#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
cl::Hidden, cl::init(20));
static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
cl::Hidden, cl::init(true));
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
return DL.getPointerTypeSizeInBits(Ty);
}
namespace {
struct Query {
const DataLayout &DL;
AssumptionCache *AC;
const Instruction *CxtI;
const DominatorTree *DT;
OptimizationRemarkEmitter *ORE;
InstrInfoQuery IIQ;
Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo,
OptimizationRemarkEmitter *ORE = nullptr)
: DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
};
}
static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
if (CxtI && CxtI->getParent())
return CxtI;
CxtI = dyn_cast<Instruction>(V);
if (CxtI && CxtI->getParent())
return CxtI;
return nullptr;
}
static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
if (CxtI && CxtI->getParent())
return CxtI;
CxtI = dyn_cast<Instruction>(V1);
if (CxtI && CxtI->getParent())
return CxtI;
CxtI = dyn_cast<Instruction>(V2);
if (CxtI && CxtI->getParent())
return CxtI;
return nullptr;
}
static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
const APInt &DemandedElts,
APInt &DemandedLHS, APInt &DemandedRHS) {
if (isa<ScalableVectorType>(Shuf->getType()))
return false;
int NumElts =
cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
if (DemandedElts.isZero())
return true;
if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
DemandedLHS.setBit(0);
return true;
}
for (int i = 0; i != NumMaskElts; ++i) {
if (!DemandedElts[i])
continue;
int M = Shuf->getMaskValue(i);
assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
if (M == -1)
return false;
if (M < NumElts)
DemandedLHS.setBit(M % NumElts);
else
DemandedRHS.setBit(M % NumElts);
}
return true;
}
static void computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, unsigned Depth, const Query &Q);
static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
const Query &Q) {
if (isa<ScalableVectorType>(V->getType())) {
Known.resetAll();
return;
}
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
computeKnownBits(V, DemandedElts, Known, Depth, Q);
}
void llvm::computeKnownBits(const Value *V, KnownBits &Known,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
::computeKnownBits(V, Known, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
::computeKnownBits(V, DemandedElts, Known, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static KnownBits computeKnownBits(const Value *V, unsigned Depth,
const Query &Q);
KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE,
bool UseInstrInfo) {
return ::computeKnownBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE,
bool UseInstrInfo) {
return ::computeKnownBits(
V, DemandedElts, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
assert(LHS->getType() == RHS->getType() &&
"LHS and RHS should have the same type");
assert(LHS->getType()->isIntOrIntVectorTy() &&
"LHS and RHS should be integers");
{
Value *M;
if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(RHS, m_c_And(m_Specific(M), m_Value())))
return true;
if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(LHS, m_c_And(m_Specific(M), m_Value())))
return true;
}
if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
return true;
Value *Y;
if (match(RHS,
m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
return true;
{
Value *A, *B;
if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
return true;
if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
return true;
}
IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
KnownBits LHSKnown(IT->getBitWidth());
KnownBits RHSKnown(IT->getBitWidth());
computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
}
bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
return !I->user_empty() && all_of(I->users(), [](const User *U) {
ICmpInst::Predicate P;
return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
});
}
static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q);
bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
bool OrZero, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownToBeAPowerOfTwo(
V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownNonZero(V, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNonNegative();
}
bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->getValue().isStrictlyPositive();
return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
}
bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNegative();
}
static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q);
bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
return ::isKnownNonEqual(V1, V2, 0,
Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
UseInstrInfo, nullptr));
}
static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
const Query &Q);
bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::MaskedValueIsZero(
V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
const Query &Q) {
if (isa<ScalableVectorType>(V->getType()))
return 1;
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
return ComputeNumSignBits(V, DemandedElts, Depth, Q);
}
unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::ComputeNumSignBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
return V->getType()->getScalarSizeInBits() - SignBits + 1;
}
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
bool NSW, const APInt &DemandedElts,
KnownBits &KnownOut, KnownBits &Known2,
unsigned Depth, const Query &Q) {
computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
if (KnownOut.isUnknown() && !NSW)
return;
computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
}
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
const APInt &DemandedElts, KnownBits &Known,
KnownBits &Known2, unsigned Depth,
const Query &Q) {
computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
if (NSW) {
if (Op0 == Op1) {
isKnownNonNegative = true;
} else {
bool isKnownNonNegativeOp1 = Known.isNonNegative();
bool isKnownNonNegativeOp0 = Known2.isNonNegative();
bool isKnownNegativeOp1 = Known.isNegative();
bool isKnownNegativeOp0 = Known2.isNegative();
isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
(isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
if (!isKnownNonNegative)
isKnownNegative =
(isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Known2.isNonZero()) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
}
}
bool SelfMultiply = Op0 == Op1;
if (SelfMultiply)
SelfMultiply &=
isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
Known = KnownBits::mul(Known, Known2, SelfMultiply);
if (isKnownNonNegative && !Known.isNegative())
Known.makeNonNegative();
else if (isKnownNegative && !Known.isNonNegative())
Known.makeNegative();
}
void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
KnownBits &Known) {
unsigned BitWidth = Known.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
unsigned CommonPrefixBits =
(Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
Known.One &= UnsignedMax & Mask;
Known.Zero &= ~UnsignedMax & Mask;
}
}
static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
SmallVector<const Value *, 16> WorkSet(1, I);
SmallPtrSet<const Value *, 32> Visited;
SmallPtrSet<const Value *, 16> EphValues;
if (is_contained(I->operands(), E))
return true;
while (!WorkSet.empty()) {
const Value *V = WorkSet.pop_back_val();
if (!Visited.insert(V).second)
continue;
if (llvm::all_of(V->users(), [&](const User *U) {
return EphValues.count(U);
})) {
if (V == E)
return true;
if (V == I || (isa<Instruction>(V) &&
!cast<Instruction>(V)->mayHaveSideEffects() &&
!cast<Instruction>(V)->isTerminator())) {
EphValues.insert(V);
if (const User *U = dyn_cast<User>(V))
append_range(WorkSet, U->operands());
}
}
}
return false;
}
bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
return CI->isAssumeLikeIntrinsic();
return false;
}
bool llvm::isValidAssumeForContext(const Instruction *Inv,
const Instruction *CxtI,
const DominatorTree *DT) {
if (Inv->getParent() == CxtI->getParent()) {
if (Inv->comesBefore(CxtI))
return true;
if (Inv == CxtI)
return false;
auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
return false;
return !isEphemeralValueOf(Inv, CxtI);
}
if (DT) {
if (DT->dominates(Inv, CxtI))
return true;
} else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
return true;
}
return false;
}
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
if (Pred == ICmpInst::ICMP_UGT)
return true;
if (Pred == ICmpInst::ICMP_NE)
return match(RHS, m_Zero());
const APInt *C;
if (!match(RHS, m_APInt(C)))
return false;
ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
}
static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
if (!Q.AC || !Q.CxtI)
return false;
if (Q.CxtI && V->getType()->isPointerTy()) {
SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
if (!NullPointerIsDefined(Q.CxtI->getFunction(),
V->getType()->getPointerAddressSpace()))
AttrKinds.push_back(Attribute::Dereferenceable);
if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
return true;
}
for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getFunction() == Q.CxtI->getFunction() &&
"Got assumption for the wrong function!");
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
Value *RHS;
CmpInst::Predicate Pred;
auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
return false;
if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
return true;
}
return false;
}
static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
unsigned Depth, const Query &Q) {
if (!Q.AC || !Q.CxtI)
return;
unsigned BitWidth = Known.getBitWidth();
if (V->getType()->isPointerTy()) {
if (RetainedKnowledge RK = getKnowledgeValidInContext(
V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
if (isPowerOf2_64(RK.ArgValue))
Known.Zero.setLowBits(Log2_64(RK.ArgValue));
}
}
for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
"Got assumption for the wrong function!");
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
Value *Arg = I->getArgOperand(0);
if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllOnes();
return;
}
if (match(Arg, m_Not(m_Specific(V))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllZero();
return;
}
if (Depth == MaxAnalysisRecursionDepth)
continue;
ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
if (!Cmp)
continue;
Query QueryNoAC = Q;
QueryNoAC.AC = nullptr;
Value *A, *B;
auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
CmpInst::Predicate Pred;
uint64_t C;
switch (Cmp->getPredicate()) {
default:
break;
case ICmpInst::ICMP_EQ:
if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.Zero;
Known.One |= RHSKnown.One;
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits MaskKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.Zero & MaskKnown.One;
Known.One |= RHSKnown.One & MaskKnown.One;
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits MaskKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.One & MaskKnown.One;
Known.One |= RHSKnown.Zero & MaskKnown.One;
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
Known.Zero |= RHSKnown.One & BKnown.One;
Known.One |= RHSKnown.Zero & BKnown.One;
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
Known.Zero |= RHSKnown.Zero & BKnown.One;
Known.One |= RHSKnown.One & BKnown.One;
} else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
RHSKnown.Zero.lshrInPlace(C);
Known.Zero |= RHSKnown.Zero;
RHSKnown.One.lshrInPlace(C);
Known.One |= RHSKnown.One;
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
RHSKnown.One.lshrInPlace(C);
Known.Zero |= RHSKnown.One;
RHSKnown.Zero.lshrInPlace(C);
Known.One |= RHSKnown.Zero;
} else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.Zero << C;
Known.One |= RHSKnown.One << C;
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.One << C;
Known.One |= RHSKnown.Zero << C;
}
break;
case ICmpInst::ICMP_SGE:
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isNonNegative()) {
Known.makeNonNegative();
}
}
break;
case ICmpInst::ICMP_SGT:
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Known.makeNonNegative();
}
}
break;
case ICmpInst::ICMP_SLE:
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isNegative()) {
Known.makeNegative();
}
}
break;
case ICmpInst::ICMP_SLT:
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Known.makeNegative();
}
}
break;
case ICmpInst::ICMP_ULE:
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
}
break;
case ICmpInst::ICMP_ULT:
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isZero()) {
Known.Zero.setAllBits();
Known.One.setAllBits();
break;
}
if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
else
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
}
break;
}
}
if (Known.Zero.intersects(Known.One)) {
Known.resetAll();
if (Q.ORE)
Q.ORE->emit([&]() {
auto *CxtI = const_cast<Instruction *>(Q.CxtI);
return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
CxtI)
<< "Detected conflicting code assumptions. Program may "
"have undefined behavior, or compiler may have "
"internal error.";
});
}
}
static void computeKnownBitsFromShiftOperator(
const Operator *I, const APInt &DemandedElts, KnownBits &Known,
KnownBits &Known2, unsigned Depth, const Query &Q,
function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
unsigned BitWidth = Known.getBitWidth();
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
bool ShiftAmtIsConstant = Known.isConstant();
bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
if (ShiftAmtIsConstant) {
Known = KF(Known2, Known);
if (Known.hasConflict())
Known.setAllZero();
return;
}
if (MaxShiftAmtIsOutOfRange) {
Known.resetAll();
return;
}
Known.resetAll();
Optional<bool> ShifterOperandIsNonZero;
if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
!(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
ShifterOperandIsNonZero =
isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
if (!*ShifterOperandIsNonZero)
return;
}
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
continue;
if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
continue;
if (ShiftAmt == 0) {
if (!ShifterOperandIsNonZero)
ShifterOperandIsNonZero =
isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
if (*ShifterOperandIsNonZero)
continue;
}
Known = KnownBits::commonBits(
Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
}
if (Known.hasConflict())
Known.setAllZero();
}
static void computeKnownBitsFromOperator(const Operator *I,
const APInt &DemandedElts,
KnownBits &Known, unsigned Depth,
const Query &Q) {
unsigned BitWidth = Known.getBitWidth();
KnownBits Known2(BitWidth);
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
if (MDNode *MD =
Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
break;
case Instruction::And: {
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known &= Known2;
Value *X = nullptr, *Y = nullptr;
if (!Known.Zero[0] && !Known.One[0] &&
match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Known2.resetAll();
computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
if (Known2.countMinTrailingOnes() > 0)
Known.Zero.setBit(0);
}
break;
}
case Instruction::Or:
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known |= Known2;
break;
case Instruction::Xor:
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known ^= Known2;
break;
case Instruction::Mul: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
Known, Known2, Depth, Q);
break;
}
case Instruction::UDiv: {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::udiv(Known, Known2);
break;
}
case Instruction::Select: {
const Value *LHS = nullptr, *RHS = nullptr;
SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
if (SelectPatternResult::isMinOrMax(SPF)) {
computeKnownBits(RHS, Known, Depth + 1, Q);
computeKnownBits(LHS, Known2, Depth + 1, Q);
switch (SPF) {
default:
llvm_unreachable("Unhandled select pattern flavor!");
