32(float) declare float @llvm.minnum.f32(float, float) declare <2 x float> @llvm.minnum.v2f32(<2 x float>, <2 x float>) declare float @llvm.maxnum.f32(float, float) declare <2 x float> @llvm.maxnum.v2f32(<2 x float>, <2 x float>) declare float @llvm.maximum.f32(float, float) declare double @llvm.exp2.f64(double) declare float @llvm.fma.f32(float,float,float) declare void @expect_equal(i1,i1) define i1 @orderedLessZeroTree(float,float,float,float) { ; CHECK-LABEL: @orderedLessZeroTree( ; CHECK-NEXT: ret i1 true ; %square = fmul float %0, %0 %abs = call float @llvm.fabs.f32(float %1) %sqrt = call float @llvm.sqrt.f32(float %2) %fma = call float @llvm.fma.f32(float %3, float %3, float %sqrt) %div = fdiv float %square, %abs %rem = frem float %sqrt, %fma %add = fadd float %div, %rem %uge = fcmp uge float %add, 0.000000e+00 ret i1 %uge } define i1 @orderedLessZero_fdiv(float %x) { ; CHECK-LABEL: @orderedLessZero_fdiv( ; CHECK-NEXT: ret i1 true ; %d = fdiv float %x, %x %uge = fcmp uge float %d, 0.0 ret i1 %uge } ; If x == -0.0, maxnum can return -0.0, but that still compares equal to 0.0. define i1 @orderedLessZero_maxnum(float %x) { ; CHECK-LABEL: @orderedLessZero_maxnum( ; CHECK-NEXT: ret i1 true ; %d = call float @llvm.maxnum.f32(float %x, float 0.0) %uge = fcmp uge float %d, 0.0 ret i1 %uge } define i1 @orderedLessZeroExpExt(float) { ; CHECK-LABEL: @orderedLessZeroExpExt( ; CHECK-NEXT: ret i1 true ; %a = call float @llvm.exp.f32(float %0) %b = fpext float %a to double %uge = fcmp uge double %b, 0.000000e+00 ret i1 %uge } define i1 @orderedLessZeroExp2Trunc(double) { ; CHECK-LABEL: @orderedLessZeroExp2Trunc( ; CHECK-NEXT: ret i1 false ; %a = call double @llvm.exp2.f64(double %0) %b = fptrunc double %a to float %olt = fcmp olt float %b, 0.000000e+00 ret i1 %olt } define i1 @orderedLessZeroPowi(double,double) { ; CHECK-LABEL: @orderedLessZeroPowi( ; CHECK-NEXT: ret i1 false ; ; Even constant exponent %a = call double @llvm.powi.f64.i32(double %0, i32 2) %square = fmul double %1, %1 ; Odd constant exponent with provably non-negative base %b = call double @llvm.powi.f64.i32(double %square, i32 3) %c = fadd double %a, %b %olt = fcmp olt double %b, 0.000000e+00 ret i1 %olt } define i1 @UIToFP_is_nan_or_positive_or_zero(i32 %x) { ; CHECK-LABEL: @UIToFP_is_nan_or_positive_or_zero( ; CHECK-NEXT: ret i1 true ; %a = uitofp i32 %x to float %r = fcmp uge float %a, 0.000000e+00 ret i1 %r } define <2 x i1> @UIToFP_is_nan_or_positive_or_zero_vec(<2 x i32> %x) { ; CHECK-LABEL: @UIToFP_is_nan_or_positive_or_zero_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %a = uitofp <2 x i32> %x to <2 x float> %r = fcmp uge <2 x float> %a, zeroinitializer ret <2 x i1> %r } define i1 @UIToFP_is_positive_or_zero(i32 %x) { ; CHECK-LABEL: @UIToFP_is_positive_or_zero( ; CHECK-NEXT: ret i1 true ; %a = uitofp i32 %x to float %r = fcmp oge float %a, 0.000000e+00 ret i1 %r } define <2 x i1> @UIToFP_is_positive_or_zero_vec(<2 x i32> %x) { ; CHECK-LABEL: @UIToFP_is_positive_or_zero_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %a = uitofp <2 x i32> %x to <2 x float> %r = fcmp oge <2 x float> %a, zeroinitializer ret <2 x i1> %r } define i1 @UIToFP_nnan_is_positive_or_zero(i32 %x) { ; CHECK-LABEL: @UIToFP_nnan_is_positive_or_zero( ; CHECK-NEXT: ret i1 true ; %a = uitofp i32 %x to float %r = fcmp nnan oge float %a, 0.000000e+00 ret i1 %r } define <2 x i1> @UIToFP_nnan_is_positive_or_zero_vec(<2 x i32> %x) { ; CHECK-LABEL: @UIToFP_nnan_is_positive_or_zero_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %a = uitofp <2 x i32> %x to <2 x float> %r = fcmp nnan oge <2 x float> %a, zeroinitializer ret <2 x i1> %r } define i1 @UIToFP_is_not_negative(i32 %x) { ; CHECK-LABEL: @UIToFP_is_not_negative( ; CHECK-NEXT: ret i1 false ; %a = uitofp i32 %x to float %r = fcmp olt float %a, 0.000000e+00 ret i1 %r } define <2 x i1> @UIToFP_is_not_negative_vec(<2 x i32> %x) { ; CHECK-LABEL: @UIToFP_is_not_negative_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %a = uitofp <2 x i32> %x to <2 x float> %r = fcmp olt <2 x float> %a, zeroinitializer ret <2 x i1> %r } ; No FMF are required for this transform. define i1 @UIToFP_is_not_negative_or_nan(i32 %x) { ; CHECK-LABEL: @UIToFP_is_not_negative_or_nan( ; CHECK-NEXT: ret i1 false ; %a = uitofp i32 %x to float %r = fcmp ult float %a, 0.000000e+00 ret i1 %r } define <2 x i1> @UIToFP_is_not_negative_or_nan_vec(<2 x i32> %x) { ; CHECK-LABEL: @UIToFP_is_not_negative_or_nan_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %a = uitofp <2 x i32> %x to <2 x float> %r = fcmp ult <2 x float> %a, zeroinitializer ret <2 x i1> %r } define i1 @UIToFP_nnan_is_not_negative(i32 %x) { ; CHECK-LABEL: @UIToFP_nnan_is_not_negative( ; CHECK-NEXT: ret i1 false ; %a = uitofp i32 %x to float %r = fcmp nnan ult float %a, 0.000000e+00 ret i1 %r } define <2 x i1> @UIToFP_nnan_is_not_negative_vec(<2 x i32> %x) { ; CHECK-LABEL: @UIToFP_nnan_is_not_negative_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %a = uitofp <2 x i32> %x to <2 x float> %r = fcmp nnan ult <2 x float> %a, zeroinitializer ret <2 x i1> %r } define i1 @fabs_is_nan_or_positive_or_zero(double %x) { ; CHECK-LABEL: @fabs_is_nan_or_positive_or_zero( ; CHECK-NEXT: ret i1 true ; %fabs = tail call double @llvm.fabs.f64(double %x) %cmp = fcmp uge double %fabs, 0.0 ret i1 %cmp } define <2 x i1> @fabs_is_nan_or_positive_or_zero_vec(<2 x double> %x) { ; CHECK-LABEL: @fabs_is_nan_or_positive_or_zero_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %fabs = tail call <2 x double> @llvm.fabs.v2f64(<2 x double> %x) %cmp = fcmp uge <2 x double> %fabs, zeroinitializer ret <2 x i1> %cmp } define i1 @fabs_nnan_is_positive_or_zero(double %x) { ; CHECK-LABEL: @fabs_nnan_is_positive_or_zero( ; CHECK-NEXT: ret i1 true ; %fabs = tail call nnan double @llvm.fabs.f64(double %x) %cmp = fcmp oge double %fabs, 0.0 ret i1 %cmp } define <2 x i1> @fabs_nnan_is_positive_or_zero_vec(<2 x double> %x) { ; CHECK-LABEL: @fabs_nnan_is_positive_or_zero_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %fabs = tail call nnan <2 x double> @llvm.fabs.v2f64(<2 x double> %x) %cmp = fcmp oge <2 x double> %fabs, zeroinitializer ret <2 x i1> %cmp } define i1 @fabs_fcmp-nnan_is_positive_or_zero(double %x) { ; CHECK-LABEL: @fabs_fcmp-nnan_is_positive_or_zero( ; CHECK-NEXT: ret i1 true ; %fabs = tail call double @llvm.fabs.f64(double %x) %cmp = fcmp nnan oge double %fabs, 0.0 ret i1 %cmp } define <2 x i1> @fabs_fcmp-nnan_is_positive_or_zero_vec(<2 x double> %x) { ; CHECK-LABEL: @fabs_fcmp-nnan_is_positive_or_zero_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %fabs = tail call <2 x double> @llvm.fabs.v2f64(<2 x double> %x) %cmp = fcmp nnan oge <2 x double> %fabs, zeroinitializer ret <2 x i1> %cmp } define i1 @fabs_is_not_negative(double %x) { ; CHECK-LABEL: @fabs_is_not_negative( ; CHECK-NEXT: ret i1 false ; %fabs = tail call double @llvm.fabs.f64(double %x) %cmp = fcmp olt double %fabs, 0.0 ret i1 %cmp } define <2 x i1> @fabs_is_not_negative_vec(<2 x double> %x) { ; CHECK-LABEL: @fabs_is_not_negative_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %fabs = tail call <2 x double> @llvm.fabs.v2f64(<2 x double> %x) %cmp = fcmp olt <2 x double> %fabs, zeroinitializer ret <2 x i1> %cmp } define i1 @fabs_nnan_is_not_negative(double %x) { ; CHECK-LABEL: @fabs_nnan_is_not_negative( ; CHECK-NEXT: ret i1 false ; %fabs = tail call nnan double @llvm.fabs.f64(double %x) %cmp = fcmp ult double %fabs, 0.0 ret i1 %cmp } define <2 x i1> @fabs_nnan_is_not_negative_vec(<2 