#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/SwitchLoweringUtils.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/MemoryOpRemark.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>
#define DEBUG_TYPE "irtranslator"
using namespace llvm;
static cl::opt<bool>
EnableCSEInIRTranslator("enable-cse-in-irtranslator",
cl::desc("Should enable CSE in irtranslator"),
cl::Optional, cl::init(false));
char IRTranslator::ID = 0;
INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(StackProtector)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
false, false)
static void reportTranslationError(MachineFunction &MF,
const TargetPassConfig &TPC,
OptimizationRemarkEmitter &ORE,
OptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
R << (" (in function: " + MF.getName() + ")").str();
if (TPC.isGlobalISelAbortEnabled())
report_fatal_error(Twine(R.getMsg()));
else
ORE.emit(R);
}
IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
: MachineFunctionPass(ID), OptLevel(optlevel) {}
#ifndef NDEBUG
namespace {
class DILocationVerifier : public GISelChangeObserver {
const Instruction *CurrInst = nullptr;
public:
DILocationVerifier() = default;
~DILocationVerifier() = default;
const Instruction *getCurrentInst() const { return CurrInst; }
void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
void erasingInstr(MachineInstr &MI) override {}
void changingInstr(MachineInstr &MI) override {}
void changedInstr(MachineInstr &MI) override {}
void createdInstr(MachineInstr &MI) override {
assert(getCurrentInst() && "Inserted instruction without a current MI");
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
<< " was copied to " << MI);
#endif
assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
(MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) &&
"Line info was not transferred to all instructions");
}
};
} #endif
void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<StackProtector>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
if (OptLevel != CodeGenOpt::None) {
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
}
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<TargetLibraryInfoWrapperPass>();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
IRTranslator::ValueToVRegInfo::VRegListT &
IRTranslator::allocateVRegs(const Value &Val) {
auto VRegsIt = VMap.findVRegs(Val);
if (VRegsIt != VMap.vregs_end())
return *VRegsIt->second;
auto *Regs = VMap.getVRegs(Val);
auto *Offsets = VMap.getOffsets(Val);
SmallVector<LLT, 4> SplitTys;
computeValueLLTs(*DL, *Val.getType(), SplitTys,
Offsets->empty() ? Offsets : nullptr);
for (unsigned i = 0; i < SplitTys.size(); ++i)
Regs->push_back(0);
return *Regs;
}
ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
auto VRegsIt = VMap.findVRegs(Val);
if (VRegsIt != VMap.vregs_end())
return *VRegsIt->second;
if (Val.getType()->isVoidTy())
return *VMap.getVRegs(Val);
auto *VRegs = VMap.getVRegs(Val);
auto *Offsets = VMap.getOffsets(Val);
assert(Val.getType()->isSized() &&
"Don't know how to create an empty vreg");
SmallVector<LLT, 4> SplitTys;
computeValueLLTs(*DL, *Val.getType(), SplitTys,
Offsets->empty() ? Offsets : nullptr);
if (!isa<Constant>(Val)) {
for (auto Ty : SplitTys)
VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
return *VRegs;
}
if (Val.getType()->isAggregateType()) {
auto &C = cast<Constant>(Val);
unsigned Idx = 0;
while (auto Elt = C.getAggregateElement(Idx++)) {
auto EltRegs = getOrCreateVRegs(*Elt);
llvm::copy(EltRegs, std::back_inserter(*VRegs));
}
} else {
assert(SplitTys.size() == 1 && "unexpectedly split LLT");
VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
bool Success = translate(cast<Constant>(Val), VRegs->front());
if (!Success) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
MF->getFunction().getSubprogram(),
&MF->getFunction().getEntryBlock());
R << "unable to translate constant: " << ore::NV("Type", Val.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return *VRegs;
}
}
return *VRegs;
}
int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
auto MapEntry = FrameIndices.find(&AI);
if (MapEntry != FrameIndices.end())
return MapEntry->second;
uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
uint64_t Size =
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
Size = std::max<uint64_t>(Size, 1u);
int &FI = FrameIndices[&AI];
FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
return FI;
}
Align IRTranslator::getMemOpAlign(const Instruction &I) {
if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
return SI->getAlign();
if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
return LI->getAlign();
if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
return AI->getAlign();
if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
return AI->getAlign();
OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
R << "unable to translate memop: " << ore::NV("Opcode", &I);
reportTranslationError(*MF, *TPC, *ORE, R);
return Align(1);
}
MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
MachineBasicBlock *&MBB = BBToMBB[&BB];
assert(MBB && "BasicBlock was not encountered before");
return *MBB;
}
void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
assert(NewPred && "new predecessor must be a real MachineBasicBlock");
MachinePreds[Edge].push_back(NewPred);
}
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
MachineIRBuilder &MIRBuilder) {
Register Op0 = getOrCreateVReg(*U.getOperand(0));
Register Op1 = getOrCreateVReg(*U.getOperand(1));
Register Res = getOrCreateVReg(U);
uint16_t Flags = 0;
if (isa<Instruction>(U)) {
const Instruction &I = cast<Instruction>(U);
Flags = MachineInstr::copyFlagsFromInstruction(I);
}
MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
return true;
}
bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
MachineIRBuilder &MIRBuilder) {
Register Op0 = getOrCreateVReg(*U.getOperand(0));
Register Res = getOrCreateVReg(U);
uint16_t Flags = 0;
if (isa<Instruction>(U)) {
const Instruction &I = cast<Instruction>(U);
Flags = MachineInstr::copyFlagsFromInstruction(I);
}
MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
return true;
}
bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
}
bool IRTranslator::translateCompare(const User &U,
MachineIRBuilder &MIRBuilder) {
auto *CI = dyn_cast<CmpInst>(&U);
Register Op0 = getOrCreateVReg(*U.getOperand(0));
Register Op1 = getOrCreateVReg(*U.getOperand(1));
Register Res = getOrCreateVReg(U);
CmpInst::Predicate Pred =
CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
cast<ConstantExpr>(U).getPredicate());
if (CmpInst::isIntPredicate(Pred))
MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
else if (Pred == CmpInst::FCMP_FALSE)
MIRBuilder.buildCopy(
Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
else if (Pred == CmpInst::FCMP_TRUE)
MIRBuilder.buildCopy(
Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
else {
uint16_t Flags = 0;
if (CI)
Flags = MachineInstr::copyFlagsFromInstruction(*CI);
MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
}
return true;
}
bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
const ReturnInst &RI = cast<ReturnInst>(U);
const Value *Ret = RI.getReturnValue();
if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
Ret = nullptr;
ArrayRef<Register> VRegs;
if (Ret)
VRegs = getOrCreateVRegs(*Ret);
Register SwiftErrorVReg = 0;
if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
&RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
}
return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
}
void IRTranslator::emitBranchForMergedCondition(
const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
CmpInst::Predicate Condition;
if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
} else {
const FCmpInst *FC = cast<FCmpInst>(Cond);
Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
}
SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
CurBuilder->getDebugLoc(), TProb, FProb);
SL->SwitchCases.push_back(CB);
return;
}
CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
SwitchCG::CaseBlock CB(
Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
SL->SwitchCases.push_back(CB);
}
static bool isValInBlock(const Value *V, const BasicBlock *BB) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() == BB;
return true;
}
void IRTranslator::findMergedConditions(
const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
Instruction::BinaryOps Opc, BranchProbability TProb,
BranchProbability FProb, bool InvertCond) {
using namespace PatternMatch;
assert((Opc == Instruction::And || Opc == Instruction::Or) &&
"Expected Opc to be AND/OR");
Value *NotCond;
if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
isValInBlock(NotCond, CurBB->getBasicBlock())) {
findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
!InvertCond);
return;
}
const Instruction *BOp = dyn_cast<Instruction>(Cond);
const Value *BOpOp0, *BOpOp1;
Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
if (BOp) {
BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
? Instruction::And
: (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
? Instruction::Or
: (Instruction::BinaryOps)0);
if (InvertCond) {
if (BOpc == Instruction::And)
BOpc = Instruction::Or;
else if (BOpc == Instruction::Or)
BOpc = Instruction::And;
}
}
bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
!isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
!isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
InvertCond);
return;
}
MachineFunction::iterator BBI(CurBB);
MachineBasicBlock *TmpBB =
MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
CurBB->getParent()->insert(++BBI, TmpBB);
if (Opc == Instruction::Or) {
auto NewTrueProb = TProb / 2;
auto NewFalseProb = TProb / 2 + FProb;
findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
NewFalseProb, InvertCond);
SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
Probs[1], InvertCond);
} else {
assert(Opc == Instruction::And && "Unknown merge op!");
auto NewTrueProb = TProb + FProb / 2;
auto NewFalseProb = FProb / 2;
findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
NewFalseProb, InvertCond);
SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
Probs[1], InvertCond);
}
}
bool IRTranslator::shouldEmitAsBranches(
const std::vector<SwitchCG::CaseBlock> &Cases) {
if (Cases.size() != 2)
return true;
if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
Cases[0].CmpRHS == Cases[1].CmpRHS) ||
(Cases[0].CmpRHS == Cases[1].CmpLHS &&
Cases[0].CmpLHS == Cases[1].CmpRHS)) {
return false;
}
if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
isa<Constant>(Cases[0].CmpRHS) &&
cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
Cases[0].TrueBB == Cases[1].ThisBB)
return false;
if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
Cases[0].FalseBB == Cases[1].ThisBB)
return false;
}
return true;
}
bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
const BranchInst &BrInst = cast<BranchInst>(U);
auto &CurMBB = MIRBuilder.getMBB();
auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
if (BrInst.isUnconditional()) {
if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
MIRBuilder.buildBr(*Succ0MBB);
for (const BasicBlock *Succ : successors(&BrInst))
CurMBB.addSuccessor(&getMBB(*Succ));
return true;
}
const Value *CondVal = BrInst.getCondition();
MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
const auto &TLI = *MF->getSubtarget().getTargetLowering();
using namespace PatternMatch;
const Instruction *CondI = dyn_cast<Instruction>(CondVal);
if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
!BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
Value *Vec;
const Value *BOp0, *BOp1;
if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
Opcode = Instruction::And;
else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
Opcode = Instruction::Or;
if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
getEdgeProbability(&CurMBB, Succ0MBB),
getEdgeProbability(&CurMBB, Succ1MBB),
false);
assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
if (shouldEmitAsBranches(SL->SwitchCases)) {
emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
SL->SwitchCases.erase(SL->SwitchCases.begin());
return true;
}
for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
MF->erase(SL->SwitchCases[I].ThisBB);
SL->SwitchCases.clear();
}
}
SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
ConstantInt::getTrue(MF->getFunction().getContext()),
nullptr, Succ0MBB, Succ1MBB, &CurMBB,
CurBuilder->getDebugLoc());
emitSwitchCase(CB, &CurMBB, *CurBuilder);
return true;
}
void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
MachineBasicBlock *Dst,
BranchProbability Prob) {
if (!FuncInfo.BPI) {
Src->addSuccessorWithoutProb(Dst);
return;
}
if (Prob.isUnknown())
Prob = getEdgeProbability(Src, Dst);
Src->addSuccessor(Dst, Prob);
}
BranchProbability
IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const {
const BasicBlock *SrcBB = Src->getBasicBlock();
const BasicBlock *DstBB = Dst->getBasicBlock();
if (!FuncInfo.BPI) {
auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
return BranchProbability(1, SuccSize);
}
return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
}
bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
using namespace SwitchCG;
const SwitchInst &SI = cast<SwitchInst>(U);
BranchProbabilityInfo *BPI = FuncInfo.BPI;
CaseClusterVector Clusters;
Clusters.reserve(SI.getNumCases());
for (const auto &I : SI.cases()) {
MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
assert(Succ && "Could not find successor mbb in mapping");
const ConstantInt *CaseVal = I.getCaseValue();
BranchProbability Prob =
BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
: BranchProbability(1, SI.getNumCases() + 1);
Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
}
MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
sortAndRangeify(Clusters);
MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
if (Clusters.empty()) {
SwitchMBB->addSuccessor(DefaultMBB);
if (DefaultMBB != SwitchMBB->getNextNode())
MIB.buildBr(*DefaultMBB);
return true;
}
SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
SL->findBitTestClusters(Clusters, &SI);
LLVM_DEBUG({
dbgs() << "Case clusters: ";
for (const CaseCluster &C : Clusters) {
if (C.Kind == CC_JumpTable)
dbgs() << "JT:";
if (C.Kind == CC_BitTests)
dbgs() << "BT:";
C.Low->getValue().print(dbgs(), true);
if (C.Low != C.High) {
dbgs() << '-';
C.High->getValue().print(dbgs(), true);
}
dbgs() << ' ';
}
dbgs() << '\n';
});
assert(!Clusters.empty());
SwitchWorkList WorkList;
CaseClusterIt First = Clusters.begin();
CaseClusterIt Last = Clusters.end() - 1;
auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
while (!WorkList.empty()) {
SwitchWorkListItem W = WorkList.pop_back_val();
if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
return false;
}
return true;
}
void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
MachineBasicBlock *MBB) {
assert(JT.Reg != -1U && "Should lower JT Header first!");
MachineIRBuilder MIB(*MBB->getParent());
MIB.setMBB(*MBB);
MIB.setDebugLoc(CurBuilder->getDebugLoc());
Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
}
bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
SwitchCG::JumpTableHeader &JTH,
MachineBasicBlock *HeaderBB) {
MachineIRBuilder MIB(*HeaderBB->getParent());
MIB.setMBB(*HeaderBB);
MIB.setDebugLoc(CurBuilder->getDebugLoc());
const Value &SValue = *JTH.SValue;
const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
Register SwitchOpReg = getOrCreateVReg(SValue);
auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
Type *PtrIRTy = SValue.getType()->getPointerTo();
const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
JT.Reg = Sub.getReg(0);
if (JTH.FallthroughUnreachable) {
if (JT.MBB != HeaderBB->getNextNode())
MIB.buildBr(*JT.MBB);
return true;
}
auto Cst = getOrCreateVReg(
*ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
if (JT.MBB != HeaderBB->getNextNode())
BrCond = MIB.buildBr(*JT.MBB);
return true;
}
void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
MachineBasicBlock *SwitchBB,
MachineIRBuilder &MIB) {
Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
Register Cond;
DebugLoc OldDbgLoc = MIB.getDebugLoc();
MIB.setDebugLoc(CB.DbgLoc);
MIB.setMBB(*CB.ThisBB);
if (CB.PredInfo.NoCmp) {
addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
CB.ThisBB);
CB.ThisBB->normalizeSuccProbs();
if (CB.TrueBB != CB.ThisBB->getNextNode())
MIB.buildBr(*CB.TrueBB);
MIB.setDebugLoc(OldDbgLoc);
return;
}
const LLT i1Ty = LLT::scalar(1);
if (!CB.CmpMHS) {
const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
Cond = CondLHS;
} else {
Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
Cond =
MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
else
Cond =
MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
}
} else {
assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
"Can only handle SLE ranges");
const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
Cond =
MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
} else {
const LLT CmpTy = MRI->getType(CmpOpReg);
auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
auto Diff = MIB.buildConstant(CmpTy, High - Low);
Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
}
}
addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
CB.ThisBB);
if (CB.TrueBB != CB.FalseBB)
addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
CB.ThisBB->normalizeSuccProbs();
addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
CB.ThisBB);
MIB.buildBrCond(Cond, *CB.TrueBB);
MIB.buildBr(*CB.FalseBB);
MIB.setDebugLoc(OldDbgLoc);
}
bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
MachineBasicBlock *SwitchMBB,
MachineBasicBlock *CurMBB,
MachineBasicBlock *DefaultMBB,
MachineIRBuilder &MIB,
MachineFunction::iterator BBI,
BranchProbability UnhandledProbs,
SwitchCG::CaseClusterIt I,
MachineBasicBlock *Fallthrough,
bool FallthroughUnreachable) {
using namespace SwitchCG;
MachineFunction *CurMF = SwitchMBB->getParent();
JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
BranchProbability DefaultProb = W.DefaultProb;
MachineBasicBlock *JumpMBB = JT->MBB;
CurMF->insert(BBI, JumpMBB);
addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
CurMBB);
addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
JumpMBB);
auto JumpProb = I->Prob;
auto FallthroughProb = UnhandledProbs;
for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
SE = JumpMBB->succ_end();
SI != SE; ++SI) {
if (*SI == DefaultMBB) {
JumpProb += DefaultProb / 2;
FallthroughProb -= DefaultProb / 2;
JumpMBB->setSuccProbability(SI, DefaultProb / 2);
JumpMBB->normalizeSuccProbs();
} else {
addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
JumpMBB);
}
}
if (FallthroughUnreachable)
JTH->FallthroughUnreachable = true;
if (!JTH->FallthroughUnreachable)
addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
CurMBB->normalizeSuccProbs();
JTH->HeaderBB = CurMBB;
JT->Default = Fallthrough;
if (CurMBB == SwitchMBB) {
if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
return false;
JTH->Emitted = true;
}
return true;
}
bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
Value *Cond,
MachineBasicBlock *Fallthrough,
bool FallthroughUnreachable,
BranchProbability UnhandledProbs,
MachineBasicBlock *CurMBB,
MachineIRBuilder &MIB,
MachineBasicBlock *SwitchMBB) {
using namespace SwitchCG;
const Value *RHS, *LHS, *MHS;
CmpInst::Predicate Pred;
if (I->Low == I->High) {
Pred = CmpInst::ICMP_EQ;
LHS = Cond;
RHS = I->Low;
MHS = nullptr;
} else {
Pred = CmpInst::ICMP_SLE;
LHS = I->Low;
MHS = Cond;
RHS = I->High;
}
CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
emitSwitchCase(CB, SwitchMBB, MIB);
return true;
}
void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
MachineBasicBlock *SwitchBB) {
MachineIRBuilder &MIB = *CurBuilder;
MIB.setMBB(*SwitchBB);
Register SwitchOpReg = getOrCreateVReg(*B.SValue);
LLT SwitchOpTy = MRI->getType(SwitchOpReg);
Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
LLT MaskTy = SwitchOpTy;
if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
!isPowerOf2_32(MaskTy.getSizeInBits()))
MaskTy = LLT::scalar(PtrTy.getSizeInBits());
else {
for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