case SPF_SMAX:
Known = KnownBits::smax(Known, Known2);
break;
case SPF_SMIN:
Known = KnownBits::smin(Known, Known2);
break;
case SPF_UMAX:
Known = KnownBits::umax(Known, Known2);
break;
case SPF_UMIN:
Known = KnownBits::umin(Known, Known2);
break;
}
break;
}
computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::commonBits(Known, Known2);
if (SPF == SPF_ABS) {
if (match(RHS, m_Neg(m_Specific(LHS))) &&
Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
Known.Zero.setSignBit();
}
break;
}
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
break; case Instruction::PtrToInt:
case Instruction::IntToPtr:
LLVM_FALLTHROUGH;
case Instruction::ZExt:
case Instruction::Trunc: {
Type *SrcTy = I->getOperand(0)->getType();
unsigned SrcBitWidth;
Type *ScalarTy = SrcTy->getScalarType();
SrcBitWidth = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
assert(SrcBitWidth && "SrcBitWidth can't be zero");
Known = Known.anyextOrTrunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Known = Known.zextOrTrunc(BitWidth);
break;
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy->isIntOrPtrTy() &&
!I->getType()->isVectorTy()) {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
}
auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
!I->getType()->isIntOrIntVectorTy())
break;
unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
if (BitWidth % SubBitWidth == 0) {
unsigned NumElts = DemandedElts.getBitWidth();
unsigned SubScale = BitWidth / SubBitWidth;
APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
for (unsigned i = 0; i != NumElts; ++i) {
if (DemandedElts[i])
SubDemandedElts.setBit(i * SubScale);
}
KnownBits KnownSrc(SubBitWidth);
for (unsigned i = 0; i != SubScale; ++i) {
computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
Depth + 1, Q);
unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
}
}
break;
}
case Instruction::SExt: {
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Known = Known.trunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Known = Known.sext(BitWidth);
break;
}
case Instruction::Shl: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
if (NSW) {
if (KnownVal.Zero.isSignBitSet())
Result.Zero.setSignBit();
if (KnownVal.One.isSignBitSet())
Result.One.setSignBit();
}
return Result;
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
const APInt *C;
if (match(I->getOperand(0), m_APInt(C)))
Known.Zero.setLowBits(C->countTrailingZeros());
break;
}
case Instruction::LShr: {
auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
return KnownBits::lshr(KnownVal, KnownAmt);
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
const APInt *C;
if (match(I->getOperand(0), m_APInt(C)))
Known.Zero.setHighBits(C->countLeadingZeros());
break;
}
case Instruction::AShr: {
auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
return KnownBits::ashr(KnownVal, KnownAmt);
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
break;
}
case Instruction::Sub: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
DemandedElts, Known, Known2, Depth, Q);
break;
}
case Instruction::Add: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
DemandedElts, Known, Known2, Depth, Q);
break;
}
case Instruction::SRem:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::srem(Known, Known2);
break;
case Instruction::URem:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::urem(Known, Known2);
break;
case Instruction::Alloca:
Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
break;
case Instruction::GetElementPtr: {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
APInt AccConstIndices(BitWidth, 0, true);
gep_type_iterator GTI = gep_type_begin(I);
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
if (Known.isUnknown())
break;
Value *Index = I->getOperand(i);
Constant *CIndex = dyn_cast<Constant>(Index);
if (CIndex && CIndex->isZeroValue())
continue;
if (StructType *STy = GTI.getStructTypeOrNull()) {
assert(CIndex &&
"Access to structure field must be known at compile time");
if (CIndex->getType()->isVectorTy())
Index = CIndex->getSplatValue();
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t Offset = SL->getElementOffset(Idx);
AccConstIndices += Offset;
continue;
}
Type *IndexedTy = GTI.getIndexedType();
if (!IndexedTy->isSized()) {
Known.resetAll();
break;
}
unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
KnownBits IndexBits(IndexBitWidth);
computeKnownBits(Index, IndexBits, Depth + 1, Q);
TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
KnownBits ScalingFactor(IndexBitWidth);
if (IndexTypeSize.isScalable()) {
ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
} else if (IndexBits.isConstant()) {
APInt IndexConst = IndexBits.getConstant();
APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
IndexConst *= ScalingFactor;
AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
continue;
} else {
ScalingFactor =
KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
}
IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
IndexBits = IndexBits.sextOrTrunc(BitWidth);
Known = KnownBits::computeForAddSub(
true, false, Known, IndexBits);
}
if (!Known.isUnknown() && !AccConstIndices.isZero()) {
KnownBits Index = KnownBits::makeConstant(AccConstIndices);
Known = KnownBits::computeForAddSub(
true, false, Known, Index);
}
break;
}
case Instruction::PHI: {
const PHINode *P = cast<PHINode>(I);
BinaryOperator *BO = nullptr;
Value *R = nullptr, *L = nullptr;
if (matchSimpleRecurrence(P, BO, R, L)) {
unsigned Opcode = BO->getOpcode();
if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
Opcode == Instruction::Shl) &&
BO->getOperand(0) == I) {
Query RecQ = Q;
RecQ.CxtI = P;
computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
switch (Opcode) {
case Instruction::Shl:
Known.Zero.setLowBits(Known2.countMinTrailingZeros());
break;
case Instruction::LShr:
Known.Zero.setHighBits(Known2.countMinLeadingZeros());
break;
case Instruction::AShr:
Known.Zero.setHighBits(Known2.countMinLeadingZeros());
Known.One.setHighBits(Known2.countMinLeadingOnes());
break;
};
}
if (Opcode == Instruction::Add ||
Opcode == Instruction::Sub ||
Opcode == Instruction::And ||
Opcode == Instruction::Or ||
Opcode == Instruction::Mul) {
Query RecQ = Q;
unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
RecQ.CxtI = RInst;
computeKnownBits(R, Known2, Depth + 1, RecQ);
KnownBits Known3(BitWidth);
RecQ.CxtI = LInst;
computeKnownBits(L, Known3, Depth + 1, RecQ);
Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
Known3.countMinTrailingZeros()));
auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
if (Opcode == Instruction::Add) {
if (Known2.isNonNegative() && Known3.isNonNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNegative())
Known.makeNegative();
}
else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
if (Known2.isNonNegative() && Known3.isNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNonNegative())
Known.makeNegative();
}
else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
Known3.isNonNegative())
Known.makeNonNegative();
}
break;
}
}
if (P->getNumIncomingValues() == 0)
break;
if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
break;
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
Value *IncValue = P->getIncomingValue(u);
if (IncValue == P) continue;
Query RecQ = Q;
RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
Known2 = KnownBits(BitWidth);
computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
Known = KnownBits::commonBits(Known, Known2);
if (Known.isUnknown())
break;
}
}
break;
}
case Instruction::Call:
case Instruction::Invoke:
if (MDNode *MD =
Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
computeKnownBits(RV, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero;
Known.One |= Known2.One;
}
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::abs: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
Known = Known2.abs(IntMinIsPoison);
break;
}
case Intrinsic::bitreverse:
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.reverseBits();
Known.One |= Known2.One.reverseBits();
break;
case Intrinsic::bswap:
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.byteSwap();
Known.One |= Known2.One.byteSwap();
break;
case Intrinsic::ctlz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
unsigned PossibleLZ = Known2.countMaxLeadingZeros();
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleLZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::cttz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
unsigned PossibleTZ = Known2.countMaxTrailingZeros();
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleTZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::ctpop: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
unsigned BitsPossiblySet = Known2.countMaxPopulation();
unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::fshr:
case Intrinsic::fshl: {
const APInt *SA;
if (!match(I->getOperand(2), m_APInt(SA)))
break;
uint64_t ShiftAmt = SA->urem(BitWidth);
if (II->getIntrinsicID() == Intrinsic::fshr)
ShiftAmt = BitWidth - ShiftAmt;
KnownBits Known3(BitWidth);
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
Known.Zero =
Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
Known.One =
Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
break;
}
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat: {
bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
unsigned LeadingKnown;
if (IsAdd)
LeadingKnown = std::max(Known.countMinLeadingOnes(),
Known2.countMinLeadingOnes());
else
LeadingKnown = std::max(Known.countMinLeadingZeros(),
Known2.countMinLeadingOnes());
Known = KnownBits::computeForAddSub(
IsAdd, false, Known, Known2);
if (IsAdd) {
Known.One.setHighBits(LeadingKnown);
Known.Zero.clearAllBits();
} else {
Known.Zero.setHighBits(LeadingKnown);
Known.One.clearAllBits();
}
break;
}
case Intrinsic::umin:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::umin(Known, Known2);
break;
case Intrinsic::umax:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::umax(Known, Known2);
break;
case Intrinsic::smin:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::smin(Known, Known2);
break;
case Intrinsic::smax:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::smax(Known, Known2);
break;
case Intrinsic::x86_sse42_crc32_64_64:
Known.Zero.setBitsFrom(32);
break;
case Intrinsic::riscv_vsetvli:
case Intrinsic::riscv_vsetvlimax:
if (BitWidth >= 32)
Known.Zero.setBitsFrom(31);
break;
case Intrinsic::vscale: {
if (!II->getParent() || !II->getFunction() ||
!II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
break;
auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
if (!VScaleMax)
break;
unsigned VScaleMin = Attr.getVScaleRangeMin();
if (VScaleMin == VScaleMax) {
Known.One = VScaleMin;
Known.Zero = VScaleMin;
Known.Zero.flipAllBits();
break;
}
unsigned FirstZeroHighBit = 32 - countLeadingZeros(*VScaleMax);
if (FirstZeroHighBit < BitWidth)
Known.Zero.setBitsFrom(FirstZeroHighBit);
break;
}
}
}
break;
case Instruction::ShuffleVector: {
auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
if (!Shuf) {
Known.resetAll();
return;
}
APInt DemandedLHS, DemandedRHS;
if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
Known.resetAll();
return;
}
Known.One.setAllBits();
Known.Zero.setAllBits();
if (!!DemandedLHS) {
const Value *LHS = Shuf->getOperand(0);
computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
if (Known.isUnknown())
break;
}
if (!!DemandedRHS) {
const Value *RHS = Shuf->getOperand(1);
computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case Instruction::InsertElement: {
const Value *Vec = I->getOperand(0);
const Value *Elt = I->getOperand(1);
auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
unsigned NumElts = DemandedElts.getBitWidth();
if (!CIdx || CIdx->getValue().uge(NumElts)) {
Known.resetAll();
return;
}
Known.One.setAllBits();
Known.Zero.setAllBits();
unsigned EltIdx = CIdx->getZExtValue();
if (DemandedElts[EltIdx]) {
computeKnownBits(Elt, Known, Depth + 1, Q);
if (Known.isUnknown())
break;
}
APInt DemandedVecElts = DemandedElts;
DemandedVecElts.clearBit(EltIdx);
if (!!DemandedVecElts) {
computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case Instruction::ExtractElement: {
const Value *Vec = I->getOperand(0);
const Value *Idx = I->getOperand(1);
auto *CIdx = dyn_cast<ConstantInt>(Idx);
if (isa<ScalableVectorType>(Vec->getType())) {
Known.resetAll();
break;
}
unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
APInt DemandedVecElts = APInt::getAllOnes(NumElts);
if (CIdx && CIdx->getValue().ult(NumElts))
DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
break;
}
case Instruction::ExtractValue:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
if (EVI->getNumIndices() != 1) break;
if (EVI->getIndices()[0] == 0) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, DemandedElts,
Known, Known2, Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, DemandedElts,
Known, Known2, Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
DemandedElts, Known, Known2, Depth, Q);
break;
}
}
}
break;
case Instruction::Freeze:
if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
Depth + 1))
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
}
}
KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q) {
KnownBits Known(getBitWidth(V->getType(), Q.DL));
computeKnownBits(V, DemandedElts, Known, Depth, Q);
return Known;
}
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
KnownBits Known(getBitWidth(V->getType(), Q.DL));
computeKnownBits(V, Known, Depth, Q);
return Known;
}
void computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, unsigned Depth, const Query &Q) {
if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
Known.resetAll();
return;
}
assert(V && "No Value?");
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
#ifndef NDEBUG
Type *Ty = V->getType();
unsigned BitWidth = Known.getBitWidth();
assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
"Not integer or pointer type!");
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
assert(
FVTy->getNumElements() == DemandedElts.getBitWidth() &&
"DemandedElt width should equal the fixed vector number of elements");
} else {
assert(DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars");
}
Type *ScalarTy = Ty->getScalarType();
if (ScalarTy->isPointerTy()) {
assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
"V and Known should have same BitWidth");
} else {
assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
"V and Known should have same BitWidth");
}
#endif
const APInt *C;
if (match(V, m_APInt(C))) {
Known = KnownBits::makeConstant(*C);
return;
}
if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Known.setAllZero();
return;
}
if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
if (!DemandedElts[i])
continue;
APInt Elt = CDV->getElementAsAPInt(i);
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
if (const auto *CV = dyn_cast<ConstantVector>(V)) {
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
Constant *Element = CV->getAggregateElement(i);
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI) {
Known.resetAll();
return;
}
const APInt &Elt = ElementCI->getValue();
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
Known.resetAll();
if (isa<UndefValue>(V))
return;
assert(!isa<ConstantData>(V) && "Unhandled constant data!");
if (Depth == MaxAnalysisRecursionDepth)
return;
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->isInterposable())
computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
return;
}
if (const Operator *I = dyn_cast<Operator>(V))
computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
if (isa<PointerType>(V->getType())) {
Align Alignment = V->getPointerAlignment(Q.DL);
Known.Zero.setLowBits(Log2(Alignment));
}