x double> %x) { ; CHECK-LABEL: @fabs_nnan_is_not_negative_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %fabs = tail call nnan <2 x double> @llvm.fabs.v2f64(<2 x double> %x) %cmp = fcmp ult <2 x double> %fabs, zeroinitializer ret <2 x i1> %cmp } define i1 @fabs_fcmp-nnan_is_not_negative(double %x) { ; CHECK-LABEL: @fabs_fcmp-nnan_is_not_negative( ; CHECK-NEXT: ret i1 false ; %fabs = tail call double @llvm.fabs.f64(double %x) %cmp = fcmp nnan ult double %fabs, 0.0 ret i1 %cmp } define <2 x i1> @fabs_fcmp-nnan_is_not_negative_vec(<2 x double> %x) { ; CHECK-LABEL: @fabs_fcmp-nnan_is_not_negative_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %fabs = tail call <2 x double> @llvm.fabs.v2f64(<2 x double> %x) %cmp = fcmp nnan ult <2 x double> %fabs, zeroinitializer ret <2 x i1> %cmp } define <2 x i1> @fabs_is_not_negative_negzero(<2 x float> %V) { ; CHECK-LABEL: @fabs_is_not_negative_negzero( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %abs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %V) %cmp = fcmp olt <2 x float> %abs, <float -0.0, float -0.0> ret <2 x i1> %cmp } define <2 x i1> @fabs_is_not_negative_poszero(<2 x float> %V) { ; CHECK-LABEL: @fabs_is_not_negative_poszero( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %abs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %V) %cmp = fcmp olt <2 x float> %abs, <float 0.0, float 0.0> ret <2 x i1> %cmp } define <2 x i1> @fabs_is_not_negative_anyzero(<2 x float> %V) { ; CHECK-LABEL: @fabs_is_not_negative_anyzero( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %abs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %V) %cmp = fcmp olt <2 x float> %abs, <float 0.0, float -0.0> ret <2 x i1> %cmp } define <3 x i1> @fabs_is_not_negative_negzero_undef(<3 x float> %V) { ; CHECK-LABEL: @fabs_is_not_negative_negzero_undef( ; CHECK-NEXT: ret <3 x i1> zeroinitializer ; %abs = call <3 x float> @llvm.fabs.v3f32(<3 x float> %V) %cmp = fcmp olt <3 x float> %abs, <float -0.0, float -0.0, float undef> ret <3 x i1> %cmp } define <3 x i1> @fabs_is_not_negative_poszero_undef(<3 x float> %V) { ; CHECK-LABEL: @fabs_is_not_negative_poszero_undef( ; CHECK-NEXT: ret <3 x i1> zeroinitializer ; %abs = call <3 x float> @llvm.fabs.v3f32(<3 x float> %V) %cmp = fcmp olt <3 x float> %abs, <float 0.0, float 0.0, float undef> ret <3 x i1> %cmp } define <3 x i1> @fabs_is_not_negative_anyzero_undef(<3 x float> %V) { ; CHECK-LABEL: @fabs_is_not_negative_anyzero_undef( ; CHECK-NEXT: ret <3 x i1> zeroinitializer ; %abs = call <3 x float> @llvm.fabs.v3f32(<3 x float> %V) %cmp = fcmp olt <3 x float> %abs, <float 0.0, float -0.0, float undef> ret <3 x i1> %cmp } define i1 @orderedLessZeroSelect(float, float) { ; CHECK-LABEL: @orderedLessZeroSelect( ; CHECK-NEXT: ret i1 true ; %a = call float @llvm.exp.f32(float %0) %b = call float @llvm.fabs.f32(float %1) %c = fcmp olt float %0, %1 %d = select i1 %c, float %a, float %b %e = fadd float %d, 1.0 %uge = fcmp uge float %e, 0.000000e+00 ret i1 %uge } define i1 @orderedLessZeroMinNum(float, float) { ; CHECK-LABEL: @orderedLessZeroMinNum( ; CHECK-NEXT: ret i1 true ; %a = call float @llvm.exp.f32(float %0) %b = call float @llvm.fabs.f32(float %1) %c = call float @llvm.minnum.f32(float %a, float %b) %uge = fcmp uge float %c, 0.000000e+00 ret i1 %uge } ; PR37776: https://bugs.llvm.org/show_bug.cgi?id=37776 ; exp() may return nan, leaving %1 as the unknown result, so we can't simplify. define i1 @orderedLessZeroMaxNum(float, float) { ; CHECK-LABEL: @orderedLessZeroMaxNum( ; CHECK-NEXT: [[A:%.*]] = call float @llvm.exp.f32(float [[TMP0:%.*]]) ; CHECK-NEXT: [[B:%.*]] = call float @llvm.maxnum.f32(float [[A]], float [[TMP1:%.*]]) ; CHECK-NEXT: [[UGE:%.