MaskTy = LLT::scalar(PtrTy.getSizeInBits());
break;
}
}
}
Register SubReg = RangeSub.getReg(0);
if (SwitchOpTy != MaskTy)
SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
B.RegVT = getMVTForLLT(MaskTy);
B.Reg = SubReg;
MachineBasicBlock *MBB = B.Cases[0].ThisBB;
if (!B.FallthroughUnreachable)
addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
addSuccessorWithProb(SwitchBB, MBB, B.Prob);
SwitchBB->normalizeSuccProbs();
if (!B.FallthroughUnreachable) {
auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
RangeSub, RangeCst);
MIB.buildBrCond(RangeCmp, *B.Default);
}
if (MBB != SwitchBB->getNextNode())
MIB.buildBr(*MBB);
}
void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
MachineBasicBlock *NextMBB,
BranchProbability BranchProbToNext,
Register Reg, SwitchCG::BitTestCase &B,
MachineBasicBlock *SwitchBB) {
MachineIRBuilder &MIB = *CurBuilder;
MIB.setMBB(*SwitchBB);
LLT SwitchTy = getLLTForMVT(BB.RegVT);
Register Cmp;
unsigned PopCount = countPopulation(B.Mask);
if (PopCount == 1) {
auto MaskTrailingZeros =
MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
Cmp =
MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
.getReg(0);
} else if (PopCount == BB.Range) {
auto MaskTrailingOnes =
MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
.getReg(0);
} else {
auto CstOne = MIB.buildConstant(SwitchTy, 1);
auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
auto CstZero = MIB.buildConstant(SwitchTy, 0);
Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
.getReg(0);
}
addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
SwitchBB->normalizeSuccProbs();
addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
SwitchBB);
MIB.buildBrCond(Cmp, *B.TargetBB);
if (NextMBB != SwitchBB->getNextNode())
MIB.buildBr(*NextMBB);
}
bool IRTranslator::lowerBitTestWorkItem(
SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
MachineIRBuilder &MIB, MachineFunction::iterator BBI,
BranchProbability DefaultProb, BranchProbability UnhandledProbs,
SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
bool FallthroughUnreachable) {
using namespace SwitchCG;
MachineFunction *CurMF = SwitchMBB->getParent();
BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
for (BitTestCase &BTC : BTB->Cases)
CurMF->insert(BBI, BTC.ThisBB);
BTB->Parent = CurMBB;
BTB->Default = Fallthrough;
BTB->DefaultProb = UnhandledProbs;
if (!BTB->ContiguousRange) {
BTB->Prob += DefaultProb / 2;
BTB->DefaultProb -= DefaultProb / 2;
}
if (FallthroughUnreachable)
BTB->FallthroughUnreachable = true;
if (CurMBB == SwitchMBB) {
emitBitTestHeader(*BTB, SwitchMBB);
BTB->Emitted = true;
}
return true;
}
bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
Value *Cond,
MachineBasicBlock *SwitchMBB,
MachineBasicBlock *DefaultMBB,
MachineIRBuilder &MIB) {
using namespace SwitchCG;
MachineFunction *CurMF = FuncInfo.MF;
MachineBasicBlock *NextMBB = nullptr;
MachineFunction::iterator BBI(W.MBB);
if (++BBI != FuncInfo.MF->end())
NextMBB = &*BBI;
if (EnableOpts) {
llvm::sort(W.FirstCluster, W.LastCluster + 1,
[](const CaseCluster &a, const CaseCluster &b) {
return a.Prob != b.Prob
? a.Prob > b.Prob
: a.Low->getValue().slt(b.Low->getValue());
});
for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
--I;
if (I->Prob > W.LastCluster->Prob)
break;
if (I->Kind == CC_Range && I->MBB == NextMBB) {
std::swap(*I, *W.LastCluster);
break;
}
}
}
BranchProbability DefaultProb = W.DefaultProb;
BranchProbability UnhandledProbs = DefaultProb;
for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
UnhandledProbs += I->Prob;
MachineBasicBlock *CurMBB = W.MBB;
for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
bool FallthroughUnreachable = false;
MachineBasicBlock *Fallthrough;
if (I == W.LastCluster) {
Fallthrough = DefaultMBB;
FallthroughUnreachable = isa<UnreachableInst>(
DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
} else {
Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
CurMF->insert(BBI, Fallthrough);
}
UnhandledProbs -= I->Prob;
switch (I->Kind) {
case CC_BitTests: {
if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
DefaultProb, UnhandledProbs, I, Fallthrough,
FallthroughUnreachable)) {
LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
return false;
}
break;
}
case CC_JumpTable: {
if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
UnhandledProbs, I, Fallthrough,
FallthroughUnreachable)) {
LLVM_DEBUG(dbgs() << "Failed to lower jump table");
return false;
}
break;
}
case CC_Range: {
if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
FallthroughUnreachable, UnhandledProbs,
CurMBB, MIB, SwitchMBB)) {
LLVM_DEBUG(dbgs() << "Failed to lower switch range");
return false;
}
break;
}
}
CurMBB = Fallthrough;
}
return true;
}
bool IRTranslator::translateIndirectBr(const User &U,
MachineIRBuilder &MIRBuilder) {
const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
MIRBuilder.buildBrIndirect(Tgt);
SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
for (const BasicBlock *Succ : successors(&BrInst)) {
if (!AddedSuccessors.insert(Succ).second)
continue;
CurBB.addSuccessor(&getMBB(*Succ));
}
return true;
}
static bool isSwiftError(const Value *V) {
if (auto Arg = dyn_cast<Argument>(V))
return Arg->hasSwiftErrorAttr();
if (auto AI = dyn_cast<AllocaInst>(V))
return AI->isSwiftError();
return false;
}
bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
const LoadInst &LI = cast<LoadInst>(U);
unsigned StoreSize = DL->getTypeStoreSize(LI.getType());
if (StoreSize == 0)
return true;
ArrayRef<Register> Regs = getOrCreateVRegs(LI);
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
Register Base = getOrCreateVReg(*LI.getPointerOperand());
AAMDNodes AAInfo = LI.getAAMetadata();
const Value *Ptr = LI.getPointerOperand();
Type *OffsetIRTy = DL->getIntPtrType(Ptr->getType());
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
assert(Regs.size() == 1 && "swifterror should be single pointer");
Register VReg =
SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
MIRBuilder.buildCopy(Regs[0], VReg);
return true;
}
auto &TLI = *MF->getSubtarget().getTargetLowering();
MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
if (AA->pointsToConstantMemory(
MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
Flags |= MachineMemOperand::MOInvariant;
Flags |= MachineMemOperand::MODereferenceable;
}
}
const MDNode *Ranges =
Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
for (unsigned i = 0; i < Regs.size(); ++i) {
Register Addr;
MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
Align BaseAlign = getMemOpAlign(LI);
auto MMO = MF->getMachineMemOperand(
Ptr, Flags, MRI->getType(Regs[i]),
commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
LI.getSyncScopeID(), LI.getOrdering());
MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
}
return true;
}
bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
const StoreInst &SI = cast<StoreInst>(U);
if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
return true;
ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
Register Base = getOrCreateVReg(*SI.getPointerOperand());
Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
assert(Vals.size() == 1 && "swifterror should be single pointer");
Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
SI.getPointerOperand());
MIRBuilder.buildCopy(VReg, Vals[0]);
return true;
}
auto &TLI = *MF->getSubtarget().getTargetLowering();
MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
for (unsigned i = 0; i < Vals.size(); ++i) {
Register Addr;
MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
Align BaseAlign = getMemOpAlign(SI);
auto MMO = MF->getMachineMemOperand(
Ptr, Flags, MRI->getType(Vals[i]),
commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
SI.getSyncScopeID(), SI.getOrdering());
MIRBuilder.buildStore(Vals[i], Addr, *MMO);
}
return true;
}
static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
const Value *Src = U.getOperand(0);
Type *Int32Ty = Type::getInt32Ty(U.getContext());
SmallVector<Value *, 1> Indices;
Indices.push_back(ConstantInt::get(Int32Ty, 0));
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
for (auto Idx : EVI->indices())
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
for (auto Idx : IVI->indices())
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
} else {
for (unsigned i = 1; i < U.getNumOperands(); ++i)
Indices.push_back(U.getOperand(i));
}
return 8 * static_cast<uint64_t>(
DL.getIndexedOffsetInType(Src->getType(), Indices));
}
bool IRTranslator::translateExtractValue(const User &U,
MachineIRBuilder &MIRBuilder) {
const Value *Src = U.getOperand(0);
uint64_t Offset = getOffsetFromIndices(U, *DL);
ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
auto &DstRegs = allocateVRegs(U);
for (unsigned i = 0; i < DstRegs.size(); ++i)
DstRegs[i] = SrcRegs[Idx++];
return true;
}
bool IRTranslator::translateInsertValue(const User &U,
MachineIRBuilder &MIRBuilder) {
const Value *Src = U.getOperand(0);
uint64_t Offset = getOffsetFromIndices(U, *DL);
auto &DstRegs = allocateVRegs(U);
ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
auto *InsertedIt = InsertedRegs.begin();
for (unsigned i = 0; i < DstRegs.size(); ++i) {
if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
DstRegs[i] = *InsertedIt++;
else
DstRegs[i] = SrcRegs[i];
}
return true;
}
bool IRTranslator::translateSelect(const User &U,
MachineIRBuilder &MIRBuilder) {
Register Tst = getOrCreateVReg(*U.getOperand(0));
ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
uint16_t Flags = 0;
if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
Flags = MachineInstr::copyFlagsFromInstruction(*SI);
for (unsigned i = 0; i < ResRegs.size(); ++i) {
MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
}
return true;
}
bool IRTranslator::translateCopy(const User &U, const Value &V,
MachineIRBuilder &MIRBuilder) {
Register Src = getOrCreateVReg(V);
auto &Regs = *VMap.getVRegs(U);
if (Regs.empty()) {
Regs.push_back(Src);
VMap.getOffsets(U)->push_back(0);
} else {
MIRBuilder.buildCopy(Regs[0], Src);
}
return true;
}
bool IRTranslator::translateBitCast(const User &U,