computeKnownBitsFromAssume(V, Known, Depth, Q);
assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
}
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
unsigned Depth, Query &Q) {
BinaryOperator *BO = nullptr;
Value *Start = nullptr, *Step = nullptr;
if (!matchSimpleRecurrence(PN, BO, Start, Step))
return false;
for (const Use &U : PN->operands()) {
if (U.get() == Start) {
Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
return false;
}
}
if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
return false;
Q.CxtI = BO->getParent()->getTerminator();
switch (BO->getOpcode()) {
case Instruction::Mul:
return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
Q.IIQ.hasNoSignedWrap(BO)) &&
isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
case Instruction::SDiv:
if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
return false;
LLVM_FALLTHROUGH;
case Instruction::UDiv:
return (OrZero || Q.IIQ.isExact(BO)) &&
isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
case Instruction::Shl:
return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
case Instruction::AShr:
if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
return false;
LLVM_FALLTHROUGH;
case Instruction::LShr:
return OrZero || Q.IIQ.isExact(BO);
default:
return false;
}
}
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q) {
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
if (OrZero && match(V, m_Power2OrZero()))
return true;
if (match(V, m_Power2()))
return true;
if (match(V, m_Shl(m_One(), m_Value())))
return true;
if (match(V, m_LShr(m_SignMask(), m_Value())))
return true;
if (Depth++ == MaxAnalysisRecursionDepth)
return false;
Value *X = nullptr, *Y = nullptr;
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_LShr(m_Value(X), m_Value()))))
return isKnownToBeAPowerOfTwo(X, true, Depth, Q);
if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
if (const SelectInst *SI = dyn_cast<SelectInst>(V))
return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
}
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
if (isKnownToBeAPowerOfTwo(X, true, Depth, Q) ||
isKnownToBeAPowerOfTwo(Y, true, Depth, Q))
return true;
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
return true;
return false;
}
if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
Q.IIQ.hasNoSignedWrap(VOBO)) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
KnownBits LHSBits(BitWidth);
computeKnownBits(X, LHSBits, Depth, Q);
KnownBits RHSBits(BitWidth);
computeKnownBits(Y, RHSBits, Depth, Q);
if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
return true;
}
}
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
Query RecQ = Q;
if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
return true;
unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
return llvm::all_of(PN->operands(), [&](const Use &U) {
if (U.get() == PN)
return true;
RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
});
}
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Depth, Q);
}
return false;
}
static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
const Query &Q) {
const Function *F = nullptr;
if (const Instruction *I = dyn_cast<Instruction>(GEP))
F = I->getFunction();
if (!GEP->isInBounds() ||
NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
return false;
assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
return true;
for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
if (StructType *STy = GTI.getStructTypeOrNull()) {
ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
unsigned ElementIdx = OpC->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
if (ElementOffset > 0)
return true;
continue;
}
if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
continue;
if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
if (!OpC->isZero())
return true;
continue;
}
if (Depth++ >= MaxAnalysisRecursionDepth)
continue;
if (isKnownNonZero(GTI.getOperand(), Depth, Q))
return true;
}
return false;
}
static bool isKnownNonNullFromDominatingCondition(const Value *V,
const Instruction *CtxI,
const DominatorTree *DT) {
if (isa<Constant>(V))
return false;
if (!CtxI || !DT)
return false;
unsigned NumUsesExplored = 0;
for (const auto *U : V->users()) {
if (NumUsesExplored >= DomConditionsMaxUses)
break;
NumUsesExplored++;
if (const auto *CB = dyn_cast<CallBase>(U))
if (auto *CalledFunc = CB->getCalledFunction())
for (const Argument &Arg : CalledFunc->args())
if (CB->getArgOperand(Arg.getArgNo()) == V &&
Arg.hasNonNullAttr( false) &&
DT->dominates(CB, CtxI))
return true;
if (V == getLoadStorePointerOperand(U)) {
const Instruction *I = cast<Instruction>(U);
if (!NullPointerIsDefined(I->getFunction(),
V->getType()->getPointerAddressSpace()) &&
DT->dominates(I, CtxI))
return true;
}
Value *RHS;
CmpInst::Predicate Pred;
if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
continue;
bool NonNullIfTrue;
if (cmpExcludesZero(Pred, RHS))
NonNullIfTrue = true;
else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
NonNullIfTrue = false;
else
continue;
SmallVector<const User *, 4> WorkList;
SmallPtrSet<const User *, 4> Visited;
for (const auto *CmpU : U->users()) {
assert(WorkList.empty() && "Should be!");
if (Visited.insert(CmpU).second)
WorkList.push_back(CmpU);
while (!WorkList.empty()) {
auto *Curr = WorkList.pop_back_val();
if (NonNullIfTrue)
if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
for (const auto *CurrU : Curr->users())
if (Visited.insert(CurrU).second)
WorkList.push_back(CurrU);
continue;
}
if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
assert(BI->isConditional() && "uses a comparison!");
BasicBlock *NonNullSuccessor =
BI->getSuccessor(NonNullIfTrue ? 0 : 1);
BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
return true;
} else if (NonNullIfTrue && isGuard(Curr) &&
DT->dominates(cast<Instruction>(Curr), CtxI)) {
return true;
}
}
}
}
return false;
}
static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
const unsigned NumRanges = Ranges->getNumOperands() / 2;
assert(NumRanges >= 1);
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
if (Range.contains(Value))
return false;
}
return true;
}
static bool isNonZeroRecurrence(const PHINode *PN) {
BinaryOperator *BO = nullptr;
Value *Start = nullptr, *Step = nullptr;
const APInt *StartC, *StepC;
if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
!match(Start, m_APInt(StartC)) || StartC->isZero())
return false;
switch (BO->getOpcode()) {
case Instruction::Add:
return BO->hasNoUnsignedWrap() ||
(BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
StartC->isNegative() == StepC->isNegative());
case Instruction::Mul:
return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
match(Step, m_APInt(StepC)) && !StepC->isZero();
case Instruction::Shl:
return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
case Instruction::AShr:
case Instruction::LShr:
return BO->isExact();
default:
return false;
}
}
bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
const Query &Q) {
if (isa<ScalableVectorType>(V->getType()))
return false;
if (auto *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
if (isa<ConstantInt>(C))
return true;
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr ||
CE->getOpcode() == Instruction::PtrToInt)
if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
.getFixedSize() <=
Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
return isKnownNonZero(CE->getOperand(0), Depth, Q);
}
if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
if (!DemandedElts[i])
continue;
Constant *Elt = C->getAggregateElement(i);
if (!Elt || Elt->isNullValue())
return false;
if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
return false;
}
return true;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
GV->getType()->getAddressSpace() == 0)
return true;
} else
return false;
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
const APInt ZeroValue(Ty->getBitWidth(), 0);
if (rangeMetadataExcludesValue(Ranges, ZeroValue))
return true;
}
}
}
if (isKnownNonZeroFromAssume(V, Q))
return true;
if (Depth++ >= MaxAnalysisRecursionDepth)
return false;
if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
return true;
if (const Argument *A = dyn_cast<Argument>(V)) {
if (((A->hasPassPointeeByValueCopyAttr() &&
!NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
A->hasNonNullAttr()))
return true;
}
if (const LoadInst *LI = dyn_cast<LoadInst>(V))
if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
return true;
if (const auto *Call = dyn_cast<CallBase>(V)) {
if (Call->isReturnNonNull())
return true;
if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
return isKnownNonZero(RP, Depth, Q);
}
}
if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
return true;
if (V->getType()->isPointerTy()) {
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
return isGEPKnownNonNull(GEP, Depth, Q);
if (auto *BCO = dyn_cast<BitCastOperator>(V))
return isKnownNonZero(BCO->getOperand(0), Depth, Q);
if (auto *I2P = dyn_cast<IntToPtrInst>(V))
if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
return isKnownNonZero(I2P->getOperand(0), Depth, Q);
}
if (auto *P2I = dyn_cast<PtrToIntInst>(V))
if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
return isKnownNonZero(P2I->getOperand(0), Depth, Q);
unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
return isKnownNonZero(X, DemandedElts, Depth, Q) ||
isKnownNonZero(Y, DemandedElts, Depth, Q);
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (Q.IIQ.hasNoUnsignedWrap(BO))
return isKnownNonZero(X, Depth, Q);
KnownBits Known(BitWidth);
computeKnownBits(X, DemandedElts, Known, Depth, Q);
if (Known.One[0])
return true;
}
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, Depth, Q);
KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
if (Known.isNegative())
return true;
if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
return true;
if (Known.countMinTrailingZeros() >= ShiftVal)
return isKnownNonZero(X, DemandedElts, Depth, Q);
}
}
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
return isKnownNonZero(X, DemandedElts, Depth, Q);
}
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
if (XKnown.isNonNegative() && YKnown.isNonNegative())
if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
isKnownNonZero(Y, DemandedElts, Depth, Q))
return true;
if (XKnown.isNegative() && YKnown.isNegative()) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
if (XKnown.One.intersects(Mask))
return true;
if (YKnown.One.intersects(Mask))
return true;
}
if (XKnown.isNonNegative() &&
isKnownToBeAPowerOfTwo(Y, false, Depth, Q))
return true;
if (YKnown.isNonNegative() &&
isKnownToBeAPowerOfTwo(X, false, Depth, Q))
return true;
}
else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
isKnownNonZero(X, DemandedElts, Depth, Q) &&
isKnownNonZero(Y, DemandedElts, Depth, Q))
return true;
}
else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
return true;
}
else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
return true;
Query RecQ = Q;
unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
return llvm::all_of(PN->operands(), [&](const Use &U) {
if (U.get() == PN)
return true;
RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
});
}
else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
const Value *Vec = EEI->getVectorOperand();
const Value *Idx = EEI->getIndexOperand();
auto *CIdx = dyn_cast<ConstantInt>(Idx);
if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
unsigned NumElts = VecTy->getNumElements();
APInt DemandedVecElts = APInt::getAllOnes(NumElts);
if (CIdx && CIdx->getValue().ult(NumElts))
DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
}
}
else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
auto *Op = FI->getOperand(0);
if (isKnownNonZero(Op, Depth, Q) &&
isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
return true;
} else if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
if (II->getIntrinsicID() == Intrinsic::vscale)
return true;
}
KnownBits Known(BitWidth);
computeKnownBits(V, DemandedElts, Known, Depth, Q);
return Known.One != 0;
}
bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
if (isa<ScalableVectorType>(V->getType()))
return false;
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
return isKnownNonZero(V, DemandedElts, Depth, Q);
}
static Optional<std::pair<Value*, Value*>>
getInvertibleOperands(const Operator *Op1,
const Operator *Op2) {
if (Op1->getOpcode() != Op2->getOpcode())
return None;
auto getOperands = [&](unsigned OpNum) -> auto {
return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
};
switch (Op1->getOpcode()) {
default:
break;
case Instruction::Add:
case Instruction::Sub:
if (Op1->getOperand(0) == Op2->getOperand(0))
return getOperands(1);
if (Op1->getOperand(1) == Op2->getOperand(1))
return getOperands(0);
break;
case Instruction::Mul: {
auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
(!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
break;
if (Op1->getOperand(1) == Op2->getOperand(1) &&
isa<ConstantInt>(Op1->getOperand(1)) &&
!cast<ConstantInt>(Op1->getOperand(1))->isZero())
return getOperands(0);
break;
}
case Instruction::Shl: {
auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
(!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
break;
if (Op1->getOperand(1) == Op2->getOperand(1))
return getOperands(0);
break;
}
case Instruction::AShr:
case Instruction::LShr: {
auto *PEO1 = cast<PossiblyExactOperator>(Op1);
auto *PEO2 = cast<PossiblyExactOperator>(Op2);
if (!PEO1->isExact() || !PEO2->isExact())
break;
if (Op1->getOperand(1) == Op2->getOperand(1))
return getOperands(0);
break;
}
case Instruction::SExt:
case Instruction::ZExt:
if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
return getOperands(0);
break;
case Instruction::PHI: {
const PHINode *PN1 = cast<PHINode>(Op1);
const PHINode *PN2 = cast<PHINode>(Op2);
BinaryOperator *BO1 = nullptr;
Value *Start1 = nullptr, *Step1 = nullptr;
BinaryOperator *BO2 = nullptr;
Value *Start2 = nullptr, *Step2 = nullptr;
if (PN1->getParent() != PN2->getParent() ||
!matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
!matchSimpleRecurrence(PN2, BO2, Start2, Step2))
break;
auto Values = getInvertibleOperands(cast<Operator>(BO1),
cast<Operator>(BO2));
if (!Values)
break;
if (Values->first != PN1 || Values->second != PN2)
break;
return std::make_pair(Start1, Start2);
}
}
return None;
}
static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
if (!BO || BO->getOpcode() != Instruction::Add)
return false;
Value *Op = nullptr;
if (V2 == BO->getOperand(0))
Op = BO->getOperand(1);
else if (V2 == BO->getOperand(1))
Op = BO->getOperand(0);
else
return false;
return isKnownNonZero(Op, Depth + 1, Q);
}
static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
const APInt *C;
return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
(OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
!C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
}
return false;
}
static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
const APInt *C;
return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
(OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
!C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
}
return false;
}
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
unsigned Depth, const Query &Q) {
if (PN1->getParent() != PN2->getParent())
return false;
SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
bool UsedFullRecursion = false;
for (const BasicBlock *IncomBB : PN1->blocks()) {
if (!VisitedBBs.insert(IncomBB).second)
continue; const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
const APInt *C1, *C2;
if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
continue;
if (UsedFullRecursion)
return false;
Query RecQ = Q;
RecQ.CxtI = IncomBB->getTerminator();
