#include "llvm/IR/Function.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/AbstractCallSite.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsBPF.h"
#include "llvm/IR/IntrinsicsDirectX.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/IntrinsicsMips.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/IntrinsicsS390.h"
#include "llvm/IR/IntrinsicsVE.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/IntrinsicsXCore.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
using namespace llvm;
using ProfileCount = Function::ProfileCount;
template class llvm::SymbolTableListTraits<BasicBlock>;
static cl::opt<unsigned> NonGlobalValueMaxNameSize(
"non-global-value-max-name-size", cl::Hidden, cl::init(1024),
cl::desc("Maximum size for the name of non-global values."));
Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
: Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
setName(Name);
}
void Argument::setParent(Function *parent) {
Parent = parent;
}
bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
if (!getType()->isPointerTy()) return false;
if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
(AllowUndefOrPoison ||
getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
return true;
else if (getDereferenceableBytes() > 0 &&
!NullPointerIsDefined(getParent(),
getType()->getPointerAddressSpace()))
return true;
return false;
}
bool Argument::hasByValAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::ByVal);
}
bool Argument::hasByRefAttr() const {
if (!getType()->isPointerTy())
return false;
return hasAttribute(Attribute::ByRef);
}
bool Argument::hasSwiftSelfAttr() const {
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
}
bool Argument::hasSwiftErrorAttr() const {
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
}
bool Argument::hasInAllocaAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::InAlloca);
}
bool Argument::hasPreallocatedAttr() const {
if (!getType()->isPointerTy())
return false;
return hasAttribute(Attribute::Preallocated);
}
bool Argument::hasPassPointeeByValueCopyAttr() const {
if (!getType()->isPointerTy()) return false;
AttributeList Attrs = getParent()->getAttributes();
return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
}
bool Argument::hasPointeeInMemoryValueAttr() const {
if (!getType()->isPointerTy())
return false;
AttributeList Attrs = getParent()->getAttributes();
return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
}
static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
if (Type *ByValTy = ParamAttrs.getByValType())
return ByValTy;
if (Type *ByRefTy = ParamAttrs.getByRefType())
return ByRefTy;
if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
return PreAllocTy;
if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
return InAllocaTy;
if (Type *SRetTy = ParamAttrs.getStructRetType())
return SRetTy;
return nullptr;
}
uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
AttributeSet ParamAttrs =
getParent()->getAttributes().getParamAttrs(getArgNo());
if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
return DL.getTypeAllocSize(MemTy);
return 0;
}
Type *Argument::getPointeeInMemoryValueType() const {
AttributeSet ParamAttrs =
getParent()->getAttributes().getParamAttrs(getArgNo());
return getMemoryParamAllocType(ParamAttrs);
}
uint64_t Argument::getParamAlignment() const {
assert(getType()->isPointerTy() && "Only pointers have alignments");
return getParent()->getParamAlignment(getArgNo());
}
MaybeAlign Argument::getParamAlign() const {
assert(getType()->isPointerTy() && "Only pointers have alignments");
return getParent()->getParamAlign(getArgNo());
}
MaybeAlign Argument::getParamStackAlign() const {
return getParent()->getParamStackAlign(getArgNo());
}
Type *Argument::getParamByValType() const {
assert(getType()->isPointerTy() && "Only pointers have byval types");
return getParent()->getParamByValType(getArgNo());
}
Type *Argument::getParamStructRetType() const {
assert(getType()->isPointerTy() && "Only pointers have sret types");
return getParent()->getParamStructRetType(getArgNo());
}
Type *Argument::getParamByRefType() const {
assert(getType()->isPointerTy() && "Only pointers have byref types");
return getParent()->getParamByRefType(getArgNo());
}
Type *Argument::getParamInAllocaType() const {
assert(getType()->isPointerTy() && "Only pointers have inalloca types");
return getParent()->getParamInAllocaType(getArgNo());
}
uint64_t Argument::getDereferenceableBytes() const {
assert(getType()->isPointerTy() &&
"Only pointers have dereferenceable bytes");
return getParent()->getParamDereferenceableBytes(getArgNo());
}
uint64_t Argument::getDereferenceableOrNullBytes() const {
assert(getType()->isPointerTy() &&
"Only pointers have dereferenceable bytes");
return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
}
bool Argument::hasNestAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::Nest);
}
bool Argument::hasNoAliasAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::NoAlias);
}
bool Argument::hasNoCaptureAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::NoCapture);
}
bool Argument::hasNoFreeAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::NoFree);
}
bool Argument::hasStructRetAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::StructRet);
}
bool Argument::hasInRegAttr() const {
return hasAttribute(Attribute::InReg);
}
bool Argument::hasReturnedAttr() const {
return hasAttribute(Attribute::Returned);
}
bool Argument::hasZExtAttr() const {
return hasAttribute(Attribute::ZExt);
}
bool Argument::hasSExtAttr() const {
return hasAttribute(Attribute::SExt);
}
bool Argument::onlyReadsMemory() const {
AttributeList Attrs = getParent()->getAttributes();