*]] = fcmp uge float [[B]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[UGE]] ; %a = call float @llvm.exp.f32(float %0) %b = call float @llvm.maxnum.f32(float %a, float %1) %uge = fcmp uge float %b, 0.000000e+00 ret i1 %uge } ; But using maximum, we can simplify, since the NaN would be propagated define i1 @orderedLessZeroMaximum(float, float) { ; CHECK-LABEL: @orderedLessZeroMaximum( ; CHECK-NEXT: ret i1 true ; %a = call float @llvm.exp.f32(float %0) %b = call float @llvm.maximum.f32(float %a, float %1) %uge = fcmp uge float %b, 0.000000e+00 ret i1 %uge } define i1 @minnum_non_nan(float %x) { ; CHECK-LABEL: @minnum_non_nan( ; CHECK-NEXT: ret i1 true ; %min = call float @llvm.minnum.f32(float 0.5, float %x) %cmp = fcmp ord float %min, 1.0 ret i1 %cmp } define i1 @maxnum_non_nan(float %x) { ; CHECK-LABEL: @maxnum_non_nan( ; CHECK-NEXT: ret i1 false ; %min = call float @llvm.maxnum.f32(float %x, float 42.0) %cmp = fcmp uno float %min, 12.0 ret i1 %cmp } ; min(x, 0.5) == 1.0 --> false define i1 @minnum_oeq_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_oeq_small_min_constant( ; CHECK-NEXT: ret i1 false ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp oeq float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) > 1.0 --> false define i1 @minnum_ogt_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_ogt_small_min_constant( ; CHECK-NEXT: ret i1 false ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp ogt float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) >= 1.0 --> false define i1 @minnum_oge_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_oge_small_min_constant( ; CHECK-NEXT: ret i1 false ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp oge float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) == 1.0 --> false define i1 @minnum_ueq_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_ueq_small_min_constant( ; CHECK-NEXT: ret i1 false ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp ueq float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) > 1.0 --> false define i1 @minnum_ugt_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_ugt_small_min_constant( ; CHECK-NEXT: ret i1 false ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp ugt float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) >= 1.0 --> false define <2 x i1> @minnum_uge_small_min_constant(<2 x float> %x) { ; CHECK-LABEL: @minnum_uge_small_min_constant( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %min = call <2 x float> @llvm.minnum.v2f32(<2 x float> %x, <2 x float> <float 0.5, float 0.5>) %cmp = fcmp uge <2 x float> %min, <float 1.0, float 1.0> ret <2 x i1> %cmp } ; min(x, 0.5) < 1.0 --> true define <2 x i1> @minnum_olt_small_min_constant(<2 x float> %x) { ; CHECK-LABEL: @minnum_olt_small_min_constant( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %min = call <2 x float> @llvm.minnum.v2f32(<2 x float> %x, <2 x float> <float 0.5, float 0.5>) %cmp = fcmp olt <2 x float> %min, <float 1.0, float 1.0> ret <2 x i1> %cmp } ; min(x, 0.5) <= 1.0 --> true define i1 @minnum_ole_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_ole_small_min_constant( ; CHECK-NEXT: ret i1 true ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp ole float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) != 1.0 --> true define i1 @minnum_one_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_one_small_min_constant( ; CHECK-NEXT: ret i1 true ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp one float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) < 1.0 --> true define i1 @minnum_ult_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_ult_small_min_constant( ; CHECK-NEXT: ret i1 true ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp ult float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) <= 