if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
return false;
UsedFullRecursion = true;
}
return true;
}
static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q) {
if (V1 == V2)
return false;
if (V1->getType() != V2->getType())
return false;
if (Depth >= MaxAnalysisRecursionDepth)
return false;
auto *O1 = dyn_cast<Operator>(V1);
auto *O2 = dyn_cast<Operator>(V2);
if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
if (auto Values = getInvertibleOperands(O1, O2))
return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
const PHINode *PN2 = cast<PHINode>(V2);
if (isNonEqualPHIs(PN1, PN2, Depth, Q))
return true;
};
}
if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
return true;
if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
return true;
if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
return true;
if (V1->getType()->isIntOrIntVectorTy()) {
KnownBits Known1 = computeKnownBits(V1, Depth, Q);
KnownBits Known2 = computeKnownBits(V2, Depth, Q);
if (Known1.Zero.intersects(Known2.One) ||
Known2.Zero.intersects(Known1.One))
return true;
}
return false;
}
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
const Query &Q) {
KnownBits Known(Mask.getBitWidth());
computeKnownBits(V, Known, Depth, Q);
return Mask.isSubsetOf(Known.Zero);
}
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
const APInt *&CLow, const APInt *&CHigh) {
assert(isa<Operator>(Select) &&
cast<Operator>(Select)->getOpcode() == Instruction::Select &&
"Input should be a Select!");
const Value *LHS = nullptr, *RHS = nullptr;
SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
if (SPF != SPF_SMAX && SPF != SPF_SMIN)
return false;
if (!match(RHS, m_APInt(CLow)))
return false;
const Value *LHS2 = nullptr, *RHS2 = nullptr;
SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
if (getInverseMinMaxFlavor(SPF) != SPF2)
return false;
if (!match(RHS2, m_APInt(CHigh)))
return false;
if (SPF == SPF_SMIN)
std::swap(CLow, CHigh);
In = LHS2;
return CLow->sle(*CHigh);
}
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
const APInt *&CLow,
const APInt *&CHigh) {
assert((II->getIntrinsicID() == Intrinsic::smin ||
II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
!match(II->getArgOperand(1), m_APInt(CLow)) ||
!match(InnerII->getArgOperand(1), m_APInt(CHigh)))
return false;
if (II->getIntrinsicID() == Intrinsic::smin)
std::swap(CLow, CHigh);
return CLow->sle(*CHigh);
}
static unsigned computeNumSignBitsVectorConstant(const Value *V,
const APInt &DemandedElts,
unsigned TyBits) {
const auto *CV = dyn_cast<Constant>(V);
if (!CV || !isa<FixedVectorType>(CV->getType()))
return 0;
unsigned MinSignBits = TyBits;
unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
if (!Elt)
return 0;
MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
}
return MinSignBits;
}
static unsigned ComputeNumSignBitsImpl(const Value *V,
const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q) {
unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
assert(Result > 0 && "At least one sign bit needs to be present!");
return Result;
}
static unsigned ComputeNumSignBitsImpl(const Value *V,
const APInt &DemandedElts,
unsigned Depth, const Query &Q) {
Type *Ty = V->getType();
if (isa<ScalableVectorType>(Ty))
return 1;
#ifndef NDEBUG
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
assert(
FVTy->getNumElements() == DemandedElts.getBitWidth() &&
"DemandedElt width should equal the fixed vector number of elements");
} else {
assert(DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars");
}
#endif
Type *ScalarTy = Ty->getScalarType();
unsigned TyBits = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
if (Depth == MaxAnalysisRecursionDepth)
return 1;
if (auto *U = dyn_cast<Operator>(V)) {
switch (Operator::getOpcode(V)) {
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
case Instruction::SDiv: {
const APInt *Denominator;
if (match(U->getOperand(1), m_APInt(Denominator))) {
if (!Denominator->isStrictlyPositive())
break;
unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
return std::min(TyBits, NumBits + Denominator->logBase2());
}
break;
}
case Instruction::SRem: {
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
const APInt *Denominator;
if (match(U->getOperand(1), m_APInt(Denominator))) {
if (Denominator->isStrictlyPositive()) {
unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Tmp = std::max(Tmp, ResBits);
}
}
return Tmp;
}
case Instruction::AShr: {
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
if (ShAmt->uge(TyBits))
break; unsigned ShAmtLimited = ShAmt->getZExtValue();
Tmp += ShAmtLimited;
if (Tmp > TyBits) Tmp = TyBits;
}
return Tmp;
}
case Instruction::Shl: {
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (ShAmt->uge(TyBits) || ShAmt->uge(Tmp)) break; Tmp2 = ShAmt->getZExtValue();
return Tmp - Tmp2;
}
break;
}
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
FirstAnswer = std::min(Tmp, Tmp2);
}
break;
case Instruction::Select: {
const Value *X;
const APInt *CLow, *CHigh;
if (isSignedMinMaxClamp(U, X, CLow, CHigh))
return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp == 1) break;
Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
return std::min(Tmp, Tmp2);
}
case Instruction::Add:
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
KnownBits Known(TyBits);
computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
if ((Known.Zero | 1).isAllOnes())
return TyBits;
if (Known.isNonNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) break;
return std::min(Tmp, Tmp2) - 1;
case Instruction::Sub:
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) break;
if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
if (CLHS->isNullValue()) {
KnownBits Known(TyBits);
computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
if ((Known.Zero | 1).isAllOnes())
return TyBits;
if (Known.isNonNegative())
return Tmp2;
}
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
return std::min(Tmp, Tmp2) - 1;
case Instruction::Mul: {
unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (SignBitsOp0 == 1) break;
unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (SignBitsOp1 == 1) break;
unsigned OutValidBits =
(TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
}
case Instruction::PHI: {
const PHINode *PN = cast<PHINode>(U);
unsigned NumIncomingValues = PN->getNumIncomingValues();
if (NumIncomingValues > 4) break;
if (NumIncomingValues == 0) break;
Query RecQ = Q;
Tmp = TyBits;
for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
if (Tmp == 1) return Tmp;
RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
Tmp = std::min(
Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
}
return Tmp;
}
case Instruction::Trunc:
break;
case Instruction::ExtractElement:
return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
case Instruction::ShuffleVector: {
auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
if (!Shuf) {
return 1;
}
APInt DemandedLHS, DemandedRHS;
if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
return 1;
Tmp = std::numeric_limits<unsigned>::max();
if (!!DemandedLHS) {
const Value *LHS = Shuf->getOperand(0);
Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
}
if (Tmp == 1)
break;
if (!!DemandedRHS) {
const Value *RHS = Shuf->getOperand(1);
Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
Tmp = std::min(Tmp, Tmp2);
}
if (Tmp == 1)
break;
assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
return Tmp;
}
case Instruction::Call: {
if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::abs:
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
return Tmp - 1;
case Intrinsic::smin:
case Intrinsic::smax: {
const APInt *CLow, *CHigh;
if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
}
}
}
}
}
}
if (unsigned VecSignBits =
computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
return VecSignBits;
KnownBits Known(TyBits);
computeKnownBits(V, DemandedElts, Known, Depth, Q);
return std::max(FirstAnswer, Known.countMinSignBits());
}
Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
const TargetLibraryInfo *TLI) {
const Function *F = CB.getCalledFunction();
if (!F)
return Intrinsic::not_intrinsic;
if (F->isIntrinsic())
return F->getIntrinsicID();
LibFunc Func;
if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
!CB.onlyReadsMemory())
return Intrinsic::not_intrinsic;
switch (Func) {
default:
break;
case LibFunc_sin:
case LibFunc_sinf:
case LibFunc_sinl:
return Intrinsic::sin;
case LibFunc_cos:
case LibFunc_cosf:
case LibFunc_cosl:
return Intrinsic::cos;
case LibFunc_exp:
case LibFunc_expf:
case LibFunc_expl:
return Intrinsic::exp;
case LibFunc_exp2:
case LibFunc_exp2f:
case LibFunc_exp2l:
return Intrinsic::exp2;
case LibFunc_log:
case LibFunc_logf:
case LibFunc_logl:
return Intrinsic::log;
case LibFunc_log10:
case LibFunc_log10f:
case LibFunc_log10l:
return Intrinsic::log10;
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log2l:
return Intrinsic::log2;
case LibFunc_fabs:
case LibFunc_fabsf:
case LibFunc_fabsl:
return Intrinsic::fabs;
case LibFunc_fmin:
case LibFunc_fminf:
case LibFunc_fminl:
return Intrinsic::minnum;
case LibFunc_fmax:
case LibFunc_fmaxf:
case LibFunc_fmaxl:
return Intrinsic::maxnum;
case LibFunc_copysign:
case LibFunc_copysignf:
case LibFunc_copysignl:
return Intrinsic::copysign;
case LibFunc_floor:
case LibFunc_floorf:
case LibFunc_floorl:
return Intrinsic::floor;
case LibFunc_ceil:
case LibFunc_ceilf:
case LibFunc_ceill:
return Intrinsic::ceil;
case LibFunc_trunc:
case LibFunc_truncf:
case LibFunc_truncl:
return Intrinsic::trunc;
case LibFunc_rint:
case LibFunc_rintf:
case LibFunc_rintl:
return Intrinsic::rint;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_nearbyintl:
return Intrinsic::nearbyint;
case LibFunc_round:
case LibFunc_roundf:
case LibFunc_roundl:
return Intrinsic::round;
case LibFunc_roundeven:
case LibFunc_roundevenf:
case LibFunc_roundevenl:
return Intrinsic::roundeven;
case LibFunc_pow:
case LibFunc_powf:
case LibFunc_powl:
return Intrinsic::pow;
case LibFunc_sqrt:
case LibFunc_sqrtf:
case LibFunc_sqrtl:
return Intrinsic::sqrt;
}
return Intrinsic::not_intrinsic;
}
bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
if (Depth == MaxAnalysisRecursionDepth)
return false;
auto *Op = dyn_cast<Operator>(V);
if (!Op)
return false;
if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
return true;
if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
return true;
if (auto *Call = dyn_cast<CallInst>(Op)) {
Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
switch (IID) {
default:
break;
case Intrinsic::sqrt:
case Intrinsic::canonicalize:
return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
case Intrinsic::experimental_constrained_sqrt: {
const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
else
return false;
}
case Intrinsic::fabs:
return true;
case Intrinsic::experimental_constrained_sitofp:
case Intrinsic::experimental_constrained_uitofp:
return true;
}
}
return false;
}
static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
const TargetLibraryInfo *TLI,
bool SignBitOnly,
unsigned Depth) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
return !CFP->getValueAPF().isNegative() ||
(!SignBitOnly && CFP->getValueAPF().isZero());
}
if (auto *CV = dyn_cast<Constant>(V)) {
if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
unsigned NumElts = CVFVTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
if (!CFP)
return false;
if (CFP->getValueAPF().isNegative() &&
(SignBitOnly || !CFP->getValueAPF().isZero()))
return false;
}
return true;
}
}
if (Depth == MaxAnalysisRecursionDepth)
return false;
const Operator *I = dyn_cast<Operator>(V);
if (!I)
return false;
switch (I->getOpcode()) {
default:
break;
case Instruction::UIToFP:
return true;
case Instruction::FDiv:
if (I->getOperand(0) == I->getOperand(1) &&
(!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
return true;
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
true, Depth + 1);
case Instruction::FMul:
if (I->getOperand(0) == I->getOperand(1) &&
(!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
return true;
LLVM_FALLTHROUGH;
case Instruction::FAdd:
case Instruction::FRem:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Instruction::Select:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
Depth + 1);
case Instruction::FPExt:
case Instruction::FPTrunc:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Instruction::ExtractElement:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Instruction::Call:
const auto *CI = cast<CallInst>(I);
Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
switch (IID) {
default:
break;
case Intrinsic::maxnum: {
Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
auto isPositiveNum = [&](Value *V) {
if (SignBitOnly) {
const APFloat *C;
return match(V, m_APFloat(C)) &&
*C > APFloat::getZero(C->getSemantics());
}
return isKnownNeverNaN(V, TLI) &&
cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
};
return isPositiveNum(V0) || isPositiveNum(V1);
}
case Intrinsic::maximum:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) ||
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::minnum:
case Intrinsic::minimum:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::fabs:
return true;
case Intrinsic::sqrt:
if (!SignBitOnly)
return true;
return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
CannotBeNegativeZero(CI->getOperand(0), TLI));
case Intrinsic::powi:
if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
return true;
}
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::fma:
case Intrinsic::fmuladd:
return I->getOperand(0) == I->getOperand(1) &&
(!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
Depth + 1);
}
break;
}
return false;
}
bool llvm::CannotBeOrderedLessThanZero(const Value *V,
const TargetLibraryInfo *TLI) {
return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
}
bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
}
bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
if (FPMathOp->hasNoInfs())
return true;
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->isInfinity();
if (Depth == MaxAnalysisRecursionDepth)
return false;
if (auto *Inst = dyn_cast<Instruction>(V)) {
switch (Inst->getOpcode()) {
case Instruction::Select: {
return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
}
case Instruction::SIToFP:
case Instruction::UIToFP: {
int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
if (Inst->getOpcode() == Instruction::SIToFP)
--IntSize;
Type *FPTy = Inst->getType()->getScalarType();
return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
}
default:
break;
}
}
auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
if (VFVTy && isa<Constant>(V)) {
unsigned NumElts = VFVTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
if (!Elt)
return false;
if (isa<UndefValue>(Elt))
continue;
auto *CElt = dyn_cast<ConstantFP>(Elt);
if (!CElt || CElt->isInfinity())
return false;
}
return true;
}
return false;
}
bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
if (FPMathOp->hasNoNaNs())
return true;
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->isNaN();
if (Depth == MaxAnalysisRecursionDepth)
return false;
if (auto *Inst = dyn_cast<Instruction>(V)) {
switch (Inst->getOpcode()) {
case Instruction::FAdd:
case Instruction::FSub:
return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
(isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
case Instruction::FMul:
return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
case Instruction::FDiv:
case Instruction::FRem:
return false;
case Instruction::Select: {
return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
}
case Instruction::SIToFP:
case Instruction::UIToFP:
return true;
case Instruction::FPTrunc:
case Instruction::FPExt:
