; RUN: opt -S -passes=deadargelim %s | FileCheck %s ; Case 0: the basic example: an entire aggregate use is returned, but it's ; actually only used in ways we can eliminate. We gain benefit from analysing ; the "use" and applying its results to all sub-values. ; CHECK-LABEL: define internal void @agguse_dead() define internal { i32, i32 } @agguse_dead() { ret { i32, i32 } { i32 0, i32 1 } } define internal { i32, i32 } @test_agguse_dead() { %val = call { i32, i32 } @agguse_dead() ret { i32, i32 } %val } ; Case 1: an opaque use of the aggregate exists (in this case dead). Otherwise ; only one value is used, so function can be simplified. ; CHECK-LABEL: define internal i32 @rets_independent_if_agguse_dead() ; CHECK: [[RET:%.*]] = extractvalue { i32, i32 } { i32 0, i32 1 }, 1 ; CHECK: ret i32 [[RET]] define internal { i32, i32 } @rets_independent_if_agguse_dead() { ret { i32, i32 } { i32 0, i32 1 } } define internal { i32, i32 } @test_rets_independent_if_agguse_dead(i1 %tst) { %val = call { i32, i32 } @rets_independent_if_agguse_dead() br i1 %tst, label %use_1, label %use_aggregate use_1: ; This use can be classified as applying only to ret 1. %val0 = extractvalue { i32, i32 } %val, 1 call void @callee(i32 %val0) ret { i32, i32 } poison use_aggregate: ; This use is assumed to apply to both 0 and 1. ret { i32, i32 } %val } ; Case 2: an opaque use of the aggregate exists (in this case *live*). Other ; uses shouldn't matter. ; CHECK-LABEL: define internal { i32, i32 } @rets_live_agguse() ; CHECK: ret { i32, i32 } { i32 0, i32 1 } define internal { i32, i32 } @rets_live_agguse() { ret { i32, i32} { i32 0, i32 1 } } define { i32, i32 } @test_rets_live_aggues(i1 %tst) { %val = call { i32, i32 } @rets_live_agguse() br i1 %tst, label %use_1, label %use_aggregate use_1: ; This use can be classified as applying only to ret 1. %val0 = extractvalue { i32, i32 } %val, 1 call void @callee(i32 %val0) ret { i32, i32 } poison use_aggregate: ; This use is assumed to apply to both 0 and 1. ret { i32, i32 } %val } declare void @callee(i32) ; Case 3: the insertvalue meant %in was live if ret-slot-1 was, but we were only ; tracking multiple ret-slots for struct types. So %in was eliminated ; incorrectly. ; CHECK-LABEL: define internal [2 x i32] @array_rets_have_multiple_slots(i32 %in) define internal [2 x i32] @array_rets_have_multiple_slots(i32 %in) { %ret = insertvalue [2 x i32] poison, i32 %in, 1 ret [2 x i32] %ret } define [2 x i32] @test_array_rets_have_multiple_slots() { %res = call [2 x i32] @array_rets_have_multiple_slots(i32 42) ret [2 x i32] %res } ; Case 4: we can remove some retvals from the array. It's nice to produce an ; array again having done so (rather than converting it to a struct). ; CHECK-LABEL: define internal [2 x i32] @can_shrink_arrays() ; CHECK: [[VAL0:%.*]] = extractvalue [3 x i32] [i32 42, i32 43, i32 44], 0 ; CHECK: [[RESTMP:%.*]] = insertvalue [2 x i32] poison, i32 [[VAL0]], 0 ; CHECK: [[VAL2:%.*]] = extractvalue [3 x i32] [i32 42, i32 43, i32 44], 2 ; CHECK: [[RES:%.*]] = insertvalue [2 x i32] [[RESTMP]], i32 [[VAL2]], 1 ; CHECK: ret [2 x i32] [[RES]] ; CHECK-LABEL: define void @test_can_shrink_arrays() define internal [3 x i32] @can_shrink_arrays() { ret [3 x i32] [i32 42, i32 43, i32 44] } define void @test_can_shrink_arrays() { %res = call [3 x i32] @can_shrink_arrays() %res.0 = extractvalue [3 x i32] %res, 0 call void @callee(i32 %res.0) %res.2 = extractvalue [3 x i32] %res, 2 call void @callee(i32 %res.2) ret void } ; Case 5: %in gets passed directly to the return. It should mark be marked as ; used if *any* of the return values are, not just if value 0 is. ; CHECK-LABEL: define internal i32 @ret_applies_to_all({ i32, i32 } %in) ; CHECK: [[RET:%.*]] = extractvalue { i32, i32 } %in, 1 ; CHECK: ret i32 [[RET]] define internal {i32, i32} @ret_applies_to_all({i32, i32} %in) { ret {i32, i32} %in } define i32 @test_ret_applies_to_all() { %val = call {i32, i32} @ret_applies_to_all({i32, i32} {i32 42, i32 43}) %ret = extractvalue {i32, i32} %val, 1 ret i32 %ret } ; Case 6: When considering @mid, the return instruciton has sub-value 0 ; unconditionally live, but 1 only conditionally live. Since at that level we're ; applying the results to the whole of %res, this means %res is live and cannot ; be reduced. There is scope for further optimisation here (though not visible ; in this test-case). ; CHECK-LABEL: define internal { i8*, i32 } @inner() define internal {i8*, i32} @mid() { %res = call {i8*, i32} @inner() %intval = extractvalue {i8*, i32} %res, 1 %tst = icmp eq i32 %intval, 42 br i1 %tst, label %true, label %true true: ret {i8*, i32} %res } define internal {i8*, i32} @inner() { ret {i8*, i32} {i8* null, i32 42} } define internal i8 @outer() { %res = call {i8*, i32} @mid() %resptr = extractvalue {i8*, i32} %res, 0 %val = load i8, i8* %resptr ret i8 %val } define internal { i32 } @agg_ret() { entry: unreachable } ; CHECK-LABEL: define void @PR24906 ; CHECK: %[[invoke:.*]] = invoke i32 @agg_ret() ; CHECK: %[[oldret:.*]] = insertvalue { i32 } poison, i32 %[[invoke]], 0 ; CHECK: phi { i32 } [ %[[oldret]], define void @PR24906() personality i32 (i32)* poison { entry: %tmp2 = invoke { i32 } @agg_ret() to label %bb3 unwind label %bb4 bb3: %tmp3 = phi { i32 } [ %tmp2, %entry ] unreachable bb4: %tmp4 = landingpad { i8*, i32 } cleanup unreachable }