MachineIRBuilder &MIRBuilder) {
if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
getLLTForType(*U.getType(), *DL))
return translateCopy(U, *U.getOperand(0), MIRBuilder);
return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
}
bool IRTranslator::translateCast(unsigned Opcode, const User &U,
MachineIRBuilder &MIRBuilder) {
Register Op = getOrCreateVReg(*U.getOperand(0));
Register Res = getOrCreateVReg(U);
MIRBuilder.buildInstr(Opcode, {Res}, {Op});
return true;
}
bool IRTranslator::translateGetElementPtr(const User &U,
MachineIRBuilder &MIRBuilder) {
Value &Op0 = *U.getOperand(0);
Register BaseReg = getOrCreateVReg(Op0);
Type *PtrIRTy = Op0.getType();
LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
unsigned VectorWidth = 0;
bool WantSplatVector = false;
if (auto *VT = dyn_cast<VectorType>(U.getType())) {
VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
WantSplatVector = VectorWidth > 1;
}
if (WantSplatVector && !PtrTy.isVector()) {
BaseReg =
MIRBuilder
.buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
.getReg(0);
PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
PtrTy = getLLTForType(*PtrIRTy, *DL);
OffsetIRTy = DL->getIntPtrType(PtrIRTy);
OffsetTy = getLLTForType(*OffsetIRTy, *DL);
}
int64_t Offset = 0;
for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
GTI != E; ++GTI) {
const Value *Idx = GTI.getOperand();
if (StructType *StTy = GTI.getStructTypeOrNull()) {
unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
continue;
} else {
uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
Offset += ElementSize * CI->getSExtValue();
continue;
}
if (Offset != 0) {
auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
.getReg(0);
Offset = 0;
}
Register IdxReg = getOrCreateVReg(*Idx);
LLT IdxTy = MRI->getType(IdxReg);
if (IdxTy != OffsetTy) {
if (!IdxTy.isVector() && WantSplatVector) {
IdxReg = MIRBuilder.buildSplatVector(
OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
}
IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
}
Register GepOffsetReg;
if (ElementSize != 1) {
auto ElementSizeMIB = MIRBuilder.buildConstant(
getLLTForType(*OffsetIRTy, *DL), ElementSize);
GepOffsetReg =
MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
} else
GepOffsetReg = IdxReg;
BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
}
}
if (Offset != 0) {
auto OffsetMIB =
MIRBuilder.buildConstant(OffsetTy, Offset);
MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
return true;
}
MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
return true;
}
bool IRTranslator::translateMemFunc(const CallInst &CI,
MachineIRBuilder &MIRBuilder,
unsigned Opcode) {
const Value *SrcPtr = CI.getArgOperand(1);
if (isa<UndefValue>(SrcPtr))
return true;
SmallVector<Register, 3> SrcRegs;
unsigned MinPtrSize = UINT_MAX;
for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
Register SrcReg = getOrCreateVReg(**AI);
LLT SrcTy = MRI->getType(SrcReg);
if (SrcTy.isPointer())
MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
SrcRegs.push_back(SrcReg);
}
LLT SizeTy = LLT::scalar(MinPtrSize);
Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
if (MRI->getType(SizeOpReg) != SizeTy)
SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
auto ICall = MIRBuilder.buildInstr(Opcode);
for (Register SrcReg : SrcRegs)
ICall.addUse(SrcReg);
Align DstAlign;
Align SrcAlign;
unsigned IsVol =
cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
ConstantInt *CopySize = nullptr;
if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
DstAlign = MCI->getDestAlign().valueOrOne();
SrcAlign = MCI->getSourceAlign().valueOrOne();
CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
} else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
DstAlign = MCI->getDestAlign().valueOrOne();
SrcAlign = MCI->getSourceAlign().valueOrOne();
CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
} else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
DstAlign = MMI->getDestAlign().valueOrOne();
SrcAlign = MMI->getSourceAlign().valueOrOne();
CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
} else {
auto *MSI = cast<MemSetInst>(&CI);
DstAlign = MSI->getDestAlign().valueOrOne();
}
if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
ICall.addImm(CI.isTailCall() ? 1 : 0);
}
MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
if (IsVol) {
LoadFlags |= MachineMemOperand::MOVolatile;
StoreFlags |= MachineMemOperand::MOVolatile;
}
AAMDNodes AAInfo = CI.getAAMetadata();
if (AA && CopySize &&
AA->pointsToConstantMemory(MemoryLocation(
SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
LoadFlags |= MachineMemOperand::MOInvariant;
LoadFlags |= MachineMemOperand::MODereferenceable;
}
ICall.addMemOperand(
MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
StoreFlags, 1, DstAlign, AAInfo));
if (Opcode != TargetOpcode::G_MEMSET)
ICall.addMemOperand(MF->getMachineMemOperand(
MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
return true;
}
void IRTranslator::getStackGuard(Register DstReg,
MachineIRBuilder &MIRBuilder) {
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
auto MIB =
MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
auto &TLI = *MF->getSubtarget().getTargetLowering();
Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
if (!Global)
return;
unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
MachinePointerInfo MPInfo(Global);
auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
MachineMemOperand::MODereferenceable;
MachineMemOperand *MemRef = MF->getMachineMemOperand(
MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
MIB.setMemRefs({MemRef});
}
bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
MachineIRBuilder &MIRBuilder) {
ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
MIRBuilder.buildInstr(
Op, {ResRegs[0], ResRegs[1]},
{getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
return true;
}
bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
MachineIRBuilder &MIRBuilder) {
Register Dst = getOrCreateVReg(CI);
Register Src0 = getOrCreateVReg(*CI.getOperand(0));
Register Src1 = getOrCreateVReg(*CI.getOperand(1));
uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
return true;
}
unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
switch (ID) {
default:
break;
case Intrinsic::bswap:
return TargetOpcode::G_BSWAP;
case Intrinsic::bitreverse:
return TargetOpcode::G_BITREVERSE;
case Intrinsic::fshl:
return TargetOpcode::G_FSHL;
case Intrinsic::fshr:
return TargetOpcode::G_FSHR;
case Intrinsic::ceil:
return TargetOpcode::G_FCEIL;
case Intrinsic::cos:
return TargetOpcode::G_FCOS;
case Intrinsic::ctpop:
return TargetOpcode::G_CTPOP;
case Intrinsic::exp:
return TargetOpcode::G_FEXP;
case Intrinsic::exp2:
return TargetOpcode::G_FEXP2;
case Intrinsic::fabs:
return TargetOpcode::G_FABS;
case Intrinsic::copysign:
return TargetOpcode::G_FCOPYSIGN;
case Intrinsic::minnum:
return TargetOpcode::G_FMINNUM;
case Intrinsic::maxnum:
return TargetOpcode::G_FMAXNUM;
case Intrinsic::minimum:
return TargetOpcode::G_FMINIMUM;
case Intrinsic::maximum:
return TargetOpcode::G_FMAXIMUM;
case Intrinsic::canonicalize:
return TargetOpcode::G_FCANONICALIZE;
case Intrinsic::floor:
return TargetOpcode::G_FFLOOR;
case Intrinsic::fma:
return TargetOpcode::G_FMA;
case Intrinsic::log:
return TargetOpcode::G_FLOG;
case Intrinsic::log2:
return TargetOpcode::G_FLOG2;
case Intrinsic::log10:
return TargetOpcode::G_FLOG10;
case Intrinsic::nearbyint:
return TargetOpcode::G_FNEARBYINT;
case Intrinsic::pow:
return TargetOpcode::G_FPOW;
case Intrinsic::powi:
return TargetOpcode::G_FPOWI;
case Intrinsic::rint:
return TargetOpcode::G_FRINT;
case Intrinsic::round:
return TargetOpcode::G_INTRINSIC_ROUND;
case Intrinsic::roundeven:
return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
case Intrinsic::sin:
return TargetOpcode::G_FSIN;
case Intrinsic::sqrt:
return TargetOpcode::G_FSQRT;
case Intrinsic::trunc:
return TargetOpcode::G_INTRINSIC_TRUNC;
case Intrinsic::readcyclecounter:
return TargetOpcode::G_READCYCLECOUNTER;
case Intrinsic::ptrmask:
return TargetOpcode::G_PTRMASK;
case Intrinsic::lrint:
return TargetOpcode::G_INTRINSIC_LRINT;
case Intrinsic::vector_reduce_fmin:
return TargetOpcode::G_VECREDUCE_FMIN;
case Intrinsic::vector_reduce_fmax:
return TargetOpcode::G_VECREDUCE_FMAX;
case Intrinsic::vector_reduce_add:
return TargetOpcode::G_VECREDUCE_ADD;
case Intrinsic::vector_reduce_mul:
return TargetOpcode::G_VECREDUCE_MUL;
case Intrinsic::vector_reduce_and:
return TargetOpcode::G_VECREDUCE_AND;
case Intrinsic::vector_reduce_or:
return TargetOpcode::G_VECREDUCE_OR;
case Intrinsic::vector_reduce_xor:
return TargetOpcode::G_VECREDUCE_XOR;
case Intrinsic::vector_reduce_smax:
return TargetOpcode::G_VECREDUCE_SMAX;
case Intrinsic::vector_reduce_smin:
return TargetOpcode::G_VECREDUCE_SMIN;
case Intrinsic::vector_reduce_umax:
return TargetOpcode::G_VECREDUCE_UMAX;
case Intrinsic::vector_reduce_umin:
return TargetOpcode::G_VECREDUCE_UMIN;
case Intrinsic::lround:
return TargetOpcode::G_LROUND;
case Intrinsic::llround:
return TargetOpcode::G_LLROUND;
}
return Intrinsic::not_intrinsic;
}
bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
Intrinsic::ID ID,
MachineIRBuilder &MIRBuilder) {
unsigned Op = getSimpleIntrinsicOpcode(ID);
if (Op == Intrinsic::not_intrinsic)
return false;
SmallVector<llvm::SrcOp, 4> VRegs;
for (const auto &Arg : CI.args())
VRegs.push_back(getOrCreateVReg(*Arg));
MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
MachineInstr::copyFlagsFromInstruction(CI));
return true;
}
static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
switch (ID) {
case Intrinsic::experimental_constrained_fadd:
return TargetOpcode::G_STRICT_FADD;
case Intrinsic::experimental_constrained_fsub:
return TargetOpcode::G_STRICT_FSUB;
case Intrinsic::experimental_constrained_fmul:
return TargetOpcode::G_STRICT_FMUL;
case Intrinsic::experimental_constrained_fdiv:
return TargetOpcode::G_STRICT_FDIV;
case Intrinsic::experimental_constrained_frem:
return TargetOpcode::G_STRICT_FREM;
case Intrinsic::experimental_constrained_fma:
return TargetOpcode::G_STRICT_FMA;