return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
default:
break;
}
}
if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
switch (II->getIntrinsicID()) {
case Intrinsic::canonicalize:
case Intrinsic::fabs:
case Intrinsic::copysign:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::nearbyint:
case Intrinsic::round:
case Intrinsic::roundeven:
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
case Intrinsic::sqrt:
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
case Intrinsic::minnum:
case Intrinsic::maxnum:
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
default:
return false;
}
}
auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
if (VFVTy && isa<Constant>(V)) {
unsigned NumElts = VFVTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
if (!Elt)
return false;
if (isa<UndefValue>(Elt))
continue;
auto *CElt = dyn_cast<ConstantFP>(Elt);
if (!CElt || CElt->isNaN())
return false;
}
return true;
}
return false;
}
Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
if (V->getType()->isIntegerTy(8))
return V;
LLVMContext &Ctx = V->getContext();
auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
if (isa<UndefValue>(V))
return UndefInt8;
if (!DL.getTypeStoreSize(V->getType()).isNonZero())
return UndefInt8;
Constant *C = dyn_cast<Constant>(V);
if (!C) {
return nullptr;
}
if (C->isNullValue())
return Constant::getNullValue(Type::getInt8Ty(Ctx));
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Type *Ty = nullptr;
if (CFP->getType()->isHalfTy())
Ty = Type::getInt16Ty(Ctx);
else if (CFP->getType()->isFloatTy())
Ty = Type::getInt32Ty(Ctx);
else if (CFP->getType()->isDoubleTy())
Ty = Type::getInt64Ty(Ctx);
return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
: nullptr;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() % 8 == 0) {
assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
if (!CI->getValue().isSplat(8))
return nullptr;
return ConstantInt::get(Ctx, CI->getValue().trunc(8));
}
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
return isBytewiseValue(
ConstantExpr::getIntegerCast(CE->getOperand(0),
Type::getIntNTy(Ctx, BitWidth), false),
DL);
}
}
}
auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
if (LHS == RHS)
return LHS;
if (!LHS || !RHS)
return nullptr;
if (LHS == UndefInt8)
return RHS;
if (RHS == UndefInt8)
return LHS;
return nullptr;
};
if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
Value *Val = UndefInt8;
for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
return nullptr;
return Val;
}
if (isa<ConstantAggregate>(C)) {
Value *Val = UndefInt8;
for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
return nullptr;
return Val;
}
return nullptr;
}
static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
SmallVectorImpl<unsigned> &Idxs,
unsigned IdxSkip,
Instruction *InsertBefore) {
StructType *STy = dyn_cast<StructType>(IndexedType);
if (STy) {
Value *OrigTo = To;
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Idxs.push_back(i);
Value *PrevTo = To;
To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
InsertBefore);
Idxs.pop_back();
if (!To) {
while (PrevTo != OrigTo) {
InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
PrevTo = Del->getAggregateOperand();
Del->eraseFromParent();
}
break;
}
}
if (To)
return To;
}
Value *V = FindInsertedValue(From, Idxs);
if (!V)
return nullptr;
return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
"tmp", InsertBefore);
}
static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
assert(InsertBefore && "Must have someplace to insert!");
Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
idx_range);
Value *To = UndefValue::get(IndexedType);
SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
unsigned IdxSkip = Idxs.size();
return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}
Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
if (idx_range.empty())
return V;
assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
"Not looking at a struct or array?");
assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
"Invalid indices for type?");
if (Constant *C = dyn_cast<Constant>(V)) {
C = C->getAggregateElement(idx_range[0]);
if (!C) return nullptr;
return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
}
if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
const unsigned *req_idx = idx_range.begin();
for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
i != e; ++i, ++req_idx) {
if (req_idx == idx_range.end()) {
if (!InsertBefore)
return nullptr;
return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
InsertBefore);
}
if (*req_idx != *i)
return FindInsertedValue(I->getAggregateOperand(), idx_range,
InsertBefore);
}
return FindInsertedValue(I->getInsertedValueOperand(),
makeArrayRef(req_idx, idx_range.end()),
InsertBefore);
}
if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
unsigned size = I->getNumIndices() + idx_range.size();
SmallVector<unsigned, 5> Idxs;
Idxs.reserve(size);
Idxs.append(I->idx_begin(), I->idx_end());
Idxs.append(idx_range.begin(), idx_range.end());
assert(Idxs.size() == size
&& "Number of indices added not correct?");
return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
}
return nullptr;
}
bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
unsigned CharSize) {
if (GEP->getNumOperands() != 3)
return false;
ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
return false;
const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (!FirstIdx || !FirstIdx->isZero())
return false;
return true;
}
bool llvm::getConstantDataArrayInfo(const Value *V,
ConstantDataArraySlice &Slice,
unsigned ElementSize, uint64_t Offset) {
assert(V);
const GlobalVariable *GV =
dyn_cast<GlobalVariable>(getUnderlyingObject(V));
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
const DataLayout &DL = GV->getParent()->getDataLayout();
APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
true))
return false;
uint64_t StartIdx = Off.getLimitedValue();
if (StartIdx == UINT64_MAX)
return false;
Offset += StartIdx;
ConstantDataArray *Array = nullptr;
ArrayType *ArrayTy = nullptr;
if (GV->getInitializer()->isNullValue()) {
Type *GVTy = GV->getValueType();
uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
uint64_t Length = SizeInBytes / (ElementSize / 8);
Slice.Array = nullptr;
Slice.Offset = 0;
Slice.Length = Length < Offset ? 0 : Length - Offset;
return true;
}
auto *Init = const_cast<Constant *>(GV->getInitializer());
if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
Type *InitElTy = ArrayInit->getElementType();
if (InitElTy->isIntegerTy(ElementSize)) {
Array = ArrayInit;
ArrayTy = ArrayInit->getType();
}
}
if (!Array) {
if (ElementSize != 8)
return false;
Init = ReadByteArrayFromGlobal(GV, Offset);
if (!Init)
return false;
Offset = 0;
Array = dyn_cast<ConstantDataArray>(Init);
ArrayTy = dyn_cast<ArrayType>(Init->getType());
}
uint64_t NumElts = ArrayTy->getArrayNumElements();
if (Offset > NumElts)
return false;
Slice.Array = Array;
Slice.Offset = Offset;
Slice.Length = NumElts - Offset;
return true;
}
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) {
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
return false;
if (Slice.Array == nullptr) {
if (TrimAtNul) {
Str = StringRef();
return true;
}
if (Slice.Length == 1) {
Str = StringRef("", 1);
return true;
}
return false;
}
Str = Slice.Array->getAsString();
Str = Str.substr(Slice.Offset);
if (TrimAtNul) {
Str = Str.substr(0, Str.find('\0'));
}
return true;
}
static uint64_t GetStringLengthH(const Value *V,
SmallPtrSetImpl<const PHINode*> &PHIs,
unsigned CharSize) {
V = V->stripPointerCasts();
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
if (!PHIs.insert(PN).second)
return ~0ULL;
uint64_t LenSoFar = ~0ULL;
for (Value *IncValue : PN->incoming_values()) {
uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
if (Len == 0) return 0;
if (Len == ~0ULL) continue;
if (Len != LenSoFar && LenSoFar != ~0ULL)
return 0; LenSoFar = Len;
}
return LenSoFar;
}
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
if (Len1 == 0) return 0;
uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
if (Len2 == 0) return 0;
if (Len1 == ~0ULL) return Len2;
if (Len2 == ~0ULL) return Len1;
if (Len1 != Len2) return 0;
return Len1;
}
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, CharSize))
return 0;
if (Slice.Array == nullptr)
return 1;
unsigned NullIndex = 0;
for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
break;
}
return NullIndex + 1;
}
uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
if (!V->getType()->isPointerTy())
return 0;
SmallPtrSet<const PHINode*, 32> PHIs;
uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
return Len == ~0ULL ? 1 : Len;
}
const Value *
llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
bool MustPreserveNullness) {
assert(Call &&
"getArgumentAliasingToReturnedPointer only works on nonnull calls");
if (const Value *RV = Call->getReturnedArgOperand())
return RV;
if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
Call, MustPreserveNullness))
return Call->getArgOperand(0);
return nullptr;
}
bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
const CallBase *Call, bool MustPreserveNullness) {
switch (Call->getIntrinsicID()) {
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::aarch64_irg:
case Intrinsic::aarch64_tagp:
return true;
case Intrinsic::ptrmask:
return !MustPreserveNullness;
default:
return false;
}
}
static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
const LoopInfo *LI) {
Loop *L = LI->getLoopFor(PN->getParent());
if (PN->getNumIncomingValues() != 2)
return true;
auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
return true;
if (auto *Load = dyn_cast<LoadInst>(PrevValue))
if (!L->isLoopInvariant(Load->getPointerOperand()))
return false;
return true;
}
const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
if (!V->getType()->isPointerTy())
return V;
for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast ||
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
V = cast<Operator>(V)->getOperand(0);
if (!V->getType()->isPointerTy())
return V;
} else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
if (GA->isInterposable())
return V;
V = GA->getAliasee();
} else {
if (auto *PHI = dyn_cast<PHINode>(V)) {
if (PHI->getNumIncomingValues() == 1) {
V = PHI->getIncomingValue(0);
continue;
}
} else if (auto *Call = dyn_cast<CallBase>(V)) {
if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
V = RP;
continue;
}
}
return V;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
}
return V;
}
void llvm::getUnderlyingObjects(const Value *V,
SmallVectorImpl<const Value *> &Objects,
LoopInfo *LI, unsigned MaxLookup) {
SmallPtrSet<const Value *, 4> Visited;
SmallVector<const Value *, 4> Worklist;
Worklist.push_back(V);
do {
const Value *P = Worklist.pop_back_val();
P = getUnderlyingObject(P, MaxLookup);
if (!Visited.insert(P).second)
continue;
if (auto *SI = dyn_cast<SelectInst>(P)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (auto *PN = dyn_cast<PHINode>(P)) {
if (!LI || !LI->isLoopHeader(PN->getParent()) ||
isSameUnderlyingObjectInLoop(PN, LI))
append_range(Worklist, PN->incoming_values());
continue;
}
Objects.push_back(P);
} while (!Worklist.empty());
}
static const Value *getUnderlyingObjectFromInt(const Value *V) {
do {
if (const Operator *U = dyn_cast<Operator>(V)) {
if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
!isa<PHINode>(U->getOperand(1))))
return V;
V = U->getOperand(0);
} else {
return V;
}
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
} while (true);
}
bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
SmallVectorImpl<Value *> &Objects) {
SmallPtrSet<const Value *, 16> Visited;
SmallVector<const Value *, 4> Working(1, V);
do {
V = Working.pop_back_val();
SmallVector<const Value *, 4> Objs;
getUnderlyingObjects(V, Objs);
for (const Value *V : Objs) {
if (!Visited.insert(V).second)
continue;
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
const Value *O =
getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
if (O->getType()->isPointerTy()) {
Working.push_back(O);
continue;
}
}
if (!isIdentifiedObject(V)) {
Objects.clear();
return false;
}
Objects.push_back(const_cast<Value *>(V));
}
} while (!Working.empty());
return true;
}
AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
AllocaInst *Result = nullptr;
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist;
auto AddWork = [&](Value *V) {
if (Visited.insert(V).second)
Worklist.push_back(V);
};
AddWork(V);
do {
V = Worklist.pop_back_val();
assert(Visited.count(V));
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
if (Result && Result != AI)
return nullptr;
Result = AI;
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
AddWork(CI->getOperand(0));
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
for (Value *IncValue : PN->incoming_values())
AddWork(IncValue);
} else if (auto *SI = dyn_cast<SelectInst>(V)) {
AddWork(SI->getTrueValue());
AddWork(SI->getFalseValue());
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
if (OffsetZero && !GEP->hasAllZeroIndices())
return nullptr;
AddWork(GEP->getPointerOperand());
} else if (CallBase *CB = dyn_cast<CallBase>(V)) {
Value *Returned = CB->getReturnedArgOperand();
if (Returned)
AddWork(Returned);
else
return nullptr;
} else {
return nullptr;
}
} while (!Worklist.empty());
return Result;
}
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
const Value *V, bool AllowLifetime, bool AllowDroppable) {
for (const User *U : V->users()) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
if (!II)
return false;
if (AllowLifetime && II->isLifetimeStartOrEnd())
continue;
if (AllowDroppable && II->isDroppable())
continue;
return false;
}
return true;
}
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
V, true, false);
}
bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
V, true, true);
}
bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
if (!LI.isUnordered())
return true;
const Function &F = *LI.getFunction();
return F.hasFnAttribute(Attribute::SanitizeThread) ||
F.hasFnAttribute(Attribute::SanitizeAddress) ||
F.hasFnAttribute(Attribute::SanitizeHWAddress);
}
bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
const Instruction *CtxI,
const DominatorTree *DT,
const TargetLibraryInfo *TLI) {
return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
DT, TLI);
}
bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
const DominatorTree *DT, const TargetLibraryInfo *TLI) {
#ifndef NDEBUG
if (Inst->getOpcode() != Opcode) {
auto hasEqualReturnAndLeadingOperandTypes =
[](const Instruction *Inst, unsigned NumLeadingOperands) {
if (Inst->getNumOperands() < NumLeadingOperands)
return false;
const Type *ExpectedType = Inst->getType();
for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
if (Inst->getOperand(ItOp)->getType() != ExpectedType)
return false;
return true;
};
assert(!Instruction::isBinaryOp(Opcode) ||
hasEqualReturnAndLeadingOperandTypes(Inst, 2));
assert(!Instruction::isUnaryOp(Opcode) ||
hasEqualReturnAndLeadingOperandTypes(Inst, 1));
}
#endif
switch (Opcode) {
default:
return true;
case Instruction::UDiv:
case Instruction::URem: {
const APInt *V;
if (match(Inst->getOperand(1), m_APInt(V)))
return *V != 0;
return false;
}
case Instruction::SDiv:
case Instruction::SRem: {
const APInt *Numerator, *Denominator;
if (!match(Inst->getOperand(1), m_APInt(Denominator)))
return false;
if (*Denominator == 0)
return false;
if (!Denominator->isAllOnes())
return true;
if (match(Inst->getOperand(0), m_APInt(Numerator)))
return !Numerator->isMinSignedValue();
return false;
}
case Instruction::Load: {
const LoadInst *LI = dyn_cast<LoadInst>(Inst);
if (!LI)
return false;
if (mustSuppressSpeculation(*LI))
return false;
const DataLayout &DL = LI->getModule()->getDataLayout();