return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
}
void Argument::addAttrs(AttrBuilder &B) {
AttributeList AL = getParent()->getAttributes();
AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
getParent()->setAttributes(AL);
}
void Argument::addAttr(Attribute::AttrKind Kind) {
getParent()->addParamAttr(getArgNo(), Kind);
}
void Argument::addAttr(Attribute Attr) {
getParent()->addParamAttr(getArgNo(), Attr);
}
void Argument::removeAttr(Attribute::AttrKind Kind) {
getParent()->removeParamAttr(getArgNo(), Kind);
}
void Argument::removeAttrs(const AttributeMask &AM) {
AttributeList AL = getParent()->getAttributes();
AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
getParent()->setAttributes(AL);
}
bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
return getParent()->hasParamAttribute(getArgNo(), Kind);
}
Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
return getParent()->getParamAttribute(getArgNo(), Kind);
}
LLVMContext &Function::getContext() const {
return getType()->getContext();
}
unsigned Function::getInstructionCount() const {
unsigned NumInstrs = 0;
for (const BasicBlock &BB : BasicBlocks)
NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
BB.instructionsWithoutDebug().end());
return NumInstrs;
}
Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
const Twine &N, Module &M) {
return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
}
Function *Function::createWithDefaultAttr(FunctionType *Ty,
LinkageTypes Linkage,
unsigned AddrSpace, const Twine &N,
Module *M) {
auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
AttrBuilder B(F->getContext());
UWTableKind UWTable = M->getUwtable();
if (UWTable != UWTableKind::None)
B.addUWTableAttr(UWTable);
switch (M->getFramePointer()) {
case FramePointerKind::None:
break;
case FramePointerKind::NonLeaf:
B.addAttribute("frame-pointer", "non-leaf");
break;
case FramePointerKind::All:
B.addAttribute("frame-pointer", "all");
break;
}
if (M->getModuleFlag("function_return_thunk_extern"))
B.addAttribute(Attribute::FnRetThunkExtern);
F->addFnAttrs(B);
return F;
}
void Function::removeFromParent() {
getParent()->getFunctionList().remove(getIterator());
}
void Function::eraseFromParent() {
getParent()->getFunctionList().erase(getIterator());
}
static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
if (AddrSpace == static_cast<unsigned>(-1))
return M ? M->getDataLayout().getProgramAddressSpace() : 0;
return AddrSpace;
}
Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
const Twine &name, Module *ParentModule)
: GlobalObject(Ty, Value::FunctionVal,
OperandTraits<Function>::op_begin(this), 0, Linkage, name,
computeAddrSpace(AddrSpace, ParentModule)),
NumArgs(Ty->getNumParams()) {
assert(FunctionType::isValidReturnType(getReturnType()) &&
"invalid return type");
setGlobalObjectSubClassData(0);
if (!getContext().shouldDiscardValueNames())
SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
if (Ty->getNumParams())
setValueSubclassData(1);
if (ParentModule)
ParentModule->getFunctionList().push_back(this);
HasLLVMReservedName = getName().startswith("llvm.");
if (IntID)
setAttributes(Intrinsic::getAttributes(getContext(), IntID));
}
Function::~Function() {
dropAllReferences();
if (Arguments)
clearArguments();
clearGC();
}
void Function::BuildLazyArguments() const {
auto *FT = getFunctionType();
if (NumArgs > 0) {
Arguments = std::allocator<Argument>().allocate(NumArgs);
for (unsigned i = 0, e = NumArgs; i != e; ++i) {
Type *ArgTy = FT->getParamType(i);
assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
}
}
unsigned SDC = getSubclassDataFromValue();
SDC &= ~(1 << 0);
const_cast<Function*>(this)->setValueSubclassData(SDC);
assert(!hasLazyArguments());
}
static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
return MutableArrayRef<Argument>(Args, Count);
}
bool Function::isConstrainedFPIntrinsic() const {
switch (getIntrinsicID()) {
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
return true;
#undef INSTRUCTION
default:
return false;
}
}
void Function::clearArguments() {
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
A.setName("");
A.~Argument();
}
std::allocator<Argument>().deallocate(Arguments, NumArgs);
Arguments = nullptr;
}
void Function::stealArgumentListFrom(Function &Src) {
assert(isDeclaration() && "Expected no references to current arguments");
if (!hasLazyArguments()) {
assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
[](const Argument &A) { return A.use_empty(); }) &&
"Expected arguments to be unused in declaration");
clearArguments();
setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
}
if (Src.hasLazyArguments())
return;
assert(arg_size() == Src.arg_size());
Arguments = Src.Arguments;
Src.Arguments = nullptr;
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
SmallString<128> Name;
if (A.hasName())
Name = A.getName();
if (!Name.empty())
A.setName("");
A.setParent(this);
if (!Name.empty())
A.setName(Name);
}
setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
assert(!hasLazyArguments());
Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
}
void Function::dropAllReferences() {
setIsMaterializable(false);
for (BasicBlock &BB : *this)
BB.dropAllReferences();
while (!BasicBlocks.empty())
BasicBlocks.begin()->eraseFromParent();
if (getNumOperands()) {
User::dropAllReferences();
setNumHungOffUseOperands(0);
setValueSubclassData(getSubclassDataFromValue() & ~0xe);
}
clearMetadata();
}
void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
}
void Function::addFnAttr(Attribute::AttrKind Kind) {
AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
}
void Function::addFnAttr(StringRef Kind, StringRef Val) {
AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
}
void Function::addFnAttr(Attribute Attr) {
AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
}
void Function::addFnAttrs(const AttrBuilder &Attrs) {
AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
}
void Function::addRetAttr(Attribute::AttrKind Kind) {
AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
}
void Function::addRetAttr(Attribute Attr) {
AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
}
void Function::addRetAttrs(const AttrBuilder &Attrs) {
AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
}
void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
}
void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
}
void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
}
void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
}
void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
}
void Function::removeFnAttr(Attribute::AttrKind Kind) {
AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
}
void Function::removeFnAttr(StringRef Kind) {
AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
}
void Function::removeFnAttrs(const AttributeMask &AM) {
AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
}
void Function::removeRetAttr(Attribute::AttrKind Kind) {
AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
}
void Function::removeRetAttr(StringRef Kind) {
AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
}
void Function::removeRetAttrs(const AttributeMask &Attrs) {
AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
}
void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
}
void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
}
void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
AttributeSets =
AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
}
void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
AttributeSets =
AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
}
bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
return AttributeSets.hasFnAttr(Kind);
}
bool Function::hasFnAttribute(StringRef Kind) const {
return AttributeSets.hasFnAttr(Kind);
}
bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
return AttributeSets.hasRetAttr(Kind);
}
bool Function::hasParamAttribute(unsigned ArgNo,
Attribute::AttrKind Kind) const {
return AttributeSets.hasParamAttr(ArgNo, Kind);
}
Attribute Function::getAttributeAtIndex(unsigned i,
Attribute::AttrKind Kind) const {
return AttributeSets.getAttributeAtIndex(i, Kind);
}
Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
return AttributeSets.getAttributeAtIndex(i, Kind);
}
Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
return AttributeSets.getFnAttr(Kind);
}
Attribute Function::getFnAttribute(StringRef Kind) const {
return AttributeSets.getFnAttr(Kind);
}
Attribute Function::getParamAttribute(unsigned ArgNo,
Attribute::AttrKind Kind) const {
return AttributeSets.getParamAttr(ArgNo, Kind);
}
void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
uint64_t Bytes) {
AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
ArgNo, Bytes);
}
DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
if (&FPType == &APFloat::IEEEsingle()) {
Attribute Attr = getFnAttribute("denormal-fp-math-f32");
StringRef Val = Attr.getValueAsString();
if (!Val.empty())
return parseDenormalFPAttribute(Val);
}
Attribute Attr = getFnAttribute("denormal-fp-math");
return parseDenormalFPAttribute(Attr.getValueAsString());
}
const std::string &Function::getGC() const {
assert(hasGC() && "Function has no collector");
return getContext().getGC(*this);
}
void Function::setGC(std::string Str) {
setValueSubclassDataBit(14, !Str.empty());
getContext().setGC(*this, std::move(Str));
}
void Function::clearGC() {
if (!hasGC())
return;
getContext().deleteGC(*this);
setValueSubclassDataBit(14, false);
}
bool Function::hasStackProtectorFnAttr() const {
return hasFnAttribute(Attribute::StackProtect) ||
hasFnAttribute(Attribute::StackProtectStrong) ||
hasFnAttribute(Attribute::StackProtectReq);
}
void Function::copyAttributesFrom(const Function *Src) {
GlobalObject::copyAttributesFrom(Src);
setCallingConv(Src->getCallingConv());
setAttributes(Src->getAttributes());
if (Src->hasGC())
setGC(Src->getGC());
else
clearGC();
if (Src->hasPersonalityFn())
setPersonalityFn(Src->getPersonalityFn());
if (Src->hasPrefixData())
setPrefixData(Src->getPrefixData());
if (Src->hasPrologueData())
setPrologueData(Src->getPrologueData());
}
static const char * const IntrinsicNameTable[] = {
"not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_NAME_TABLE
};
#define GET_INTRINSIC_TARGET_DATA
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_TARGET_DATA
bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
return IID > TargetInfos[0].Count;
}
bool Function::isTargetIntrinsic() const {
return isTargetIntrinsic(IntID);
}
static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
assert(Name.startswith("llvm."));
ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
StringRef Target = Name.drop_front(5).split('.').first;
auto It = partition_point(
Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
}
Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
ArrayRef<const char *> NameTable = findTargetSubtable(Name);
int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
if (Idx == -1)
return Intrinsic::not_intrinsic;
int Adjust = NameTable.data() - IntrinsicNameTable;
Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
const auto MatchSize = strlen(NameTable[Idx]);
assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
bool IsExactMatch = Name.size() == MatchSize;
return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
: Intrinsic::not_intrinsic;
}