case Intrinsic::experimental_constrained_sqrt:
return TargetOpcode::G_STRICT_FSQRT;
default:
return 0;
}
}
bool IRTranslator::translateConstrainedFPIntrinsic(
const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
if (!Opcode)
return false;
unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
if (EB == fp::ExceptionBehavior::ebIgnore)
Flags |= MachineInstr::NoFPExcept;
SmallVector<llvm::SrcOp, 4> VRegs;
VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
if (!FPI.isUnaryOp())
VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
if (FPI.isTernaryOp())
VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
return true;
}
bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
MachineIRBuilder &MIRBuilder) {
if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
if (ORE->enabled()) {
const Function &F = *MI->getParent()->getParent();
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
if (MemoryOpRemark::canHandle(MI, TLI)) {
MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
R.visit(MI);
}
}
}
if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
return true;
switch (ID) {
default:
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end: {
if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
return true;
unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
: TargetOpcode::LIFETIME_END;
SmallVector<const Value *, 4> Allocas;
getUnderlyingObjects(CI.getArgOperand(1), Allocas);
for (const Value *V : Allocas) {
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
if (!AI)
continue;
if (!AI->isStaticAlloca())
return true;
MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
}
return true;
}
case Intrinsic::dbg_declare: {
const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
assert(DI.getVariable() && "Missing variable");
const Value *Address = DI.getAddress();
if (!Address || isa<UndefValue>(Address)) {
LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
return true;
}
assert(DI.getVariable()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
auto AI = dyn_cast<AllocaInst>(Address);
if (AI && AI->isStaticAlloca()) {
MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
getOrCreateFrameIndex(*AI), DI.getDebugLoc());
} else {
MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
DI.getVariable(), DI.getExpression());
}
return true;
}
case Intrinsic::dbg_label: {
const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
assert(DI.getLabel() && "Missing label");
assert(DI.getLabel()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
MIRBuilder.buildDbgLabel(DI.getLabel());
return true;
}
case Intrinsic::vaend:
return true;
case Intrinsic::vastart: {
auto &TLI = *MF->getSubtarget().getTargetLowering();
Value *Ptr = CI.getArgOperand(0);
unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
MachineMemOperand::MOStore,
ListSize, Align(1)));
return true;
}
case Intrinsic::dbg_value: {
const DbgValueInst &DI = cast<DbgValueInst>(CI);
const Value *V = DI.getValue();
assert(DI.getVariable()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
if (!V || DI.hasArgList()) {
MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
} else if (const auto *CI = dyn_cast<Constant>(V)) {
MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
} else {
for (Register Reg : getOrCreateVRegs(*V)) {
MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
}
}
return true;
}
case Intrinsic::uadd_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
case Intrinsic::sadd_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
case Intrinsic::usub_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
case Intrinsic::ssub_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
case Intrinsic::umul_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
case Intrinsic::smul_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
case Intrinsic::uadd_sat:
return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
case Intrinsic::sadd_sat:
return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
case Intrinsic::usub_sat:
return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
case Intrinsic::ssub_sat:
return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
case Intrinsic::ushl_sat:
return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
case Intrinsic::sshl_sat:
return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
case Intrinsic::umin:
return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
case Intrinsic::umax:
return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
case Intrinsic::smin:
return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
case Intrinsic::smax:
return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
case Intrinsic::abs:
return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
case Intrinsic::smul_fix:
return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
case Intrinsic::umul_fix:
return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
case Intrinsic::smul_fix_sat:
return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
case Intrinsic::umul_fix_sat:
return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
case Intrinsic::sdiv_fix:
return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
case Intrinsic::udiv_fix:
return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
case Intrinsic::sdiv_fix_sat:
return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
case Intrinsic::udiv_fix_sat:
return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
case Intrinsic::fmuladd: {
const TargetMachine &TM = MF->getTarget();
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
Register Dst = getOrCreateVReg(CI);
Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
TLI.isFMAFasterThanFMulAndFAdd(*MF,
TLI.getValueType(*DL, CI.getType()))) {
MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
MachineInstr::copyFlagsFromInstruction(CI));
} else {
LLT Ty = getLLTForType(*CI.getType(), *DL);
auto FMul = MIRBuilder.buildFMul(
Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
MIRBuilder.buildFAdd(Dst, FMul, Op2,
MachineInstr::copyFlagsFromInstruction(CI));
}
return true;
}
case Intrinsic::convert_from_fp16:
MIRBuilder.buildFPExt(getOrCreateVReg(CI),
getOrCreateVReg(*CI.getArgOperand(0)),
MachineInstr::copyFlagsFromInstruction(CI));
return true;
case Intrinsic::convert_to_fp16:
MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
getOrCreateVReg(*CI.getArgOperand(0)),
MachineInstr::copyFlagsFromInstruction(CI));
return true;
case Intrinsic::memcpy_inline:
return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
case Intrinsic::memcpy:
return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
case Intrinsic::memmove:
return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
case Intrinsic::memset:
return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
case Intrinsic::eh_typeid_for: {
GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
Register Reg = getOrCreateVReg(CI);
unsigned TypeID = MF->getTypeIDFor(GV);
MIRBuilder.buildConstant(Reg, TypeID);
return true;
}
case Intrinsic::objectsize:
llvm_unreachable("llvm.objectsize.* should have been lowered already");
case Intrinsic::is_constant:
llvm_unreachable("llvm.is.constant.* should have been lowered already");
case Intrinsic::stackguard:
getStackGuard(getOrCreateVReg(CI), MIRBuilder);
return true;
case Intrinsic::stackprotector: {
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
Register GuardVal;
if (TLI.useLoadStackGuardNode()) {
GuardVal = MRI->createGenericVirtualRegister(PtrTy);
getStackGuard(GuardVal, MIRBuilder);
} else
GuardVal = getOrCreateVReg(*CI.getArgOperand(0));
AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
int FI = getOrCreateFrameIndex(*Slot);
MF->getFrameInfo().setStackProtectorIndex(FI);
MIRBuilder.buildStore(
GuardVal, getOrCreateVReg(*Slot),
*MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOStore |
MachineMemOperand::MOVolatile,
PtrTy, Align(8)));
return true;
}
case Intrinsic::stacksave: {
Register Reg = getOrCreateVReg(CI);
Register StackPtr = MF->getSubtarget()
.getTargetLowering()
->getStackPointerRegisterToSaveRestore();
if (!StackPtr)
return false;
MIRBuilder.buildCopy(Reg, StackPtr);
return true;
}
case Intrinsic::stackrestore: {
Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
Register StackPtr = MF->getSubtarget()
.getTargetLowering()
->getStackPointerRegisterToSaveRestore();
if (!StackPtr)
return false;
MIRBuilder.buildCopy(StackPtr, Reg);
return true;
}
case Intrinsic::cttz:
case Intrinsic::ctlz: {
ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
bool isTrailing = ID == Intrinsic::cttz;
unsigned Opcode = isTrailing
? Cst->isZero() ? TargetOpcode::G_CTTZ
: TargetOpcode::G_CTTZ_ZERO_UNDEF
: Cst->isZero() ? TargetOpcode::G_CTLZ
: TargetOpcode::G_CTLZ_ZERO_UNDEF;
MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
{getOrCreateVReg(*CI.getArgOperand(0))});
return true;
}
case Intrinsic::invariant_start: {
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
Register Undef = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildUndef(Undef);
return true;
}
case Intrinsic::invariant_end:
return true;
case Intrinsic::expect:
case Intrinsic::annotation:
case Intrinsic::ptr_annotation:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group: {
MIRBuilder.buildCopy(getOrCreateVReg(CI),
getOrCreateVReg(*CI.getArgOperand(0)));
return true;
}
case Intrinsic::assume:
case Intrinsic::experimental_noalias_scope_decl:
case Intrinsic::var_annotation:
case Intrinsic::sideeffect:
return true;
case Intrinsic::read_volatile_register:
case Intrinsic::read_register: {
Value *Arg = CI.getArgOperand(0);
MIRBuilder
.buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
.addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
return true;
}
case Intrinsic::write_register: {
Value *Arg = CI.getArgOperand(0);
MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
.addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
.addUse(getOrCreateVReg(*CI.getArgOperand(1)));
return true;
}
case Intrinsic::localescape: {
MachineBasicBlock &EntryMBB = MF->front();
StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
if (isa<ConstantPointerNull>(Arg))
continue;
int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
MCSymbol *FrameAllocSym =
MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
Idx);
auto LocalEscape =
MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
.addSym(FrameAllocSym)
.addFrameIndex(FI);
EntryMBB.insert(EntryMBB.begin(), LocalEscape);
}
return true;
}
case Intrinsic::vector_reduce_fadd:
case Intrinsic::vector_reduce_fmul: {
Register Dst = getOrCreateVReg(CI);
Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
unsigned Opc = 0;
if (!CI.hasAllowReassoc()) {
Opc = ID == Intrinsic::vector_reduce_fadd
? TargetOpcode::G_VECREDUCE_SEQ_FADD
: TargetOpcode::G_VECREDUCE_SEQ_FMUL;
MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
MachineInstr::copyFlagsFromInstruction(CI));
return true;
}
unsigned ScalarOpc;
if (ID == Intrinsic::vector_reduce_fadd) {
Opc = TargetOpcode::G_VECREDUCE_FADD;
ScalarOpc = TargetOpcode::G_FADD;
} else {
Opc = TargetOpcode::G_VECREDUCE_FMUL;
ScalarOpc = TargetOpcode::G_FMUL;
}
LLT DstTy = MRI->getType(Dst);
auto Rdx = MIRBuilder.buildInstr(
Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
MachineInstr::copyFlagsFromInstruction(CI));
return true;
}
case Intrinsic::trap:
case Intrinsic::debugtrap:
case Intrinsic::ubsantrap: {
StringRef TrapFuncName =
CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
if (TrapFuncName.empty())
break; CallLowering::CallLoweringInfo Info;
if (ID == Intrinsic::ubsantrap) {
Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
CI.getArgOperand(0)->getType(), 0});
}
Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
Info.CB = &CI;
Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
return CLI->lowerCall(MIRBuilder, Info);
}
case Intrinsic::fptrunc_round: {
unsigned Flags = MachineInstr::copyFlagsFromInstruction(CI);
Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
Optional<RoundingMode> RoundMode =
convertStrToRoundingMode(cast<MDString>(MD)->getString());
MIRBuilder
.buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
{getOrCreateVReg(CI)},
{getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
.addImm((int)*RoundMode);
return true;
}
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
MIRBuilder);
}
return false;
}
bool IRTranslator::translateInlineAsm(const CallBase &CB,
MachineIRBuilder &MIRBuilder) {
const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
if (!ALI) {
LLVM_DEBUG(
dbgs() << "Inline asm lowering is not supported for this target yet\n");
return false;
}
return ALI->lowerInlineAsm(
MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
}
bool IRTranslator::translateCallBase(const CallBase &CB,
MachineIRBuilder &MIRBuilder) {
ArrayRef<Register> Res = getOrCreateVRegs(CB);
SmallVector<ArrayRef<Register>, 8> Args;
Register SwiftInVReg = 0;
Register SwiftErrorVReg = 0;
for (const auto &Arg : CB.args()) {
if (CLI->supportSwiftError() && isSwiftError(Arg)) {
assert(SwiftInVReg == 0 && "Expected only one swift error argument");
LLT Ty = getLLTForType(*Arg->getType(), *DL);
SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
&CB, &MIRBuilder.getMBB(), Arg));
Args.emplace_back(makeArrayRef(SwiftInVReg));
SwiftErrorVReg =
SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
continue;
}
Args.push_back(getOrCreateVRegs(*Arg));
}
if (auto *CI = dyn_cast<CallInst>(&CB)) {
if (ORE->enabled()) {
const Function &F = *CI->getParent()->getParent();
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
if (MemoryOpRemark::canHandle(CI, TLI)) {
MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
R.visit(CI);
}
}
}
bool Success =
CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
[&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
if (Success) {
assert(!HasTailCall && "Can't tail call return twice from block?");
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
}
return Success;
}
bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
const CallInst &CI = cast<CallInst>(U);
auto TII = MF->getTarget().getIntrinsicInfo();
const Function *F = CI.getCalledFunction();
if (F && (F->hasDLLImportStorageClass() ||
(MF->getTarget().getTargetTriple().isOSWindows() &&
F->hasExternalWeakLinkage())))
return false;
if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
return false;
if (CI.isInlineAsm())
return translateInlineAsm(CI, MIRBuilder);
diagnoseDontCall(CI);
Intrinsic::ID ID = Intrinsic::not_intrinsic;
if (F && F->isIntrinsic()) {
ID = F->getIntrinsicID();
if (TII && ID == Intrinsic::not_intrinsic)
ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
}
if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
return translateCallBase(CI, MIRBuilder);
assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
if (translateKnownIntrinsic(CI, ID, MIRBuilder))
return true;
ArrayRef<Register> ResultRegs;
if (!CI.getType()->isVoidTy())
ResultRegs = getOrCreateVRegs(CI);
MachineInstrBuilder MIB =
MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
if (isa<FPMathOperator>(CI))
MIB->copyIRFlags(CI);
for (const auto &Arg : enumerate(CI.args())) {
if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
assert(CI->getBitWidth() <= 64 &&
"large intrinsic immediates not handled");
MIB.addImm(CI->getSExtValue());
} else {
MIB.addFPImm(cast<ConstantFP>(Arg.value()));
}
} else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
auto *MD = MDVal->getMetadata();
auto *MDN = dyn_cast<MDNode>(MD);
if (!MDN) {
if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
else return false;
}
MIB.addMetadata(MDN);
} else {
ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
if (VRegs.size() > 1)
return false;
MIB.addUse(VRegs[0]);
}
}
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
TargetLowering::IntrinsicInfo Info;
if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
Align Alignment = Info.align.value_or(
DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
LLT MemTy = Info.memVT.isSimple()
? getLLTForMVT(Info.memVT.getSimpleVT())
: LLT::scalar(Info.memVT.getStoreSizeInBits());
MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
Info.flags, MemTy, Alignment));
}
return true;
}
bool IRTranslator::findUnwindDestinations(
const BasicBlock *EHPadBB,
BranchProbability Prob,
SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
&UnwindDests) {
EHPersonality Personality = classifyEHPersonality(
EHPadBB->getParent()->getFunction().getPersonalityFn());
bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
bool IsSEH = isAsynchronousEHPersonality(Personality);
if (IsWasmCXX) {
return false;
}
while (EHPadBB) {
const Instruction *Pad = EHPadBB->getFirstNonPHI();
BasicBlock *NewEHPadBB = nullptr;
if (isa<LandingPadInst>(Pad)) {
UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
break;
}
if (isa<CleanupPadInst>(Pad)) {
UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
UnwindDests.back().first->setIsEHScopeEntry();
UnwindDests.back().first->setIsEHFuncletEntry();
break;
}
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
if (IsMSVCCXX || IsCoreCLR)
UnwindDests.back().first->setIsEHFuncletEntry();
if (!IsSEH)
UnwindDests.back().first->setIsEHScopeEntry();
}
NewEHPadBB = CatchSwitch->getUnwindDest();
} else {
continue;
}
BranchProbabilityInfo *BPI = FuncInfo.BPI;
if (BPI && NewEHPadBB)
Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
EHPadBB = NewEHPadBB;
}
return true;
}
bool IRTranslator::translateInvoke(const User &U,
MachineIRBuilder &MIRBuilder) {
const InvokeInst &I = cast<InvokeInst>(U);
MCContext &Context = MF->getContext();
const BasicBlock *ReturnBB = I.getSuccessor(0);
const BasicBlock *EHPadBB = I.getSuccessor(1);
const Function *Fn = I.getCalledFunction();
if (Fn && Fn->isIntrinsic())
return false;
if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
return false;
if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
return false;
if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
return false;
bool LowerInlineAsm = I.isInlineAsm();
bool NeedEHLabel = true;
if (LowerInlineAsm)
NeedEHLabel = (cast<InlineAsm>(I.getCalledOperand()))->canThrow();
MCSymbol *BeginSymbol = nullptr;
if (NeedEHLabel) {
BeginSymbol = Context.createTempSymbol();
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
}
if (LowerInlineAsm) {
if (!translateInlineAsm(I, MIRBuilder))
return false;
} else if (!translateCallBase(I, MIRBuilder))
return false;
MCSymbol *EndSymbol = nullptr;
if (NeedEHLabel) {
EndSymbol = Context.createTempSymbol();
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
}
SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
BranchProbabilityInfo *BPI = FuncInfo.BPI;
MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
BranchProbability EHPadBBProb =
BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
: BranchProbability::getZero();
if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
return false;
MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
&ReturnMBB = getMBB(*ReturnBB);
addSuccessorWithProb(InvokeMBB, &ReturnMBB);
for (auto &UnwindDest : UnwindDests) {
UnwindDest.first->setIsEHPad();
addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
}
InvokeMBB->normalizeSuccProbs();
if (NeedEHLabel) {
assert(BeginSymbol && "Expected a begin symbol!");
assert(EndSymbol && "Expected an end symbol!");
MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
}
MIRBuilder.buildBr(ReturnMBB);
return true;
}
bool IRTranslator::translateCallBr(const User &U,
MachineIRBuilder &MIRBuilder) {
return false;
}
bool IRTranslator::translateLandingPad(const User &U,
MachineIRBuilder &MIRBuilder) {
const LandingPadInst &LP = cast<LandingPadInst>(U);
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MBB.setIsEHPad();
auto &TLI = *MF->getSubtarget().getTargetLowering();
const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
return true;
if (LP.getType()->isTokenTy())
return true;
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
.addSym(MF->addLandingPad(&MBB));
const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
LLT Ty = getLLTForType(*LP.getType(), *DL);
Register Undef = MRI->createGenericVirtualRegister(Ty);