return isDereferenceableAndAlignedPointer(
LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
TLI);
}
case Instruction::Call: {
auto *CI = dyn_cast<const CallInst>(Inst);
if (!CI)
return false;
const Function *Callee = CI->getCalledFunction();
return Callee && Callee->isSpeculatable();
}
case Instruction::VAArg:
case Instruction::Alloca:
case Instruction::Invoke:
case Instruction::CallBr:
case Instruction::PHI:
case Instruction::Store:
case Instruction::Ret:
case Instruction::Br:
case Instruction::IndirectBr:
case Instruction::Switch:
case Instruction::Unreachable:
case Instruction::Fence:
case Instruction::AtomicRMW:
case Instruction::AtomicCmpXchg:
case Instruction::LandingPad:
case Instruction::Resume:
case Instruction::CatchSwitch:
case Instruction::CatchPad:
case Instruction::CatchRet:
case Instruction::CleanupPad:
case Instruction::CleanupRet:
return false; }
}
bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
if (I.mayReadOrWriteMemory())
return true;
if (!isSafeToSpeculativelyExecute(&I))
return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
return true;
return false;
}
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
switch (OR) {
case ConstantRange::OverflowResult::MayOverflow:
return OverflowResult::MayOverflow;
case ConstantRange::OverflowResult::AlwaysOverflowsLow:
return OverflowResult::AlwaysOverflowsLow;
case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
return OverflowResult::AlwaysOverflowsHigh;
case ConstantRange::OverflowResult::NeverOverflows:
return OverflowResult::NeverOverflows;
}
llvm_unreachable("Unknown OverflowResult");
}
static ConstantRange computeConstantRangeIncludingKnownBits(
const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
KnownBits Known = computeKnownBits(
V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
ConstantRange::PreferredRangeType RangeType =
ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
return CR1.intersectWith(CR2, RangeType);
}
OverflowResult llvm::computeOverflowForUnsignedMul(
const Value *LHS, const Value *RHS, const DataLayout &DL,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT,
nullptr, UseInstrInfo);
KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT,
nullptr, UseInstrInfo);
ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
}
OverflowResult
llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
if (SignBits > BitWidth + 1)
return OverflowResult::NeverOverflows;
if (SignBits == BitWidth + 1) {
KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT,
nullptr, UseInstrInfo);
KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT,
nullptr, UseInstrInfo);
if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
return OverflowResult::NeverOverflows;
}
return OverflowResult::MayOverflow;
}
OverflowResult llvm::computeOverflowForUnsignedAdd(
const Value *LHS, const Value *RHS, const DataLayout &DL,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, false, DL, 0, AC, CxtI, DT,
nullptr, UseInstrInfo);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, false, DL, 0, AC, CxtI, DT,
nullptr, UseInstrInfo);
return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
}
static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
const Value *RHS,
const AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
if (Add && Add->hasNoSignedWrap()) {
return OverflowResult::NeverOverflows;
}
if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
return OverflowResult::NeverOverflows;
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, true, DL, 0, AC, CxtI, DT);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, true, DL, 0, AC, CxtI, DT);
OverflowResult OR =
mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
if (OR != OverflowResult::MayOverflow)
return OR;
if (!Add)
return OverflowResult::MayOverflow;
bool LHSOrRHSKnownNonNegative =
(LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
bool LHSOrRHSKnownNegative =
(LHSRange.isAllNegative() || RHSRange.isAllNegative());
if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
KnownBits AddKnown(LHSRange.getBitWidth());
computeKnownBitsFromAssume(
Add, AddKnown, 0, Query(DL, AC, CxtI, DT, true));
if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
(AddKnown.isNegative() && LHSOrRHSKnownNegative))
return OverflowResult::NeverOverflows;
}
return OverflowResult::MayOverflow;
}
OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
return OverflowResult::NeverOverflows;
if (match(CxtI,
m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
if (auto C =
isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
if (*C)
return OverflowResult::NeverOverflows;
return OverflowResult::AlwaysOverflowsLow;
}
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, false, DL, 0, AC, CxtI, DT);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, false, DL, 0, AC, CxtI, DT);
return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
}
OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
return OverflowResult::NeverOverflows;
if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
return OverflowResult::NeverOverflows;
ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
LHS, true, DL, 0, AC, CxtI, DT);
ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
RHS, true, DL, 0, AC, CxtI, DT);
return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
}
bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
const DominatorTree &DT) {
SmallVector<const BranchInst *, 2> GuardingBranches;
SmallVector<const ExtractValueInst *, 2> Results;
for (const User *U : WO->users()) {
if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
if (EVI->getIndices()[0] == 0)
Results.push_back(EVI);
else {
assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
for (const auto *U : EVI->users())
if (const auto *B = dyn_cast<BranchInst>(U)) {
assert(B->isConditional() && "How else is it using an i1?");
GuardingBranches.push_back(B);
}
}
} else {
return false;
}
}
auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
if (!NoWrapEdge.isSingleEdge())
return false;
for (const auto *Result : Results) {
if (DT.dominates(NoWrapEdge, Result->getParent()))
continue;
for (const auto &RU : Result->uses())
if (!DT.dominates(NoWrapEdge, RU))
return false;
}
return true;
};
return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
}
static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
bool ConsiderFlags) {
if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
return true;
unsigned Opcode = Op->getOpcode();
switch (Opcode) {
case Instruction::Shl:
case Instruction::AShr:
case Instruction::LShr: {
if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
SmallVector<Constant *, 4> ShiftAmounts;
if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
unsigned NumElts = FVTy->getNumElements();
for (unsigned i = 0; i < NumElts; ++i)
ShiftAmounts.push_back(C->getAggregateElement(i));
} else if (isa<ScalableVectorType>(C->getType()))
return true; else
ShiftAmounts.push_back(C);
bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
auto *CI = dyn_cast_or_null<ConstantInt>(C);
return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
});
return !Safe;
}
return true;
}
case Instruction::FPToSI:
case Instruction::FPToUI:
return true;
case Instruction::Call:
if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
switch (II->getIntrinsicID()) {
case Intrinsic::ctpop:
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::umul_with_overflow:
return false;
}
}
LLVM_FALLTHROUGH;
case Instruction::CallBr:
case Instruction::Invoke: {
const auto *CB = cast<CallBase>(Op);
return !CB->hasRetAttr(Attribute::NoUndef);
}
case Instruction::InsertElement:
case Instruction::ExtractElement: {
auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
return true;
return false;
}
case Instruction::ShuffleVector: {
if (PoisonOnly)
return false;
ArrayRef<int> Mask = isa<ConstantExpr>(Op)
? cast<ConstantExpr>(Op)->getShuffleMask()
: cast<ShuffleVectorInst>(Op)->getShuffleMask();
return is_contained(Mask, UndefMaskElem);
}
case Instruction::FNeg:
case Instruction::PHI:
case Instruction::Select:
case Instruction::URem:
case Instruction::SRem:
case Instruction::ExtractValue:
case Instruction::InsertValue:
case Instruction::Freeze:
case Instruction::ICmp:
case Instruction::FCmp:
return false;
case Instruction::GetElementPtr:
return false;
default: {
const auto *CE = dyn_cast<ConstantExpr>(Op);
if (isa<CastInst>(Op) || (CE && CE->isCast()))
return false;
else if (Instruction::isBinaryOp(Opcode))
return false;
return true;
}
}
}
bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
return ::canCreateUndefOrPoison(Op, false, ConsiderFlags);
}
bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
return ::canCreateUndefOrPoison(Op, true, ConsiderFlags);
}
static bool directlyImpliesPoison(const Value *ValAssumedPoison,
const Value *V, unsigned Depth) {
if (ValAssumedPoison == V)
return true;
const unsigned MaxDepth = 2;
if (Depth >= MaxDepth)
return false;
if (const auto *I = dyn_cast<Instruction>(V)) {
if (propagatesPoison(cast<Operator>(I)))
return any_of(I->operands(), [=](const Value *Op) {
return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
});
if (const auto *SI = dyn_cast<SelectInst>(I))
return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
Depth + 1);
const WithOverflowInst *II;
if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
(match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
llvm::is_contained(II->args(), ValAssumedPoison)))
return true;
}
return false;
}
static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
unsigned Depth) {
if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
return true;
if (directlyImpliesPoison(ValAssumedPoison, V, 0))
return true;
const unsigned MaxDepth = 2;
if (Depth >= MaxDepth)
return false;
const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
if (I && !canCreatePoison(cast<Operator>(I))) {
return all_of(I->operands(), [=](const Value *Op) {
return impliesPoison(Op, V, Depth + 1);
});
}
return false;
}
bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
return ::impliesPoison(ValAssumedPoison, V, 0);
}
static bool programUndefinedIfUndefOrPoison(const Value *V,
bool PoisonOnly);
static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
AssumptionCache *AC,
const Instruction *CtxI,
const DominatorTree *DT,
unsigned Depth, bool PoisonOnly) {
if (Depth >= MaxAnalysisRecursionDepth)
return false;
if (isa<MetadataAsValue>(V))
return false;
if (const auto *A = dyn_cast<Argument>(V)) {
if (A->hasAttribute(Attribute::NoUndef))
return true;
}
if (auto *C = dyn_cast<Constant>(V)) {
if (isa<UndefValue>(C))
return PoisonOnly && !isa<PoisonValue>(C);
if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
isa<ConstantPointerNull>(C) || isa<Function>(C))
return true;
if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
return (PoisonOnly ? !C->containsPoisonElement()
: !C->containsUndefOrPoisonElement()) &&
!C->containsConstantExpression();
}
auto *StrippedV = V->stripPointerCastsSameRepresentation();
if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
return true;
auto OpCheck = [&](const Value *V) {
return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
PoisonOnly);
};
if (auto *Opr = dyn_cast<Operator>(V)) {
if (isa<FreezeInst>(V))
return true;
if (const auto *CB = dyn_cast<CallBase>(V)) {
if (CB->hasRetAttr(Attribute::NoUndef))
return true;
}
if (const auto *PN = dyn_cast<PHINode>(V)) {
unsigned Num = PN->getNumIncomingValues();
bool IsWellDefined = true;
for (unsigned i = 0; i < Num; ++i) {
auto *TI = PN->getIncomingBlock(i)->getTerminator();
if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
DT, Depth + 1, PoisonOnly)) {
IsWellDefined = false;
break;
}
}
if (IsWellDefined)
return true;
} else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
return true;
}
if (auto *I = dyn_cast<LoadInst>(V))
if (I->hasMetadata(LLVMContext::MD_noundef) ||
I->hasMetadata(LLVMContext::MD_dereferenceable) ||
I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
return true;
if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
return true;
if (!CtxI || !CtxI->getParent() || !DT)
return false;
auto *DNode = DT->getNode(CtxI->getParent());
if (!DNode)
return false;
auto *Dominator = DNode->getIDom();
while (Dominator) {
auto *TI = Dominator->getBlock()->getTerminator();
Value *Cond = nullptr;
if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
if (BI->isConditional())
Cond = BI->getCondition();
} else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
Cond = SI->getCondition();
}
if (Cond) {
if (Cond == V)
return true;
else if (PoisonOnly && isa<Operator>(Cond)) {
auto *Opr = cast<Operator>(Cond);
if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
return true;
}
}
Dominator = Dominator->getIDom();
}
if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
return true;
return false;
}
bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
const Instruction *CtxI,
const DominatorTree *DT,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
}
bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
const Instruction *CtxI,
const DominatorTree *DT, unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
}
OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Add, DL, AC, CxtI, DT);
}
OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
if (isa<ReturnInst>(I))
return false;
if (isa<UnreachableInst>(I))
return false;
if (isa<CatchPadInst>(I)) {
switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
default:
return false;
case EHPersonality::CoreCLR:
return true;
}
}
return !I->mayThrow() && I->willReturn();
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
for (const Instruction &I : *BB)
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
return false;
return true;
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(
BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
unsigned ScanLimit) {
return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
ScanLimit);
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(
iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
assert(ScanLimit && "scan limit must be non-zero");
for (const Instruction &I : Range) {
if (isa<DbgInfoIntrinsic>(I))
continue;
if (--ScanLimit == 0)
return false;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
return false;
}
return true;
}
bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
const Loop *L) {
if (I->getParent() != L->getHeader()) return false;
for (const Instruction &LI : *L->getHeader()) {
if (&LI == I) return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
}
llvm_unreachable("Instruction not contained in its own parent basic block.");
}
bool llvm::propagatesPoison(const Operator *I) {
switch (I->getOpcode()) {
case Instruction::Freeze:
case Instruction::Select:
case Instruction::PHI:
case Instruction::Invoke:
return false;
case Instruction::Call:
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::umul_with_overflow:
return true;
case Intrinsic::ctpop:
return true;
}
}
return false;
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::GetElementPtr:
return true;
default:
if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
return true;
return false;
}
}
void llvm::getGuaranteedWellDefinedOps(
const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
switch (I->getOpcode()) {
case Instruction::Store:
Operands.insert(cast<StoreInst>(I)->getPointerOperand());
break;
case Instruction::Load:
Operands.insert(cast<LoadInst>(I)->getPointerOperand());
break;
case Instruction::AtomicCmpXchg:
Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
break;
case Instruction::AtomicRMW:
Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
break;
case Instruction::Call:
case Instruction::Invoke: {