void Function::recalculateIntrinsicID() {
StringRef Name = getName();
if (!Name.startswith("llvm.")) {
HasLLVMReservedName = false;
IntID = Intrinsic::not_intrinsic;
return;
}
HasLLVMReservedName = true;
IntID = lookupIntrinsicID(Name);
}
static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
std::string Result;
if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
Result += "p" + utostr(PTyp->getAddressSpace());
if (!PTyp->isOpaque())
Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
HasUnnamedType);
} else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
Result += "a" + utostr(ATyp->getNumElements()) +
getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
} else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
if (!STyp->isLiteral()) {
Result += "s_";
if (STyp->hasName())
Result += STyp->getName();
else
HasUnnamedType = true;
} else {
Result += "sl_";
for (auto Elem : STyp->elements())
Result += getMangledTypeStr(Elem, HasUnnamedType);
}
Result += "s";
} else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
for (size_t i = 0; i < FT->getNumParams(); i++)
Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
if (FT->isVarArg())
Result += "vararg";
Result += "f";
} else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
ElementCount EC = VTy->getElementCount();
if (EC.isScalable())
Result += "nx";
Result += "v" + utostr(EC.getKnownMinValue()) +
getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
} else if (Ty) {
switch (Ty->getTypeID()) {
default: llvm_unreachable("Unhandled type");
case Type::VoidTyID: Result += "isVoid"; break;
case Type::MetadataTyID: Result += "Metadata"; break;
case Type::HalfTyID: Result += "f16"; break;
case Type::BFloatTyID: Result += "bf16"; break;
case Type::FloatTyID: Result += "f32"; break;
case Type::DoubleTyID: Result += "f64"; break;
case Type::X86_FP80TyID: Result += "f80"; break;
case Type::FP128TyID: Result += "f128"; break;
case Type::PPC_FP128TyID: Result += "ppcf128"; break;
case Type::X86_MMXTyID: Result += "x86mmx"; break;
case Type::X86_AMXTyID: Result += "x86amx"; break;
case Type::IntegerTyID:
Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
break;
}
}
return Result;
}
StringRef Intrinsic::getBaseName(ID id) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
return IntrinsicNameTable[id];
}
StringRef Intrinsic::getName(ID id) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
assert(!Intrinsic::isOverloaded(id) &&
"This version of getName does not support overloading");
return getBaseName(id);
}
static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
Module *M, FunctionType *FT,
bool EarlyModuleCheck) {
assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
"This version of getName is for overloaded intrinsics only");
(void)EarlyModuleCheck;
assert((!EarlyModuleCheck || M ||
!any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
"Intrinsic overloading on pointer types need to provide a Module");
bool HasUnnamedType = false;
std::string Result(Intrinsic::getBaseName(Id));
for (Type *Ty : Tys)
Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
if (HasUnnamedType) {
assert(M && "unnamed types need a module");
if (!FT)
FT = Intrinsic::getType(M->getContext(), Id, Tys);
else
assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
"Provided FunctionType must match arguments");
return M->getUniqueIntrinsicName(Result, Id, FT);
}
return Result;
}
std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
FunctionType *FT) {
assert(M && "We need to have a Module");
return getIntrinsicNameImpl(Id, Tys, M, FT, true);
}
std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
}
enum IIT_Info {
IIT_Done = 0,
IIT_I1 = 1,
IIT_I8 = 2,
IIT_I16 = 3,
IIT_I32 = 4,
IIT_I64 = 5,
IIT_F16 = 6,
IIT_F32 = 7,
IIT_F64 = 8,
IIT_V2 = 9,
IIT_V4 = 10,
IIT_V8 = 11,
IIT_V16 = 12,
IIT_V32 = 13,
IIT_PTR = 14,
IIT_ARG = 15,
IIT_V64 = 16,
IIT_MMX = 17,
IIT_TOKEN = 18,
IIT_METADATA = 19,
IIT_EMPTYSTRUCT = 20,
IIT_STRUCT2 = 21,
IIT_STRUCT3 = 22,
IIT_STRUCT4 = 23,
IIT_STRUCT5 = 24,
IIT_EXTEND_ARG = 25,
IIT_TRUNC_ARG = 26,
IIT_ANYPTR = 27,
IIT_V1 = 28,
IIT_VARARG = 29,
IIT_HALF_VEC_ARG = 30,
IIT_SAME_VEC_WIDTH_ARG = 31,
IIT_PTR_TO_ARG = 32,
IIT_PTR_TO_ELT = 33,
IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
IIT_I128 = 35,
IIT_V512 = 36,
IIT_V1024 = 37,
IIT_STRUCT6 = 38,
IIT_STRUCT7 = 39,
IIT_STRUCT8 = 40,
IIT_F128 = 41,
IIT_VEC_ELEMENT = 42,
IIT_SCALABLE_VEC = 43,
IIT_SUBDIVIDE2_ARG = 44,
IIT_SUBDIVIDE4_ARG = 45,
IIT_VEC_OF_BITCASTS_TO_INT = 46,
IIT_V128 = 47,
IIT_BF16 = 48,
IIT_STRUCT9 = 49,
IIT_V256 = 50,
IIT_AMX = 51,
IIT_PPCF128 = 52,
IIT_V3 = 53,
IIT_EXTERNREF = 54,
IIT_FUNCREF = 55,
IIT_ANYPTR_TO_ELT = 56,
IIT_I2 = 57,
IIT_I4 = 58,
};
static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
IIT_Info LastInfo,
SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
using namespace Intrinsic;
bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
IIT_Info Info = IIT_Info(Infos[NextElt++]);
unsigned StructElts = 2;
switch (Info) {
case IIT_Done:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
return;
case IIT_VARARG:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
return;
case IIT_MMX:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
return;
case IIT_AMX:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
return;
case IIT_TOKEN:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
return;
case IIT_METADATA:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
return;
case IIT_F16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
return;
case IIT_BF16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
return;
case IIT_F32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
return;