1.0 --> true define i1 @minnum_ule_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_ule_small_min_constant( ; CHECK-NEXT: ret i1 true ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp ule float %min, 1.0 ret i1 %cmp } ; min(x, 0.5) != 1.0 --> true define i1 @minnum_une_small_min_constant(float %x) { ; CHECK-LABEL: @minnum_une_small_min_constant( ; CHECK-NEXT: ret i1 true ; %min = call float @llvm.minnum.f32(float %x, float 0.5) %cmp = fcmp une float %min, 1.0 ret i1 %cmp } ; Negative test: ; min(x, 1.0) != 1.0 --> ? define i1 @minnum_une_equal_min_constant(float %x) { ; CHECK-LABEL: @minnum_une_equal_min_constant( ; CHECK-NEXT: [[MIN:%.*]] = call float @llvm.minnum.f32(float [[X:%.*]], float 1.000000e+00) ; CHECK-NEXT: [[CMP:%.*]] = fcmp une float [[MIN]], 1.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %min = call float @llvm.minnum.f32(float %x, float 1.0) %cmp = fcmp une float %min, 1.0 ret i1 %cmp } ; Negative test: ; min(x, 2.0) != 1.0 --> ? define i1 @minnum_une_large_min_constant(float %x) { ; CHECK-LABEL: @minnum_une_large_min_constant( ; CHECK-NEXT: [[MIN:%.*]] = call float @llvm.minnum.f32(float [[X:%.*]], float 2.000000e+00) ; CHECK-NEXT: [[CMP:%.*]] = fcmp une float [[MIN]], 1.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %min = call float @llvm.minnum.f32(float %x, float 2.0) %cmp = fcmp une float %min, 1.0 ret i1 %cmp } ; Partial negative test (the minnum simplifies): ; min(x, NaN) != 1.0 --> x != 1.0 define i1 @minnum_une_nan_min_constant(float %x) { ; CHECK-LABEL: @minnum_une_nan_min_constant( ; CHECK-NEXT: [[CMP:%.*]] = fcmp une float [[X:%.*]], 1.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %min = call float @llvm.minnum.f32(float %x, float 0x7FF8000000000000) %cmp = fcmp une float %min, 1.0 ret i1 %cmp } ; max(x, 1.5) == 1.0 --> false define i1 @maxnum_oeq_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_oeq_large_max_constant( ; CHECK-NEXT: ret i1 false ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp oeq float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) < 1.0 --> false define i1 @maxnum_olt_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_olt_large_max_constant( ; CHECK-NEXT: ret i1 false ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp olt float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) <= 1.0 --> false define i1 @maxnum_ole_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_ole_large_max_constant( ; CHECK-NEXT: ret i1 false ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp ole float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) == 1.0 --> false define i1 @maxnum_ueq_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_ueq_large_max_constant( ; CHECK-NEXT: ret i1 false ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp ueq float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) < 1.0 --> false define i1 @maxnum_ult_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_ult_large_max_constant( ; CHECK-NEXT: ret i1 false ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp ult float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) <= 1.0 --> false define <2 x i1> @maxnum_ule_large_max_constant(<2 x float> %x) { ; CHECK-LABEL: @maxnum_ule_large_max_constant( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %max = call <2 x float> @llvm.maxnum.v2f32(<2 x float> %x, <2 x float> <float 1.5, float 1.5>) %cmp = fcmp ule <2 x float> %max, <float 1.0, float 1.0> ret <2 x i1> %cmp } ; max(x, 1.5) > 1.0 --> true define <2 x i1> @maxnum_ogt_large_max_constant(<2 x float> %x) { ; CHECK-LABEL: @maxnum_ogt_large_max_constant( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %max = call <2 x float> @llvm.maxnum.v2f32(<2 x float> %x, <2 x float> <float 1.5, float 