const CallBase *CB = cast<CallBase>(I);
if (CB->isIndirectCall())
Operands.insert(CB->getCalledOperand());
for (unsigned i = 0; i < CB->arg_size(); ++i) {
if (CB->paramHasAttr(i, Attribute::NoUndef) ||
CB->paramHasAttr(i, Attribute::Dereferenceable))
Operands.insert(CB->getArgOperand(i));
}
break;
}
case Instruction::Ret:
if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
Operands.insert(I->getOperand(0));
break;
default:
break;
}
}
void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
SmallPtrSetImpl<const Value *> &Operands) {
getGuaranteedWellDefinedOps(I, Operands);
switch (I->getOpcode()) {
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
Operands.insert(I->getOperand(1));
break;
case Instruction::Switch:
if (BranchOnPoisonAsUB)
Operands.insert(cast<SwitchInst>(I)->getCondition());
break;
case Instruction::Br: {
auto *BR = cast<BranchInst>(I);
if (BranchOnPoisonAsUB && BR->isConditional())
Operands.insert(BR->getCondition());
break;
}
default:
break;
}
}
bool llvm::mustTriggerUB(const Instruction *I,
const SmallSet<const Value *, 16>& KnownPoison) {
SmallPtrSet<const Value *, 4> NonPoisonOps;
getGuaranteedNonPoisonOps(I, NonPoisonOps);
for (const auto *V : NonPoisonOps)
if (KnownPoison.count(V))
return true;
return false;
}
static bool programUndefinedIfUndefOrPoison(const Value *V,
bool PoisonOnly) {
const BasicBlock *BB = nullptr;
BasicBlock::const_iterator Begin;
if (const auto *Inst = dyn_cast<Instruction>(V)) {
BB = Inst->getParent();
Begin = Inst->getIterator();
Begin++;
} else if (const auto *Arg = dyn_cast<Argument>(V)) {
BB = &Arg->getParent()->getEntryBlock();
Begin = BB->begin();
} else {
return false;
}
unsigned ScanLimit = 32;
BasicBlock::const_iterator End = BB->end();
if (!PoisonOnly) {
for (const auto &I : make_range(Begin, End)) {
if (isa<DbgInfoIntrinsic>(I))
continue;
if (--ScanLimit == 0)
break;
SmallPtrSet<const Value *, 4> WellDefinedOps;
getGuaranteedWellDefinedOps(&I, WellDefinedOps);
if (WellDefinedOps.contains(V))
return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
break;
}
return false;
}
SmallSet<const Value *, 16> YieldsPoison;
SmallSet<const BasicBlock *, 4> Visited;
YieldsPoison.insert(V);
auto Propagate = [&](const User *User) {
if (propagatesPoison(cast<Operator>(User)))
YieldsPoison.insert(User);
};
for_each(V->users(), Propagate);
Visited.insert(BB);
while (true) {
for (const auto &I : make_range(Begin, End)) {
if (isa<DbgInfoIntrinsic>(I))
continue;
if (--ScanLimit == 0)
return false;
if (mustTriggerUB(&I, YieldsPoison))
return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
return false;
if (YieldsPoison.count(&I))
for_each(I.users(), Propagate);
}
BB = BB->getSingleSuccessor();
if (!BB || !Visited.insert(BB).second)
break;
Begin = BB->getFirstNonPHI()->getIterator();
End = BB->end();
}
return false;
}
bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
return ::programUndefinedIfUndefOrPoison(Inst, false);
}
bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
return ::programUndefinedIfUndefOrPoison(Inst, true);
}
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
if (FMF.noNaNs())
return true;
if (auto *C = dyn_cast<ConstantFP>(V))
return !C->isNaN();
if (auto *C = dyn_cast<ConstantDataVector>(V)) {
if (!C->getElementType()->isFloatingPointTy())
return false;
for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
if (C->getElementAsAPFloat(I).isNaN())
return false;
}
return true;
}
if (isa<ConstantAggregateZero>(V))
return true;
return false;
}
static bool isKnownNonZero(const Value *V) {
if (auto *C = dyn_cast<ConstantFP>(V))
return !C->isZero();
if (auto *C = dyn_cast<ConstantDataVector>(V)) {
if (!C->getElementType()->isFloatingPointTy())
return false;
for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
if (C->getElementAsAPFloat(I).isZero())
return false;
}
return true;
}
return false;
}
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS) {
if (CmpRHS == FalseVal) {
std::swap(TrueVal, FalseVal);
Pred = CmpInst::getInversePredicate(Pred);
}
LHS = TrueVal;
RHS = FalseVal;
const APFloat *FC1;
if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
return {SPF_UNKNOWN, SPNB_NA, false};
const APFloat *FC2;
switch (Pred) {
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ULT:
case CmpInst::FCMP_ULE:
if (match(FalseVal,
m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
*FC1 < *FC2)
return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
break;
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGT:
case CmpInst::FCMP_UGE:
if (match(FalseVal,
m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
*FC1 > *FC2)
return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
break;
default:
break;
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal) {
if (CmpRHS != TrueVal) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(TrueVal, FalseVal);
}
const APInt *C1;
if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
const APInt *C2;
if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
return {SPF_SMAX, SPNB_NA, false};
if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
return {SPF_SMIN, SPNB_NA, false};
if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
return {SPF_UMAX, SPNB_NA, false};
if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
return {SPF_UMIN, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TVal, Value *FVal,
unsigned Depth) {
assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
Value *A = nullptr, *B = nullptr;
SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
if (!SelectPatternResult::isMinOrMax(L.Flavor))
return {SPF_UNKNOWN, SPNB_NA, false};
Value *C = nullptr, *D = nullptr;
SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
if (L.Flavor != R.Flavor)
return {SPF_UNKNOWN, SPNB_NA, false};
switch (L.Flavor) {
case SPF_SMIN:
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_SMAX:
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_UMIN:
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_UMAX:
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
default:
return {SPF_UNKNOWN, SPNB_NA, false};
}
if (D == B) {
if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
match(A, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
if (C == B) {
if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
match(A, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
if (D == A) {
if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
match(B, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
if (C == A) {
if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
match(B, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
static Value *getNotValue(Value *V) {
Value *NotV;
if (match(V, m_Not(m_Value(NotV))))
return NotV;
const APInt *C;
if (match(V, m_APInt(C)))
return ConstantInt::get(V->getType(), ~(*C));
return nullptr;
}
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS,
unsigned Depth) {
LHS = TrueVal;
RHS = FalseVal;
SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
return SPR;
SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
return SPR;
if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
switch (Pred) {
case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
default: break;
}
}
if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
switch (Pred) {
case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
default: break;
}
}
if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
return {SPF_UNKNOWN, SPNB_NA, false};
const APInt *C1;
if (!match(CmpRHS, m_APInt(C1)))
return {SPF_UNKNOWN, SPNB_NA, false};
const APInt *C2;
if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
(CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
assert(X && Y && "Invalid operand");
if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
(NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
return true;
if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
(NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
return true;
Value *A, *B;
return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
(NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
}
static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
FastMathFlags FMF,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS,
unsigned Depth) {
if (CmpInst::isFPPredicate(Pred)) {
Value *OutputZeroVal = nullptr;
if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
!cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
OutputZeroVal = TrueVal;
else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
!cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
OutputZeroVal = FalseVal;
if (OutputZeroVal) {
if (match(CmpLHS, m_AnyZeroFP()))
CmpLHS = OutputZeroVal;
if (match(CmpRHS, m_AnyZeroFP()))
CmpRHS = OutputZeroVal;
}
}
LHS = CmpLHS;
RHS = CmpRHS;
switch (Pred) {
default: break;
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
!isKnownNonZero(CmpRHS))
return {SPF_UNKNOWN, SPNB_NA, false};
}
SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
bool Ordered = false;
if (CmpInst::isFPPredicate(Pred)) {
bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
if (LHSSafe && RHSSafe) {
NaNBehavior = SPNB_RETURNS_ANY;
} else if (CmpInst::isOrdered(Pred)) {
Ordered = true;
if (LHSSafe)
NaNBehavior = SPNB_RETURNS_NAN;
else if (RHSSafe)
NaNBehavior = SPNB_RETURNS_OTHER;
else
return {SPF_UNKNOWN, SPNB_NA, false};
} else {
Ordered = false;
if (LHSSafe)
NaNBehavior = SPNB_RETURNS_OTHER;
else if (RHSSafe)
NaNBehavior = SPNB_RETURNS_NAN;
else
return {SPF_UNKNOWN, SPNB_NA, false};
}
}
if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
std::swap(CmpLHS, CmpRHS);
Pred = CmpInst::getSwappedPredicate(Pred);
if (NaNBehavior == SPNB_RETURNS_NAN)
NaNBehavior = SPNB_RETURNS_OTHER;
else if (NaNBehavior == SPNB_RETURNS_OTHER)
NaNBehavior = SPNB_RETURNS_NAN;
Ordered = !Ordered;
}
if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
switch (Pred) {
default: return {SPF_UNKNOWN, SPNB_NA, false}; case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_OGT:
case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_OLT:
case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
}
}
if (isKnownNegation(TrueVal, FalseVal)) {
auto MaybeSExtCmpLHS =
m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
if (match(TrueVal, MaybeSExtCmpLHS)) {
LHS = TrueVal;
RHS = FalseVal;
if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
std::swap(LHS, RHS);
if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
return {SPF_ABS, SPNB_NA, false};
if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
return {SPF_ABS, SPNB_NA, false};
if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
return {SPF_NABS, SPNB_NA, false};
}
else if (match(FalseVal, MaybeSExtCmpLHS)) {
LHS = FalseVal;
RHS = TrueVal;
if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
std::swap(LHS, RHS);
if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
return {SPF_NABS, SPNB_NA, false};
if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
return {SPF_ABS, SPNB_NA, false};
}
}
if (CmpInst::isIntPredicate(Pred))
return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
if (NaNBehavior != SPNB_RETURNS_ANY ||
(!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
!isKnownNonZero(CmpRHS)))
return {SPF_UNKNOWN, SPNB_NA, false};
return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
}
static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
Instruction::CastOps *CastOp) {
auto *Cast1 = dyn_cast<CastInst>(V1);
if (!Cast1)
return nullptr;
*CastOp = Cast1->getOpcode();
Type *SrcTy = Cast1->getSrcTy();
if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
return Cast2->getOperand(0);
return nullptr;
}
auto *C = dyn_cast<Constant>(V2);
if (!C)
return nullptr;
Constant *CastedTo = nullptr;
switch (*CastOp) {
case Instruction::ZExt:
if (CmpI->isUnsigned())
CastedTo = ConstantExpr::getTrunc(C, SrcTy);
break;
case Instruction::SExt:
if (CmpI->isSigned())
CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
break;
case Instruction::Trunc:
Constant *CmpConst;
if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
CmpConst->getType() == SrcTy) {
CastedTo = CmpConst;
} else {
CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
}
break;
case Instruction::FPTrunc:
CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
break;
case Instruction::FPExt:
CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
break;
case Instruction::FPToUI:
CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
break;
case Instruction::FPToSI:
CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
break;
case Instruction::UIToFP:
CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
break;
case Instruction::SIToFP:
CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
break;
default:
break;
}
if (!CastedTo)
return nullptr;
Constant *CastedBack =
ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
if (CastedBack != C)
return nullptr;
return CastedTo;
}
SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Instruction::CastOps *CastOp,
unsigned Depth) {
if (Depth >= MaxAnalysisRecursionDepth)
return {SPF_UNKNOWN, SPNB_NA, false};
SelectInst *SI = dyn_cast<SelectInst>(V);
if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
CastOp, Depth);
}
SelectPatternResult llvm::matchDecomposedSelectPattern(
CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
Instruction::CastOps *CastOp, unsigned Depth) {
CmpInst::Predicate Pred = CmpI->getPredicate();
Value *CmpLHS = CmpI->getOperand(0);
Value *CmpRHS = CmpI->getOperand(1);
FastMathFlags FMF;
if (isa<FPMathOperator>(CmpI))
FMF = CmpI->getFastMathFlags();
if (CmpI->isEquality())
return {SPF_UNKNOWN, SPNB_NA, false};
if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
FMF.setNoSignedZeros();
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
cast<CastInst>(TrueVal)->getOperand(0), C,
LHS, RHS, Depth);
}
if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
FMF.setNoSignedZeros();
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
C, cast<CastInst>(FalseVal)->getOperand(0),
LHS, RHS, Depth);
}
}
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
LHS, RHS, Depth);
}
CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
if (SPF == SPF_FMINNUM)
return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
if (SPF == SPF_FMAXNUM)
return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
llvm_unreachable("unhandled!");
}
SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
if (SPF == SPF_SMIN) return SPF_SMAX;
if (SPF == SPF_UMIN) return SPF_UMAX;
if (SPF == SPF_SMAX) return SPF_SMIN;
if (SPF == SPF_UMAX) return SPF_UMIN;
llvm_unreachable("unhandled!");
}
Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
switch (MinMaxID) {
case Intrinsic::smax: return Intrinsic::smin;
case Intrinsic::smin: return Intrinsic::smax;
case Intrinsic::umax: return Intrinsic::umin;
case Intrinsic::umin: return Intrinsic::umax;
default: llvm_unreachable("Unexpected intrinsic");
}
}
CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
return getMinMaxPred(getInverseMinMaxFlavor(SPF));
}
APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
switch (SPF) {
case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
case SPF_UMAX: return APInt::getMaxValue(BitWidth);
case SPF_UMIN: return APInt::getMinValue(BitWidth);
default: llvm_unreachable("Unexpected flavor");
}
}
std::pair<Intrinsic::ID, bool>
llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
bool AllCmpSingleUse = true;
SelectPatternResult SelectPattern;
SelectPattern.Flavor = SPF_UNKNOWN;
if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
Value *LHS, *RHS;
auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
CurrentPattern.Flavor == SPF_FMINNUM ||
CurrentPattern.Flavor == SPF_FMAXNUM ||
!I->getType()->isIntOrIntVectorTy())
return false;
if (SelectPattern.Flavor != SPF_UNKNOWN &&