case IIT_F64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
return;
case IIT_F128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
return;
case IIT_PPCF128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
return;
case IIT_I1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
return;
case IIT_I2:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
return;
case IIT_I4:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
return;
case IIT_I8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
return;
case IIT_I16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
return;
case IIT_I32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
return;
case IIT_I64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
return;
case IIT_I128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
return;
case IIT_V1:
OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V2:
OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V3:
OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V4:
OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V8:
OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V16:
OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V32:
OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V64:
OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V128:
OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V256:
OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V512:
OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V1024:
OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_EXTERNREF:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
case IIT_FUNCREF:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
return;
case IIT_PTR:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_ANYPTR: { OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
Infos[NextElt++]));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
}
case IIT_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
return;
}
case IIT_EXTEND_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
ArgInfo));
return;
}
case IIT_TRUNC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
ArgInfo));
return;
}
case IIT_HALF_VEC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
ArgInfo));
return;
}
case IIT_SAME_VEC_WIDTH_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
ArgInfo));
return;
}
case IIT_PTR_TO_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
ArgInfo));
return;
}
case IIT_PTR_TO_ELT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
return;
}
case IIT_ANYPTR_TO_ELT: {
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
return;
}
case IIT_VEC_OF_ANYPTRS_TO_ELT: {
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
return;
}
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT2: {
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
for (unsigned i = 0; i != StructElts; ++i)
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
}
case IIT_SUBDIVIDE2_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
ArgInfo));
return;
}
case IIT_SUBDIVIDE4_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
ArgInfo));
return;
}
case IIT_VEC_ELEMENT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
ArgInfo));
return;
}
case IIT_SCALABLE_VEC: {
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
}
case IIT_VEC_OF_BITCASTS_TO_INT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
ArgInfo));
return;
}
}
llvm_unreachable("unhandled");
}
#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_GENERATOR_GLOBAL
void Intrinsic::getIntrinsicInfoTableEntries(ID id,
SmallVectorImpl<IITDescriptor> &T){
unsigned TableVal = IIT_Table[id-1];
SmallVector<unsigned char, 8> IITValues;
ArrayRef<unsigned char> IITEntries;
unsigned NextElt = 0;
if ((TableVal >> 31) != 0) {
IITEntries = IIT_LongEncodingTable;
NextElt = (TableVal << 1) >> 1;
} else {
do {
IITValues.push_back(TableVal & 0xF);
TableVal >>= 4;
} while (TableVal);
IITEntries = IITValues;
NextElt = 0;
}
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
}
static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
ArrayRef<Type*> Tys, LLVMContext &Context) {
using namespace Intrinsic;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return Type::getVoidTy(Context);
case IITDescriptor::VarArg: return Type::getVoidTy(Context);
case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
case IITDescriptor::Token: return Type::getTokenTy(Context);
case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
case IITDescriptor::Half: return Type::getHalfTy(Context);
case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
case IITDescriptor::Float: return Type::getFloatTy(Context);
case IITDescriptor::Double: return Type::getDoubleTy(Context);
case IITDescriptor::Quad: return Type::getFP128Ty(Context);
case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
case IITDescriptor::Integer:
return IntegerType::get(Context, D.Integer_Width);
case IITDescriptor::Vector:
return VectorType::get(DecodeFixedType(Infos, Tys, Context),
D.Vector_Width);
case IITDescriptor::Pointer:
return PointerType::get(DecodeFixedType(Infos, Tys, Context),
D.Pointer_AddressSpace);
case IITDescriptor::Struct: {
SmallVector<Type *, 8> Elts;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
Elts.push_back(DecodeFixedType(Infos, Tys, Context));
return StructType::get(Context, Elts);
}
case IITDescriptor::Argument:
return Tys[D.getArgumentNumber()];
case IITDescriptor::ExtendArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getExtendedElementVectorType(VTy);
return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
}
case IITDescriptor::TruncArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getTruncatedElementVectorType(VTy);