MIRBuilder.buildUndef(Undef);
SmallVector<LLT, 2> Tys;
for (Type *Ty : cast<StructType>(LP.getType())->elements())
Tys.push_back(getLLTForType(*Ty, *DL));
assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
if (!ExceptionReg)
return false;
MBB.addLiveIn(ExceptionReg);
ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
if (!SelectorReg)
return false;
MBB.addLiveIn(SelectorReg);
Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
MIRBuilder.buildCopy(PtrVReg, SelectorReg);
MIRBuilder.buildCast(ResRegs[1], PtrVReg);
return true;
}
bool IRTranslator::translateAlloca(const User &U,
MachineIRBuilder &MIRBuilder) {
auto &AI = cast<AllocaInst>(U);
if (AI.isSwiftError())
return true;
if (AI.isStaticAlloca()) {
Register Res = getOrCreateVReg(AI);
int FI = getOrCreateFrameIndex(AI);
MIRBuilder.buildFrameIndex(Res, FI);
return true;
}
if (MF->getTarget().getTargetTriple().isOSWindows())
return false;
Register NumElts = getOrCreateVReg(*AI.getArraySize());
Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
if (MRI->getType(NumElts) != IntPtrTy) {
Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
NumElts = ExtElts;
}
Type *Ty = AI.getAllocatedType();
Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
Register TySize =
getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
MIRBuilder.buildMul(AllocSize, NumElts, TySize);
Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
MachineInstr::NoUWrap);
auto AlignCst =
MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
if (Alignment <= StackAlign)
Alignment = Align(1);
MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
assert(MF->getFrameInfo().hasVarSizedObjects());
return true;
}
bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
{getOrCreateVReg(*U.getOperand(0)),
DL->getABITypeAlign(U.getType()).value()});
return true;
}
bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
if (!MF->getTarget().Options.TrapUnreachable)
return true;
auto &UI = cast<UnreachableInst>(U);
if (MF->getTarget().Options.NoTrapAfterNoreturn) {
const BasicBlock &BB = *UI.getParent();
if (&UI != &BB.front()) {
BasicBlock::const_iterator PredI =
std::prev(BasicBlock::const_iterator(UI));
if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
if (Call->doesNotReturn())
return true;
}
}
}
MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
return true;
}
bool IRTranslator::translateInsertElement(const User &U,
MachineIRBuilder &MIRBuilder) {
if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
return translateCopy(U, *U.getOperand(1), MIRBuilder);
Register Res = getOrCreateVReg(U);
Register Val = getOrCreateVReg(*U.getOperand(0));
Register Elt = getOrCreateVReg(*U.getOperand(1));
Register Idx = getOrCreateVReg(*U.getOperand(2));
MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
return true;
}
bool IRTranslator::translateExtractElement(const User &U,
MachineIRBuilder &MIRBuilder) {
if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
return translateCopy(U, *U.getOperand(0), MIRBuilder);
Register Res = getOrCreateVReg(U);
Register Val = getOrCreateVReg(*U.getOperand(0));
const auto &TLI = *MF->getSubtarget().getTargetLowering();
unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
Register Idx;
if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
if (CI->getBitWidth() != PreferredVecIdxWidth) {
APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
Idx = getOrCreateVReg(*NewIdxCI);
}
}
if (!Idx)
Idx = getOrCreateVReg(*U.getOperand(1));
if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
}
MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
return true;
}
bool IRTranslator::translateShuffleVector(const User &U,
MachineIRBuilder &MIRBuilder) {
ArrayRef<int> Mask;
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
Mask = SVI->getShuffleMask();
else
Mask = cast<ConstantExpr>(U).getShuffleMask();
ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
MIRBuilder
.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
{getOrCreateVReg(*U.getOperand(0)),
getOrCreateVReg(*U.getOperand(1))})
.addShuffleMask(MaskAlloc);
return true;
}
bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
const PHINode &PI = cast<PHINode>(U);
SmallVector<MachineInstr *, 4> Insts;
for (auto Reg : getOrCreateVRegs(PI)) {
auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
Insts.push_back(MIB.getInstr());
}
PendingPHIs.emplace_back(&PI, std::move(Insts));
return true;
}
bool IRTranslator::translateAtomicCmpXchg(const User &U,
MachineIRBuilder &MIRBuilder) {
const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
auto &TLI = *MF->getSubtarget().getTargetLowering();
auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
auto Res = getOrCreateVRegs(I);
Register OldValRes = Res[0];
Register SuccessRes = Res[1];
Register Addr = getOrCreateVReg(*I.getPointerOperand());
Register Cmp = getOrCreateVReg(*I.getCompareOperand());
Register NewVal = getOrCreateVReg(*I.getNewValOperand());
MIRBuilder.buildAtomicCmpXchgWithSuccess(
OldValRes, SuccessRes, Addr, Cmp, NewVal,
*MF->getMachineMemOperand(
MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
I.getSuccessOrdering(), I.getFailureOrdering()));
return true;
}
bool IRTranslator::translateAtomicRMW(const User &U,
MachineIRBuilder &MIRBuilder) {
const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
auto &TLI = *MF->getSubtarget().getTargetLowering();
auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
Register Res = getOrCreateVReg(I);
Register Addr = getOrCreateVReg(*I.getPointerOperand());
Register Val = getOrCreateVReg(*I.getValOperand());
unsigned Opcode = 0;
switch (I.getOperation()) {
default:
return false;
case AtomicRMWInst::Xchg:
Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
break;
case AtomicRMWInst::Add:
Opcode = TargetOpcode::G_ATOMICRMW_ADD;
break;
case AtomicRMWInst::Sub:
Opcode = TargetOpcode::G_ATOMICRMW_SUB;
break;
case AtomicRMWInst::And:
Opcode = TargetOpcode::G_ATOMICRMW_AND;
break;
case AtomicRMWInst::Nand:
Opcode = TargetOpcode::G_ATOMICRMW_NAND;
break;
case AtomicRMWInst::Or:
Opcode = TargetOpcode::G_ATOMICRMW_OR;
break;
case AtomicRMWInst::Xor:
Opcode = TargetOpcode::G_ATOMICRMW_XOR;
break;
case AtomicRMWInst::Max:
Opcode = TargetOpcode::G_ATOMICRMW_MAX;
break;
case AtomicRMWInst::Min:
Opcode = TargetOpcode::G_ATOMICRMW_MIN;
break;
case AtomicRMWInst::UMax:
Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
break;
case AtomicRMWInst::UMin:
Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
break;
case AtomicRMWInst::FAdd:
Opcode = TargetOpcode::G_ATOMICRMW_FADD;
break;
case AtomicRMWInst::FSub:
Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
break;
case AtomicRMWInst::FMax:
Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
break;
case AtomicRMWInst::FMin:
Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
break;
}
MIRBuilder.buildAtomicRMW(
Opcode, Res, Addr, Val,
*MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
Flags, MRI->getType(Val), getMemOpAlign(I),
I.getAAMetadata(), nullptr, I.getSyncScopeID(),
I.getOrdering()));
return true;
}
bool IRTranslator::translateFence(const User &U,
MachineIRBuilder &MIRBuilder) {
const FenceInst &Fence = cast<FenceInst>(U);
MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
Fence.getSyncScopeID());
return true;
}
bool IRTranslator::translateFreeze(const User &U,
MachineIRBuilder &MIRBuilder) {
const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
assert(DstRegs.size() == SrcRegs.size() &&
"Freeze with different source and destination type?");
for (unsigned I = 0; I < DstRegs.size(); ++I) {
MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
}
return true;
}
void IRTranslator::finishPendingPhis() {
#ifndef NDEBUG
DILocationVerifier Verifier;
GISelObserverWrapper WrapperObserver(&Verifier);
RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
#endif for (auto &Phi : PendingPHIs) {
const PHINode *PI = Phi.first;
ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
EntryBuilder->setDebugLoc(PI->getDebugLoc());
#ifndef NDEBUG
Verifier.setCurrentInst(PI);
#endif
SmallSet<const MachineBasicBlock *, 16> SeenPreds;
for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
auto IRPred = PI->getIncomingBlock(i);
ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
continue;
SeenPreds.insert(Pred);
for (unsigned j = 0; j < ValRegs.size(); ++j) {
MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
MIB.addUse(ValRegs[j]);
MIB.addMBB(Pred);
}
}
}
}
}
bool IRTranslator::translate(const Instruction &Inst) {
CurBuilder->setDebugLoc(Inst.getDebugLoc());
auto &TLI = *MF->getSubtarget().getTargetLowering();
if (TLI.fallBackToDAGISel(Inst))
return false;
switch (Inst.getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: \
return translate##OPCODE(Inst, *CurBuilder.get());
#include "llvm/IR/Instruction.def"
default:
return false;
}
}
bool IRTranslator::translate(const Constant &C, Register Reg) {
if (auto CurrInstDL = CurBuilder->getDL())
EntryBuilder->setDebugLoc(DebugLoc());
if (auto CI = dyn_cast<ConstantInt>(&C))
EntryBuilder->buildConstant(Reg, *CI);
else if (auto CF = dyn_cast<ConstantFP>(&C))
EntryBuilder->buildFConstant(Reg, *CF);
else if (isa<UndefValue>(C))
EntryBuilder->buildUndef(Reg);
else if (isa<ConstantPointerNull>(C))
EntryBuilder->buildConstant(Reg, 0);
else if (auto GV = dyn_cast<GlobalValue>(&C))
EntryBuilder->buildGlobalValue(Reg, GV);
else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
if (!isa<FixedVectorType>(CAZ->getType()))
return false;
unsigned NumElts = CAZ->getElementCount().getFixedValue();
if (NumElts == 1)
return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
SmallVector<Register, 4> Ops;
for (unsigned I = 0; I < NumElts; ++I) {
Constant &Elt = *CAZ->getElementValue(I);
Ops.push_back(getOrCreateVReg(Elt));
}
EntryBuilder->buildBuildVector(Reg, Ops);
} else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
if (CV->getNumElements() == 1)
return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
SmallVector<Register, 4> Ops;
for (unsigned i = 0; i < CV->getNumElements(); ++i) {
Constant &Elt = *CV->getElementAsConstant(i);