1.5>) %cmp = fcmp ogt <2 x float> %max, <float 1.0, float 1.0> ret <2 x i1> %cmp } ; max(x, 1.5) >= 1.0 --> true define i1 @maxnum_oge_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_oge_large_max_constant( ; CHECK-NEXT: ret i1 true ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp oge float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) != 1.0 --> true define i1 @maxnum_one_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_one_large_max_constant( ; CHECK-NEXT: ret i1 true ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp one float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) > 1.0 --> true define i1 @maxnum_ugt_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_ugt_large_max_constant( ; CHECK-NEXT: ret i1 true ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp ugt float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) >= 1.0 --> true define i1 @maxnum_uge_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_uge_large_max_constant( ; CHECK-NEXT: ret i1 true ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp uge float %max, 1.0 ret i1 %cmp } ; max(x, 1.5) != 1.0 --> true define i1 @maxnum_une_large_max_constant(float %x) { ; CHECK-LABEL: @maxnum_une_large_max_constant( ; CHECK-NEXT: ret i1 true ; %max = call float @llvm.maxnum.f32(float %x, float 1.5) %cmp = fcmp une float %max, 1.0 ret i1 %cmp } ; Negative test: ; max(x, 1.0) != 1.0 --> ? define i1 @maxnum_une_equal_max_constant(float %x) { ; CHECK-LABEL: @maxnum_une_equal_max_constant( ; CHECK-NEXT: [[MAX:%.*]] = call float @llvm.maxnum.f32(float [[X:%.*]], float 1.000000e+00) ; CHECK-NEXT: [[CMP:%.*]] = fcmp une float [[MAX]], 1.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %max = call float @llvm.maxnum.f32(float %x, float 1.0) %cmp = fcmp une float %max, 1.0 ret i1 %cmp } ; Negative test: ; max(x, 0.5) != 1.0 --> ? define i1 @maxnum_une_small_max_constant(float %x) { ; CHECK-LABEL: @maxnum_une_small_max_constant( ; CHECK-NEXT: [[MAX:%.*]] = call float @llvm.maxnum.f32(float [[X:%.*]], float 5.000000e-01) ; CHECK-NEXT: [[CMP:%.*]] = fcmp une float [[MAX]], 1.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %max = call float @llvm.maxnum.f32(float %x, float 0.5) %cmp = fcmp une float %max, 1.0 ret i1 %cmp } ; Partial negative test (the maxnum simplifies): ; max(x, NaN) != 1.0 --> x != 1.0 define i1 @maxnum_une_nan_max_constant(float %x) { ; CHECK-LABEL: @maxnum_une_nan_max_constant( ; CHECK-NEXT: [[CMP:%.*]] = fcmp une float [[X:%.*]], 1.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %max = call float @llvm.maxnum.f32(float %x, float 0x7FF8000000000000) %cmp = fcmp une float %max, 1.0 ret i1 %cmp } define i1 @known_positive_olt_with_negative_constant(double %a) { ; CHECK-LABEL: @known_positive_olt_with_negative_constant( ; CHECK-NEXT: ret i1 false ; %call = call double @llvm.fabs.f64(double %a) %cmp = fcmp olt double %call, -1.0 ret i1 %cmp } define <2 x i1> @known_positive_ole_with_negative_constant_splat_vec(<2 x i32> %a) { ; CHECK-LABEL: @known_positive_ole_with_negative_constant_splat_vec( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %call = uitofp <2 x i32> %a to <2 x double> %cmp = fcmp ole <2 x double> %call, <double -2.0, double -2.0> ret <2 x i1> %cmp } define i1 @known_positive_ugt_with_negative_constant(i32 %a) { ; CHECK-LABEL: @known_positive_ugt_with_negative_constant( ; CHECK-NEXT: ret i1 true ; %call = uitofp i32 %a to float %cmp = fcmp ugt float %call, -3.0 ret i1 %cmp } define <2 x i1> @known_positive_uge_with_negative_constant_splat_vec(<2 x float> %a) { ; CHECK-LABEL: @known_positive_uge_with_negative_constant_splat_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %call = call <2 x float> @llvm.fabs.v2f32(<2 x float> %a) %cmp = fcmp