IntegerType *ITy = cast<IntegerType>(Ty);
assert(ITy->getBitWidth() % 2 == 0);
return IntegerType::get(Context, ITy->getBitWidth() / 2);
}
case IITDescriptor::Subdivide2Argument:
case IITDescriptor::Subdivide4Argument: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
assert(VTy && "Expected an argument of Vector Type");
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
return VectorType::getSubdividedVectorType(VTy, SubDivs);
}
case IITDescriptor::HalfVecArgument:
return VectorType::getHalfElementsVectorType(cast<VectorType>(
Tys[D.getArgumentNumber()]));
case IITDescriptor::SameVecWidthArgument: {
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
Type *Ty = Tys[D.getArgumentNumber()];
if (auto *VTy = dyn_cast<VectorType>(Ty))
return VectorType::get(EltTy, VTy->getElementCount());
return EltTy;
}
case IITDescriptor::PtrToArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
return PointerType::getUnqual(Ty);
}
case IITDescriptor::PtrToElt: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy)
llvm_unreachable("Expected an argument of Vector Type");
Type *EltTy = VTy->getElementType();
return PointerType::getUnqual(EltTy);
}
case IITDescriptor::VecElementArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VTy->getElementType();
llvm_unreachable("Expected an argument of Vector Type");
}
case IITDescriptor::VecOfBitcastsToInt: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
assert(VTy && "Expected an argument of Vector Type");
return VectorType::getInteger(VTy);
}
case IITDescriptor::VecOfAnyPtrsToElt:
return Tys[D.getOverloadArgNumber()];
case IITDescriptor::AnyPtrToElt:
return Tys[D.getOverloadArgNumber()];
}
llvm_unreachable("unhandled");
}
FunctionType *Intrinsic::getType(LLVMContext &Context,
ID id, ArrayRef<Type*> Tys) {
SmallVector<IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(id, Table);
ArrayRef<IITDescriptor> TableRef = Table;
Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
SmallVector<Type*, 8> ArgTys;
while (!TableRef.empty())
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
ArgTys.pop_back();
return FunctionType::get(ResultTy, ArgTys, true);
}
return FunctionType::get(ResultTy, ArgTys, false);
}
bool Intrinsic::isOverloaded(ID id) {
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}
bool Intrinsic::isLeaf(ID id) {
switch (id) {
default:
return true;
case Intrinsic::experimental_gc_statepoint:
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
return false;
}
}
#define GET_INTRINSIC_ATTRIBUTES
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_ATTRIBUTES
Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
auto *FT = getType(M->getContext(), id, Tys);
return cast<Function>(
M->getOrInsertFunction(Tys.empty() ? getName(id)
: getName(id, Tys, M, FT),
getType(M->getContext(), id, Tys))
.getCallee());
}
#define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
using DeferredIntrinsicMatchPair =
std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
static bool matchIntrinsicType(
Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys,
SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
bool IsDeferredCheck) {
using namespace Intrinsic;
if (Infos.empty()) return true;
auto InfosRef = Infos;
auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
DeferredChecks.emplace_back(T, InfosRef);
return false;
};
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return !Ty->isVoidTy();
case IITDescriptor::VarArg: return true;
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
case IITDescriptor::Token: return !Ty->isTokenTy();
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
case IITDescriptor::Half: return !Ty->isHalfTy();
case IITDescriptor::BFloat: return !Ty->isBFloatTy();
case IITDescriptor::Float: return !Ty->isFloatTy();
case IITDescriptor::Double: return !Ty->isDoubleTy();
case IITDescriptor::Quad: return !Ty->isFP128Ty();
case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
case IITDescriptor::Vector: {
VectorType *VT = dyn_cast<VectorType>(Ty);
return !VT || VT->getElementCount() != D.Vector_Width ||
matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
DeferredChecks, IsDeferredCheck);
}
case IITDescriptor::Pointer: {
PointerType *PT = dyn_cast<PointerType>(Ty);
if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
return true;
if (!PT->isOpaque()) {
if (Infos.front().Kind == IITDescriptor::Struct &&
Infos.front().Struct_NumElements == 0) {
Infos = Infos.slice(1);
return false;
}
return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
ArgTys, DeferredChecks, IsDeferredCheck);
}
while (Infos.front().Kind == IITDescriptor::Pointer ||
Infos.front().Kind == IITDescriptor::Vector)
Infos = Infos.slice(1);
assert((Infos.front().Kind != IITDescriptor::Argument ||
Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
"Unsupported polymorphic pointer type with opaque pointer");
Infos = Infos.slice(1);
return false;
}
case IITDescriptor::Struct: {
StructType *ST = dyn_cast<StructType>(Ty);
if (!ST || !ST->isLiteral() || ST->isPacked() ||
ST->getNumElements() != D.Struct_NumElements)
return true;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
DeferredChecks, IsDeferredCheck))
return true;
return false;
}
case IITDescriptor::Argument:
if (D.getArgumentNumber() < ArgTys.size())
return Ty != ArgTys[D.getArgumentNumber()];
if (D.getArgumentNumber() > ArgTys.size() ||
D.getArgumentKind() == IITDescriptor::AK_MatchType)
return IsDeferredCheck || DeferCheck(Ty);
assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
"Table consistency error");
ArgTys.push_back(Ty);
switch (D.getArgumentKind()) {
case IITDescriptor::AK_Any: return false; case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