Ops.push_back(getOrCreateVReg(Elt));
}
EntryBuilder->buildBuildVector(Reg, Ops);
} else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
switch(CE->getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: \
return translate##OPCODE(*CE, *EntryBuilder.get());
#include "llvm/IR/Instruction.def"
default:
return false;
}
} else if (auto CV = dyn_cast<ConstantVector>(&C)) {
if (CV->getNumOperands() == 1)
return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
SmallVector<Register, 4> Ops;
for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
}
EntryBuilder->buildBuildVector(Reg, Ops);
} else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
EntryBuilder->buildBlockAddress(Reg, BA);
} else
return false;
return true;
}
bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
MachineBasicBlock &MBB) {
for (auto &BTB : SL->BitTestCases) {
if (!BTB.Emitted)
emitBitTestHeader(BTB, BTB.Parent);
BranchProbability UnhandledProb = BTB.Prob;
for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
UnhandledProb -= BTB.Cases[j].ExtraProb;
MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
MachineBasicBlock *NextMBB;
if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
NextMBB = BTB.Cases[j + 1].TargetBB;
} else if (j + 1 == ej) {
NextMBB = BTB.Default;
} else {
NextMBB = BTB.Cases[j + 1].ThisBB;
}
emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
addMachineCFGPred({BTB.Parent->getBasicBlock(),
BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
MBB);
BTB.Cases.pop_back();
break;
}
}
CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
BTB.Default->getBasicBlock()};
addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
if (!BTB.ContiguousRange) {
addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
}
}
SL->BitTestCases.clear();
for (auto &JTCase : SL->JTCases) {
if (!JTCase.first.Emitted)
emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
emitJumpTable(JTCase.second, JTCase.second.MBB);
}
SL->JTCases.clear();
for (auto &SwCase : SL->SwitchCases)
emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
SL->SwitchCases.clear();
StackProtector &SP = getAnalysis<StackProtector>();
if (SP.shouldEmitSDCheck(BB)) {
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
bool FunctionBasedInstrumentation =
TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
}
if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
return false;
} else if (SPDescriptor.shouldEmitStackProtector()) {
MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
ParentMBB, *MF->getSubtarget().getInstrInfo());
SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
ParentMBB->end());
if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
return false;
MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
if (FailureMBB->empty()) {
if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
return false;
}
SPDescriptor.resetPerBBState();
}
return true;
}
bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
MachineBasicBlock *ParentBB) {
CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
int FI = MFI.getStackProtectorIndex();
Register Guard;
Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
const Module &M = *ParentBB->getParent()->getFunction().getParent();
Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
Register GuardVal =
CurBuilder
->buildLoad(PtrMemTy, StackSlotPtr,
MachinePointerInfo::getFixedStack(*MF, FI), Align,
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
.getReg(0);
if (TLI.useStackGuardXorFP()) {
LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
return false;
}
if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
(void)GuardCheckFn;
return false;
#if 0#endif
}
if (TLI.useLoadStackGuardNode()) {
Guard =
MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
getStackGuard(Guard, *CurBuilder);
} else {
const Value *IRGuard = TLI.getSDagStackGuard(M);
Register GuardPtr = getOrCreateVReg(*IRGuard);
Guard = CurBuilder
->buildLoad(PtrMemTy, GuardPtr,
MachinePointerInfo::getFixedStack(*MF, FI), Align,
MachineMemOperand::MOLoad |
MachineMemOperand::MOVolatile)
.getReg(0);
}
auto Cmp =
CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
CurBuilder->buildBr(*SPD.getSuccessMBB());
return true;
}
bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
MachineBasicBlock *FailureBB) {
CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
const char *Name = TLI.getLibcallName(Libcall);
CallLowering::CallLoweringInfo Info;
Info.CallConv = TLI.getLibcallCallingConv(Libcall);
Info.Callee = MachineOperand::CreateES(Name);
Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
0};
if (!CLI->lowerCall(*CurBuilder, Info)) {
LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
return false;
}
const TargetMachine &TM = MF->getTarget();
if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
return false;
}
return true;
}
void IRTranslator::finalizeFunction() {
PendingPHIs.clear();
VMap.reset();
FrameIndices.clear();
MachinePreds.clear();
EntryBuilder.reset();
CurBuilder.reset();
FuncInfo.clear();
SPDescriptor.resetPerFunctionState();
}
static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
if (!IsVarArg)
return false;
return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
const auto *CI = dyn_cast<CallInst>(&I);
return CI && CI->isMustTailCall();
});
}
bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
MF = &CurMF;
const Function &F = MF->getFunction();
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
GISelCSEInfo *CSEInfo = nullptr;
TPC = &getAnalysis<TargetPassConfig>();
bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
? EnableCSEInIRTranslator
: TPC->isGISelCSEEnabled();
if (EnableCSE) {
EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
CSEInfo = &Wrapper.get(TPC->getCSEConfig());
EntryBuilder->setCSEInfo(CSEInfo);
CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
CurBuilder->setCSEInfo(CSEInfo);
} else {
EntryBuilder = std::make_unique<MachineIRBuilder>();
CurBuilder = std::make_unique<MachineIRBuilder>();
}
CLI = MF->getSubtarget().getCallLowering();
CurBuilder->setMF(*MF);
EntryBuilder->setMF(*MF);
MRI = &MF->getRegInfo();
DL = &F.getParent()->getDataLayout();
ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
const TargetMachine &TM = MF->getTarget();
TM.resetTargetOptions(F);
EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
FuncInfo.MF = MF;
if (EnableOpts) {
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
} else {
AA = nullptr;
FuncInfo.BPI = nullptr;
}
FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
const auto &TLI = *MF->getSubtarget().getTargetLowering();
SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
SL->init(TLI, TM, *DL);
assert(PendingPHIs.empty() && "stale PHIs");
if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to translate in big endian mode";
reportTranslationError(*MF, *TPC, *ORE, R);
}
auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
MF->push_back(EntryBB);
EntryBuilder->setMBB(*EntryBB);
DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
SwiftError.setFunction(CurMF);
SwiftError.createEntriesInEntryBlock(DbgLoc);
bool IsVarArg = F.isVarArg();
bool HasMustTailInVarArgFn = false;
for (const BasicBlock &BB: F) {
auto *&MBB = BBToMBB[&BB];
MBB = MF->CreateMachineBasicBlock(&BB);
MF->push_back(MBB);
if (BB.hasAddressTaken())
MBB->setHasAddressTaken();
if (!HasMustTailInVarArgFn)
HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
}
MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
EntryBB->addSuccessor(&getMBB(F.front()));
if (CLI->fallBackToDAGISel(*MF)) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to lower function: " << ore::NV("Prototype", F.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
SmallVector<ArrayRef<Register>, 8> VRegArgs;
for (const Argument &Arg: F.args()) {
if (DL->getTypeStoreSize(Arg.getType()).isZero())
continue; ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
VRegArgs.push_back(VRegs);
if (Arg.hasSwiftErrorAttr()) {
assert(VRegs.size() == 1 && "Too many vregs for Swift error");
SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
}
}
if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
GISelObserverWrapper WrapperObserver;
if (EnableCSE && CSEInfo)
WrapperObserver.addObserver(CSEInfo);
{
ReversePostOrderTraversal<const Function *> RPOT(&F);
#ifndef NDEBUG
DILocationVerifier Verifier;
WrapperObserver.addObserver(&Verifier);
#endif RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
for (const BasicBlock *BB : RPOT) {
MachineBasicBlock &MBB = getMBB(*BB);
CurBuilder->setMBB(MBB);
HasTailCall = false;
for (const Instruction &Inst : *BB) {
if (HasTailCall)
break;
#ifndef NDEBUG
Verifier.setCurrentInst(&Inst);
#endif if (translate(Inst))
continue;
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
Inst.getDebugLoc(), BB);
R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
std::string InstStrStorage;
raw_string_ostream InstStr(InstStrStorage);
InstStr << Inst;
R << ": '" << InstStr.str() << "'";
}
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
if (!finalizeBasicBlock(*BB, MBB)) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
BB->getTerminator()->getDebugLoc(), BB);
R << "unable to translate basic block";
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
}
#ifndef NDEBUG
WrapperObserver.removeObserver(&Verifier);
#endif
}
finishPendingPhis();
SwiftError.propagateVRegs();
assert(EntryBB->succ_size() == 1 &&
"Custom BB used for lowering should have only one successor");
MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
assert(NewEntryBB.pred_size() == 1 &&
"LLVM-IR entry block has a predecessor!?");
NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
EntryBB->end());
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
NewEntryBB.addLiveIn(LiveIn);
NewEntryBB.sortUniqueLiveIns();
EntryBB->removeSuccessor(&NewEntryBB);
MF->remove(EntryBB);
MF->deleteMachineBasicBlock(EntryBB);
assert(&MF->front() == &NewEntryBB &&
"New entry wasn't next in the list of basic block!");
StackProtector &SP = getAnalysis<StackProtector>();
SP.copyToMachineFrameInfo(MF->getFrameInfo());
return false;
}