uge <2 x float> %call, <float -4.0, float -4.0> ret <2 x i1> %cmp } define i1 @known_positive_oeq_with_negative_constant(half %a) { ; CHECK-LABEL: @known_positive_oeq_with_negative_constant( ; CHECK-NEXT: ret i1 false ; %call = call half @llvm.fabs.f16(half %a) %cmp = fcmp oeq half %call, -5.0 ret i1 %cmp } define <2 x i1> @known_positive_une_with_negative_constant_splat_vec(<2 x i32> %a) { ; CHECK-LABEL: @known_positive_une_with_negative_constant_splat_vec( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %call = uitofp <2 x i32> %a to <2 x half> %cmp = fcmp une <2 x half> %call, <half -6.0, half -6.0> ret <2 x i1> %cmp } ; TODO: This could fold to true. define i1 @pr58046(i64 %arg) { ; CHECK-LABEL: @pr58046( ; CHECK-NEXT: [[FP:%.*]] = uitofp i64 [[ARG:%.*]] to double ; CHECK-NEXT: [[MUL:%.*]] = fmul double -0.000000e+00, [[FP]] ; CHECK-NEXT: [[DIV:%.*]] = fdiv double 1.000000e+00, [[MUL]] ; CHECK-NEXT: [[CMP:%.*]] = fcmp oeq double [[DIV]], 0xFFF0000000000000 ; CHECK-NEXT: ret i1 [[CMP]] ; %fp = uitofp i64 %arg to double %mul = fmul double -0.000000e+00, %fp %div = fdiv double 1.000000e+00, %mul %cmp = fcmp oeq double %div, 0xFFF0000000000000 ret i1 %cmp } define i1 @nonans1(double %in1, double %in2) { ; CHECK-LABEL: @nonans1( ; CHECK-NEXT: ret i1 false ; %cmp = fcmp nnan uno double %in1, %in2 ret i1 %cmp } define i1 @nonans2(double %in1, double %in2) { ; CHECK-LABEL: @nonans2( ; CHECK-NEXT: ret i1 true ; %cmp = fcmp nnan ord double %in1, %in2 ret i1 %cmp } define <2 x i1> @orderedCompareWithNaNVector(<2 x double> %A) { ; CHECK-LABEL: @orderedCompareWithNaNVector( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %cmp = fcmp olt <2 x double> %A, <double 0xFFFFFFFFFFFFFFFF, double 0xFFFFFFFFFFFFFFFF> ret <2 x i1> %cmp } define <2 x i1> @orderedCompareWithNaNVector_undef_elt(<2 x double> %A) { ; CHECK-LABEL: @orderedCompareWithNaNVector_undef_elt( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %cmp = fcmp olt <2 x double> %A, <double 0xFFFFFFFFFFFFFFFF, double undef> ret <2 x i1> %cmp } define <2 x i1> @unorderedCompareWithNaNVector_undef_elt(<2 x double> %A) { ; CHECK-LABEL: @unorderedCompareWithNaNVector_undef_elt( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %cmp = fcmp ult <2 x double> %A, <double undef, double 0xFFFFFFFFFFFFFFFF> ret <2 x i1> %cmp } define i1 @is_infinite(float %x) { ; CHECK-LABEL: @is_infinite( ; CHECK-NEXT: ret i1 false ; %xabs = call ninf float @llvm.fabs.f32(float %x) %r = fcmp oeq float %xabs, 0x7FF0000000000000 ret i1 %r } define <2 x i1> @is_infinite_neg(<2 x float> %x) { ; CHECK-LABEL: @is_infinite_neg( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %x42 = fadd ninf <2 x float> %x, <float 42.0, float 42.0> %r = fcmp oeq <2 x float> %x42, <float 0xFFF0000000000000, float 0xFFF0000000000000> ret <2 x i1> %r } ; Negative test - but this could be reduced to 'uno' outside of instsimplify. define i1 @is_infinite_or_nan(float %x) { ; CHECK-LABEL: @is_infinite_or_nan( ; CHECK-NEXT: [[X42:%.*]] = fadd ninf float [[X:%.*]], 4.200000e+01 ; CHECK-NEXT: [[R:%.*]] = fcmp ueq float [[X42]], 0xFFF0000000000000 ; CHECK-NEXT: ret i1 [[R]] ; %x42 = fadd ninf float %x, 42.0 %r = fcmp ueq float %x42, 0xFFF0000000000000 ret i1 %r } define i1 @is_infinite_or_nan2(float %x) { ; CHECK-LABEL: @is_infinite_or_nan2( ; CHECK-NEXT: ret i1 false ; %xabs = call nnan ninf float @llvm.fabs.f32(float %x) %r = fcmp ueq float %xabs, 0x7FF0000000000000 ret i1 %r } define <2 x i1> @is_infinite_neg_or_nan(<2 x float> %x) { ; CHECK-LABEL: @is_infinite_neg_or_nan( ; CHECK-NEXT: ret <2 x i1> zeroinitializer ; %x42 = fadd nnan ninf <2 x float> %x, <float 42.0, float 42.0> %r = fcmp ueq <2 x float> %x42, <float 0xFFF0000000000000, float 0xFFF0000000000000> ret <2 x i1> %r } define