default: break;
}
llvm_unreachable("all argument kinds not covered");
case IITDescriptor::ExtendArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getExtendedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
else
return true;
return Ty != NewTy;
}
case IITDescriptor::TruncArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getTruncatedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
else
return true;
return Ty != NewTy;
}
case IITDescriptor::HalfVecArgument:
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getHalfElementsVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
case IITDescriptor::SameVecWidthArgument: {
if (D.getArgumentNumber() >= ArgTys.size()) {
Infos = Infos.slice(1);
return IsDeferredCheck || DeferCheck(Ty);
}
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
auto *ThisArgType = dyn_cast<VectorType>(Ty);
if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
return true;
Type *EltTy = Ty;
if (ThisArgType) {
if (ReferenceType->getElementCount() !=
ThisArgType->getElementCount())
return true;
EltTy = ThisArgType->getElementType();
}
return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
IsDeferredCheck);
}
case IITDescriptor::PtrToArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type * ReferenceType = ArgTys[D.getArgumentNumber()];
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
return (!ThisArgType ||
!ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
}
case IITDescriptor::PtrToElt: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
VectorType * ReferenceType =
dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
if (!ThisArgType || !ReferenceType)
return true;
return !ThisArgType->isOpaqueOrPointeeTypeMatches(
ReferenceType->getElementType());
}
case IITDescriptor::AnyPtrToElt: {
unsigned RefArgNumber = D.getRefArgNumber();
if (RefArgNumber >= ArgTys.size()) {
if (IsDeferredCheck)
return true;
ArgTys.push_back(Ty);
return DeferCheck(Ty);
}
if (!IsDeferredCheck) {
assert(D.getOverloadArgNumber() == ArgTys.size() &&
"Table consistency error");
ArgTys.push_back(Ty);
}
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
auto *ThisArgType = dyn_cast<PointerType>(Ty);
if (!ThisArgType || !ReferenceType)
return true;
return !ThisArgType->isOpaqueOrPointeeTypeMatches(
ReferenceType->getElementType());
}
case IITDescriptor::VecOfAnyPtrsToElt: {
unsigned RefArgNumber = D.getRefArgNumber();
if (RefArgNumber >= ArgTys.size()) {
if (IsDeferredCheck)
return true;
ArgTys.push_back(Ty);
return DeferCheck(Ty);
}
if (!IsDeferredCheck){
assert(D.getOverloadArgNumber() == ArgTys.size() &&
"Table consistency error");
ArgTys.push_back(Ty);
}
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
if (!ThisArgVecTy || !ReferenceType ||
(ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
return true;
PointerType *ThisArgEltTy =
dyn_cast<PointerType>(ThisArgVecTy->getElementType());
if (!ThisArgEltTy)
return true;
return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
ReferenceType->getElementType());
}
case IITDescriptor::VecElementArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck ? true : DeferCheck(Ty);
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
return !ReferenceType || Ty != ReferenceType->getElementType();
}
case IITDescriptor::Subdivide2Argument:
case IITDescriptor::Subdivide4Argument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
return Ty != NewTy;
}
return true;
}
case IITDescriptor::VecOfBitcastsToInt: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
if (!ThisArgVecTy || !ReferenceType)
return true;
return ThisArgVecTy != VectorType::getInteger(ReferenceType);
}
}
llvm_unreachable("unhandled");
}
Intrinsic::MatchIntrinsicTypesResult
Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys) {
SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
false))
return MatchIntrinsicTypes_NoMatchRet;
unsigned NumDeferredReturnChecks = DeferredChecks.size();
for (auto Ty : FTy->params())
if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
return MatchIntrinsicTypes_NoMatchArg;
for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
true))
return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
: MatchIntrinsicTypes_NoMatchArg;
}
return MatchIntrinsicTypes_Match;
}
bool
Intrinsic::matchIntrinsicVarArg(bool isVarArg,
ArrayRef<Intrinsic::IITDescriptor> &Infos) {
if (Infos.empty())
return isVarArg;
if (Infos.size() != 1)
return true;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
if (D.Kind == IITDescriptor::VarArg)
return !isVarArg;
return true;
}
bool Intrinsic::getIntrinsicSignature(Function *F,
SmallVectorImpl<Type *> &ArgTys) {
Intrinsic::ID ID = F->getIntrinsicID();
if (!ID)
return false;
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
ArgTys) !=
Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
return false;
}
if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
TableRef))
return false;
return true;
}
Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
SmallVector<Type *, 4> ArgTys;
if (!getIntrinsicSignature(F, ArgTys))
return None;
Intrinsic::ID ID = F->getIntrinsicID();
StringRef Name = F->getName();
std::string WantedName =
Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
if (Name == WantedName)
return None;
Function *NewDecl = [&] {
if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
if (ExistingF->getFunctionType() == F->getFunctionType())
return ExistingF;
ExistingGV->setName(WantedName + ".renamed");
}
return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
}();
NewDecl->setCallingConv(F->getCallingConv());
assert(NewDecl->getFunctionType() == F->getFunctionType() &&
"Shouldn't change the signature");
return NewDecl;
}