i1 @is_finite_or_nan(i1 %c, double %x) { ; CHECK-LABEL: @is_finite_or_nan( ; CHECK-NEXT: ret i1 true ; %xx = fmul ninf double %x, %x %s = select i1 %c, double 42.0, double %xx %r = fcmp une double %s, 0x7FF0000000000000 ret i1 %r } define <2 x i1> @is_finite_or_nan_commute(<2 x i8> %x) { ; CHECK-LABEL: @is_finite_or_nan_commute( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %cast = uitofp <2 x i8> %x to <2 x float> %r = fcmp une <2 x float> <float 0x7FF0000000000000, float 0x7FF0000000000000>, %cast ret <2 x i1> %r } ; Negative test - but this could be reduced to 'ord' outside of instsimplify. define i1 @is_finite_and_ordered(double %x) { ; CHECK-LABEL: @is_finite_and_ordered( ; CHECK-NEXT: [[XX:%.*]] = fmul ninf double [[X:%.*]], [[X]] ; CHECK-NEXT: [[R:%.*]] = fcmp one double [[XX]], 0x7FF0000000000000 ; CHECK-NEXT: ret i1 [[R]] ; %xx = fmul ninf double %x, %x %r = fcmp one double %xx, 0x7FF0000000000000 ret i1 %r } define i1 @is_finite(i1 %c, double %x) { ; CHECK-LABEL: @is_finite( ; CHECK-NEXT: ret i1 true ; %xx = fmul nnan ninf double %x, %x %s = select i1 %c, double 42.0, double %xx %r = fcmp one double %s, 0x7FF0000000000000 ret i1 %r } define <2 x i1> @is_finite_commute(<2 x i8> %x) { ; CHECK-LABEL: @is_finite_commute( ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> ; %cast = uitofp <2 x i8> %x to <2 x float> %r = fcmp one <2 x float> <float 0x7FF0000000000000, float 0x7FF0000000000000>, %cast ret <2 x i1> %r } ; largest unsigned i15 = 2^15 - 1 = 32767 ; largest half (max exponent = 15 -> 2^15 * (1 + 1023/1024) = 65504 define i1 @isKnownNeverInfinity_uitofp(i15 %x) { ; CHECK-LABEL: @isKnownNeverInfinity_uitofp( ; CHECK-NEXT: ret i1 true ; %f = uitofp i15 %x to half %r = fcmp une half %f, 0xH7c00 ret i1 %r } ; negative test define i1 @isNotKnownNeverInfinity_uitofp(i16 %x) { ; CHECK-LABEL: @isNotKnownNeverInfinity_uitofp( ; CHECK-NEXT: [[F:%.*]] = uitofp i16 [[X:%.*]] to half ; CHECK-NEXT: [[R:%.*]] = fcmp une half [[F]], 0xH7C00 ; CHECK-NEXT: ret i1 [[R]] ; %f = uitofp i16 %x to half %r = fcmp une half %f, 0xH7c00 ret i1 %r } define i1 @isKnownNeverNegativeInfinity_uitofp(i15 %x) { ; CHECK-LABEL: @isKnownNeverNegativeInfinity_uitofp( ; CHECK-NEXT: ret i1 false ; %f = uitofp i15 %x to half %r = fcmp oeq half %f, 0xHfc00 ret i1 %r } ; uitofp can't be negative, so this still works. define i1 @isNotKnownNeverNegativeInfinity_uitofp(i16 %x) { ; CHECK-LABEL: @isNotKnownNeverNegativeInfinity_uitofp( ; CHECK-NEXT: ret i1 false ; %f = uitofp i16 %x to half %r = fcmp oeq half %f, 0xHfc00 ret i1 %r } ; largest magnitude signed i16 = 2^15 - 1 = 32767 --> -32768 ; largest half (max exponent = 15 -> 2^15 * (1 + 1023/1024) = 65504 define i1 @isKnownNeverInfinity_sitofp(i16 %x) { ; CHECK-LABEL: @isKnownNeverInfinity_sitofp( ; CHECK-NEXT: ret i1 true ; %f = sitofp i16 %x to half %r = fcmp une half %f, 0xH7c00 ret i1 %r } ; negative test define i1 @isNotKnownNeverInfinity_sitofp(i17 %x) { ; CHECK-LABEL: @isNotKnownNeverInfinity_sitofp( ; CHECK-NEXT: [[F:%.*]] = sitofp i17 [[X:%.*]] to half ; CHECK-NEXT: [[R:%.*]] = fcmp une half [[F]], 0xH7C00 ; CHECK-NEXT: ret i1 [[R]] ; %f = sitofp i17 %x to half %r = fcmp une half %f, 0xH7c00 ret i1 %r } define i1 @isKnownNeverNegativeInfinity_sitofp(i16 %x) { ; CHECK-LABEL: @isKnownNeverNegativeInfinity_sitofp( ; CHECK-NEXT: ret i1 false ; %f = sitofp i16 %x to half %r = fcmp oeq half %f, 0xHfc00 ret i1 %r } ; negative test define i1 @isNotKnownNeverNegativeInfinity_sitofp(i17 %x) { ; CHECK-LABEL: @isNotKnownNeverNegativeInfinity_sitofp( ; CHECK-NEXT: [[F:%.*]] = sitofp i17 [[X:%.*]] to half ; CHECK-NEXT: [[R:%.*]] = fcmp oeq half [[F]], 0xHFC00 ; CHECK-NEXT: ret i1 [[R]] ; %f = sitofp i17 %x to half %r = fcmp oeq half %f, 0xHfc00 ret i1 %r }