bool Function::hasAddressTaken(const User **PutOffender,
bool IgnoreCallbackUses,
bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
bool IgnoreARCAttachedCall) const {
for (const Use &U : uses()) {
const User *FU = U.getUser();
if (isa<BlockAddress>(FU))
continue;
if (IgnoreCallbackUses) {
AbstractCallSite ACS(&U);
if (ACS && ACS.isCallbackCall())
continue;
}
const auto *Call = dyn_cast<CallBase>(FU);
if (!Call) {
if (IgnoreAssumeLikeCalls) {
if (const auto *FI = dyn_cast<Instruction>(FU)) {
if (FI->isCast() && !FI->user_empty() &&
llvm::all_of(FU->users(), [](const User *U) {
if (const auto *I = dyn_cast<IntrinsicInst>(U))
return I->isAssumeLikeIntrinsic();
return false;
}))
continue;
}
}
if (IgnoreLLVMUsed && !FU->user_empty()) {
const User *FUU = FU;
if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
!FU->user_begin()->user_empty())
FUU = *FU->user_begin();
if (llvm::all_of(FUU->users(), [](const User *U) {
if (const auto *GV = dyn_cast<GlobalVariable>(U))
return GV->hasName() &&
(GV->getName().equals("llvm.compiler.used") ||
GV->getName().equals("llvm.used"));
return false;
}))
continue;
}
if (PutOffender)
*PutOffender = FU;
return true;
}
if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
if (IgnoreARCAttachedCall &&
Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
U.getOperandNo()))
continue;
if (PutOffender)
*PutOffender = FU;
return true;
}
}
return false;
}
bool Function::isDefTriviallyDead() const {
if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
!hasAvailableExternallyLinkage())
return false;
for (const User *U : users())
if (!isa<BlockAddress>(U))
return false;
return true;
}
bool Function::callsFunctionThatReturnsTwice() const {
for (const Instruction &I : instructions(this))
if (const auto *Call = dyn_cast<CallBase>(&I))
if (Call->hasFnAttr(Attribute::ReturnsTwice))
return true;
return false;
}
Constant *Function::getPersonalityFn() const {
assert(hasPersonalityFn() && getNumOperands());
return cast<Constant>(Op<0>());
}
void Function::setPersonalityFn(Constant *Fn) {
setHungoffOperand<0>(Fn);
setValueSubclassDataBit(3, Fn != nullptr);
}
Constant *Function::getPrefixData() const {
assert(hasPrefixData() && getNumOperands());
return cast<Constant>(Op<1>());
}
void Function::setPrefixData(Constant *PrefixData) {
setHungoffOperand<1>(PrefixData);
setValueSubclassDataBit(1, PrefixData != nullptr);
}
Constant *Function::getPrologueData() const {
assert(hasPrologueData() && getNumOperands());
return cast<Constant>(Op<2>());
}
void Function::setPrologueData(Constant *PrologueData) {
setHungoffOperand<2>(PrologueData);
setValueSubclassDataBit(2, PrologueData != nullptr);
}
void Function::allocHungoffUselist() {
if (getNumOperands())
return;
allocHungoffUses(3, false);
setNumHungOffUseOperands(3);
auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
Op<0>().set(CPN);
Op<1>().set(CPN);
Op<2>().set(CPN);
}
template <int Idx>
void Function::setHungoffOperand(Constant *C) {
if (C) {
allocHungoffUselist();
Op<Idx>().set(C);
} else if (getNumOperands()) {
Op<Idx>().set(
ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
}
}
void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
assert(Bit < 16 && "SubclassData contains only 16 bits");
if (On)
setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
else
setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
}
void Function::setEntryCount(ProfileCount Count,
const DenseSet<GlobalValue::GUID> *S) {
#if !defined(NDEBUG)
auto PrevCount = getEntryCount();
assert(!PrevCount || PrevCount->getType() == Count.getType());
#endif
auto ImportGUIDs = getImportGUIDs();
if (S == nullptr && ImportGUIDs.size())
S = &ImportGUIDs;
MDBuilder MDB(getContext());
setMetadata(
LLVMContext::MD_prof,
MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
}
void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
const DenseSet<GlobalValue::GUID> *Imports) {
setEntryCount(ProfileCount(Count, Type), Imports);
}
Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
MDNode *MD = getMetadata(LLVMContext::MD_prof);
if (MD && MD->getOperand(0))
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
if (MDS->getString().equals("function_entry_count")) {
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
uint64_t Count = CI->getValue().getZExtValue();
if (Count == (uint64_t)-1)
return None;
return ProfileCount(Count, PCT_Real);
} else if (AllowSynthetic &&
MDS->getString().equals("synthetic_function_entry_count")) {
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
uint64_t Count = CI->getValue().getZExtValue();
return ProfileCount(Count, PCT_Synthetic);
}
}
return None;
}
DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
DenseSet<GlobalValue::GUID> R;
if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
if (MDS->getString().equals("function_entry_count"))
for (unsigned i = 2; i < MD->getNumOperands(); i++)
R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
->getValue()
.getZExtValue());
return R;
}
void Function::setSectionPrefix(StringRef Prefix) {
MDBuilder MDB(getContext());
setMetadata(LLVMContext::MD_section_prefix,
MDB.createFunctionSectionPrefix(Prefix));
}
Optional<StringRef> Function::getSectionPrefix() const {
if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
assert(cast<MDString>(MD->getOperand(0))
->getString()
.equals("function_section_prefix") &&
"Metadata not match");
return cast<MDString>(MD->getOperand(1))->getString();
}
return None;
}
bool Function::nullPointerIsDefined() const {
return hasFnAttribute(Attribute::NullPointerIsValid);
}
bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
if (F && F->nullPointerIsDefined())
return true;
if (AS != 0)
return true;
return false;
}