SelectPattern.Flavor != CurrentPattern.Flavor)
return false;
SelectPattern = CurrentPattern;
AllCmpSingleUse &=
match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
return true;
})) {
switch (SelectPattern.Flavor) {
case SPF_SMIN:
return {Intrinsic::smin, AllCmpSingleUse};
case SPF_UMIN:
return {Intrinsic::umin, AllCmpSingleUse};
case SPF_SMAX:
return {Intrinsic::smax, AllCmpSingleUse};
case SPF_UMAX:
return {Intrinsic::umax, AllCmpSingleUse};
default:
llvm_unreachable("unexpected select pattern flavor");
}
}
return {Intrinsic::not_intrinsic, false};
}
bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
Value *&Start, Value *&Step) {
if (P->getNumIncomingValues() != 2)
return false;
for (unsigned i = 0; i != 2; ++i) {
Value *L = P->getIncomingValue(i);
Value *R = P->getIncomingValue(!i);
Operator *LU = dyn_cast<Operator>(L);
if (!LU)
continue;
unsigned Opcode = LU->getOpcode();
switch (Opcode) {
default:
continue;
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Mul: {
Value *LL = LU->getOperand(0);
Value *LR = LU->getOperand(1);
if (LL == P)
L = LR;
else if (LR == P)
L = LL;
else
continue;
break; }
};
BO = cast<BinaryOperator>(LU);
Start = R;
Step = L;
return true;
}
return false;
}
bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
Value *&Start, Value *&Step) {
BinaryOperator *BO = nullptr;
P = dyn_cast<PHINode>(I->getOperand(0));
if (!P)
P = dyn_cast<PHINode>(I->getOperand(1));
return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
}
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
const Value *RHS, const DataLayout &DL,
unsigned Depth) {
if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
return true;
switch (Pred) {
default:
return false;
case CmpInst::ICMP_SLE: {
const APInt *C;
if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
return !C->isNegative();
return false;
}
case CmpInst::ICMP_ULE: {
const APInt *C;
if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
return true;
auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
const Value *&X,
const APInt *&CA, const APInt *&CB) {
if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
return true;
if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
KnownBits Known(CA->getBitWidth());
computeKnownBits(X, Known, DL, Depth + 1, nullptr,
nullptr, nullptr);
if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
return true;
}
return false;
};
const Value *X;
const APInt *CLHS, *CRHS;
if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
return CLHS->ule(*CRHS);
return false;
}
}
}
static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
const Value *ARHS, const Value *BLHS, const Value *BRHS,
const DataLayout &DL, unsigned Depth) {
switch (Pred) {
default:
return None;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
return true;
return None;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
return true;
return None;
}
}
static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
const Value *BLHS, const Value *BRHS,
bool &IsSwappedOps) {
bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
return IsMatchingOps || IsSwappedOps;
}
static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
CmpInst::Predicate BPred,
bool AreSwappedOps) {
if (AreSwappedOps)
BPred = ICmpInst::getSwappedPredicate(BPred);
if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
return true;
if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
return false;
return None;
}
static Optional<bool> isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
const APInt &C1,
CmpInst::Predicate BPred,
const APInt &C2) {
ConstantRange DomCR = ConstantRange::makeExactICmpRegion(APred, C1);
ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2);
ConstantRange Intersection = DomCR.intersectWith(CR);
ConstantRange Difference = DomCR.difference(CR);
if (Intersection.isEmptySet())
return false;
if (Difference.isEmptySet())
return true;
return None;
}
static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
CmpInst::Predicate BPred,
const Value *BLHS, const Value *BRHS,
const DataLayout &DL, bool LHSIsTrue,
unsigned Depth) {
Value *ALHS = LHS->getOperand(0);
Value *ARHS = LHS->getOperand(1);
CmpInst::Predicate APred =
LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
bool AreSwappedOps;
if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
if (Optional<bool> Implication = isImpliedCondMatchingOperands(
APred, BPred, AreSwappedOps))
return Implication;
return None;
}
const APInt *AC, *BC;
if (ALHS == BLHS && match(ARHS, m_APInt(AC)) && match(BRHS, m_APInt(BC)))
return isImpliedCondMatchingImmOperands(APred, *AC, BPred, *BC);
if (APred == BPred)
return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
return None;
}
static Optional<bool>
isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
const Value *RHSOp0, const Value *RHSOp1,
const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
assert((LHS->getOpcode() == Instruction::And ||
LHS->getOpcode() == Instruction::Or ||
LHS->getOpcode() == Instruction::Select) &&
"Expected LHS to be 'and', 'or', or 'select'.");
assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
const Value *ALHS, *ARHS;
if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
(LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
if (Optional<bool> Implication = isImpliedCondition(
ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
return Implication;
if (Optional<bool> Implication = isImpliedCondition(
ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
return Implication;
return None;
}
return None;
}
Optional<bool>
llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
const Value *RHSOp0, const Value *RHSOp1,
const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
if (Depth == MaxAnalysisRecursionDepth)
return None;
if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
return None;
assert(LHS->getType()->isIntOrIntVectorTy(1) &&
"Expected integer type only!");
const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
if (LHSCmp)
return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
Depth);
if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
if ((LHSI->getOpcode() == Instruction::And ||
LHSI->getOpcode() == Instruction::Or ||
LHSI->getOpcode() == Instruction::Select))
return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
Depth);
}
return None;
}
Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
const DataLayout &DL, bool LHSIsTrue,
unsigned Depth) {
if (LHS == RHS)
return LHSIsTrue;
if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
return isImpliedCondition(LHS, RHSCmp->getPredicate(),
RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
LHSIsTrue, Depth);
if (Depth == MaxAnalysisRecursionDepth)
return None;
const Value *RHS1, *RHS2;
if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
if (Optional<bool> Imp =
isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
if (*Imp == true)
return true;
if (Optional<bool> Imp =
isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
if (*Imp == true)
return true;
}
if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
if (Optional<bool> Imp =
isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
if (*Imp == false)
return false;
if (Optional<bool> Imp =
isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
if (*Imp == false)
return false;
}
return None;
}
static std::pair<Value *, bool>
getDomPredecessorCondition(const Instruction *ContextI) {
if (!ContextI || !ContextI->getParent())
return {nullptr, false};
const BasicBlock *ContextBB = ContextI->getParent();
const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
if (!PredBB)
return {nullptr, false};
Value *PredCond;
BasicBlock *TrueBB, *FalseBB;
if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
return {nullptr, false};
if (TrueBB == FalseBB)
return {nullptr, false};
assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
"Predecessor block does not point to successor?");
return {PredCond, TrueBB == ContextBB};
}
Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
const Instruction *ContextI,
const DataLayout &DL) {
assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
auto PredCond = getDomPredecessorCondition(ContextI);
if (PredCond.first)
return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
return None;
}
Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
const Value *LHS, const Value *RHS,
const Instruction *ContextI,
const DataLayout &DL) {
auto PredCond = getDomPredecessorCondition(ContextI);
if (PredCond.first)
return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
PredCond.second);
return None;
}
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
APInt &Upper, const InstrInfoQuery &IIQ,
bool PreferSignedRange) {
unsigned Width = Lower.getBitWidth();
const APInt *C;
switch (BO.getOpcode()) {
case Instruction::Add:
if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
bool HasNSW = IIQ.hasNoSignedWrap(&BO);
bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
if (PreferSignedRange && HasNSW && HasNUW)
HasNUW = false;
if (HasNUW) {
Lower = *C;
} else if (HasNSW) {
if (C->isNegative()) {
Lower = APInt::getSignedMinValue(Width);
Upper = APInt::getSignedMaxValue(Width) + *C + 1;
} else {
Lower = APInt::getSignedMinValue(Width) + *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
}
}
}
break;
case Instruction::And:
if (match(BO.getOperand(1), m_APInt(C)))
Upper = *C + 1;
break;
case Instruction::Or:
if (match(BO.getOperand(1), m_APInt(C)))
Lower = *C;
break;
case Instruction::AShr:
if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
Lower = APInt::getSignedMinValue(Width).ashr(*C);
Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
} else if (match(BO.getOperand(0), m_APInt(C))) {
unsigned ShiftAmount = Width - 1;
if (!C->isZero() && IIQ.isExact(&BO))
ShiftAmount = C->countTrailingZeros();
if (C->isNegative()) {
Lower = *C;
Upper = C->ashr(ShiftAmount) + 1;
} else {
Lower = C->ashr(ShiftAmount);
Upper = *C + 1;
}
}
break;
case Instruction::LShr:
if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
} else if (match(BO.getOperand(0), m_APInt(C))) {
unsigned ShiftAmount = Width - 1;
if (!C->isZero() && IIQ.isExact(&BO))
ShiftAmount = C->countTrailingZeros();
Lower = C->lshr(ShiftAmount);
Upper = *C + 1;
}
break;
case Instruction::Shl:
if (match(BO.getOperand(0), m_APInt(C))) {
if (IIQ.hasNoUnsignedWrap(&BO)) {
Lower = *C;
Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
} else if (BO.hasNoSignedWrap()) { if (C->isNegative()) {
unsigned ShiftAmount = C->countLeadingOnes() - 1;
Lower = C->shl(ShiftAmount);
Upper = *C + 1;
} else {
unsigned ShiftAmount = C->countLeadingZeros() - 1;
Lower = *C;
Upper = C->shl(ShiftAmount) + 1;
}
}
}
break;
case Instruction::SDiv:
if (match(BO.getOperand(1), m_APInt(C))) {
APInt IntMin = APInt::getSignedMinValue(Width);
APInt IntMax = APInt::getSignedMaxValue(Width);
if (C->isAllOnes()) {
Lower = IntMin + 1;
Upper = IntMax + 1;
} else if (C->countLeadingZeros() < Width - 1) {
Lower = IntMin.sdiv(*C);
Upper = IntMax.sdiv(*C);
if (Lower.sgt(Upper))
std::swap(Lower, Upper);
Upper = Upper + 1;
assert(Upper != Lower && "Upper part of range has wrapped!");
}
} else if (match(BO.getOperand(0), m_APInt(C))) {
if (C->isMinSignedValue()) {
Lower = *C;
Upper = Lower.lshr(1) + 1;
} else {
Upper = C->abs() + 1;
Lower = (-Upper) + 1;
}
}
break;
case Instruction::UDiv:
if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
} else if (match(BO.getOperand(0), m_APInt(C))) {
Upper = *C + 1;
}
break;
case Instruction::SRem:
if (match(BO.getOperand(1), m_APInt(C))) {
Upper = C->abs();
Lower = (-Upper) + 1;
}
break;
case Instruction::URem:
if (match(BO.getOperand(1), m_APInt(C)))
Upper = *C;
break;
default:
break;
}
}
static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
APInt &Upper) {
unsigned Width = Lower.getBitWidth();
const APInt *C;
switch (II.getIntrinsicID()) {
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
assert(Lower == 0 && "Expected lower bound to be zero");
Upper = Width + 1;
break;
case Intrinsic::uadd_sat:
if (match(II.getOperand(0), m_APInt(C)) ||
match(II.getOperand(1), m_APInt(C)))
Lower = *C;
break;
case Intrinsic::sadd_sat:
if (match(II.getOperand(0), m_APInt(C)) ||
match(II.getOperand(1), m_APInt(C))) {
if (C->isNegative()) {
Lower = APInt::getSignedMinValue(Width);
Upper = APInt::getSignedMaxValue(Width) + *C + 1;
} else {
Lower = APInt::getSignedMinValue(Width) + *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
}
}
break;
case Intrinsic::usub_sat:
if (match(II.getOperand(0), m_APInt(C)))
Upper = *C + 1;
else if (match(II.getOperand(1), m_APInt(C)))
Upper = APInt::getMaxValue(Width) - *C + 1;
break;
case Intrinsic::ssub_sat:
if (match(II.getOperand(0), m_APInt(C))) {
if (C->isNegative()) {
Lower = APInt::getSignedMinValue(Width);
Upper = *C - APInt::getSignedMinValue(Width) + 1;
} else {
Lower = *C - APInt::getSignedMaxValue(Width);
Upper = APInt::getSignedMaxValue(Width) + 1;
}
} else if (match(II.getOperand(1), m_APInt(C))) {
if (C->isNegative()) {
Lower = APInt::getSignedMinValue(Width) - *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
} else {
Lower = APInt::getSignedMinValue(Width);
Upper = APInt::getSignedMaxValue(Width) - *C + 1;
}
}
break;
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax:
if (!match(II.getOperand(0), m_APInt(C)) &&
!match(II.getOperand(1), m_APInt(C)))
break;
switch (II.getIntrinsicID()) {
case Intrinsic::umin:
Upper = *C + 1;
break;
case Intrinsic::umax:
Lower = *C;
break;
case Intrinsic::smin:
Lower = APInt::getSignedMinValue(Width);
Upper = *C + 1;
break;
case Intrinsic::smax:
Lower = *C;
Upper = APInt::getSignedMaxValue(Width) + 1;
break;
default:
llvm_unreachable("Must be min/max intrinsic");
}
break;
case Intrinsic::abs:
if (match(II.getOperand(1), m_One()))
Upper = APInt::getSignedMaxValue(Width) + 1;
else
Upper = APInt::getSignedMinValue(Width) + 1;
break;
default:
break;
}
}
static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
APInt &Upper, const InstrInfoQuery &IIQ) {
const Value *LHS = nullptr, *RHS = nullptr;
SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
if (R.Flavor == SPF_UNKNOWN)
return;
unsigned BitWidth = SI.getType()->getScalarSizeInBits();
if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
Lower = APInt::getZero(BitWidth);
if (match(RHS, m_Neg(m_Specific(LHS))) &&
IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
Upper = APInt::getSignedMaxValue(BitWidth) + 1;
else
Upper = APInt::getSignedMinValue(BitWidth) + 1;
return;
}
if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
Lower = APInt::getSignedMinValue(BitWidth);
Upper = APInt(BitWidth, 1);
return;
}
const APInt *C;
if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
return;
switch (R.Flavor) {
case SPF_UMIN:
Upper = *C + 1;
break;
case SPF_UMAX:
Lower = *C;
break;
case SPF_SMIN:
Lower = APInt::getSignedMinValue(BitWidth);
Upper = *C + 1;
break;
case SPF_SMAX:
Lower = *C;
Upper = APInt::getSignedMaxValue(BitWidth) + 1;
break;
default:
break;
}
}
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
unsigned BitWidth = I->getType()->getScalarSizeInBits();
if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
return;
if (isa<FPToSIInst>(I) && BitWidth >= 17) {
Lower = APInt(BitWidth, -65504);
Upper = APInt(BitWidth, 65505);
}
if (isa<FPToUIInst>(I) && BitWidth >= 16) {
Upper = APInt(BitWidth, 65505);
}
}
ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
bool UseInstrInfo, AssumptionCache *AC,
const Instruction *CtxI,
const DominatorTree *DT,
unsigned Depth) {
assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
if (Depth == MaxAnalysisRecursionDepth)
return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
const APInt *C;
if (match(V, m_APInt(C)))
return ConstantRange(*C);
InstrInfoQuery IIQ(UseInstrInfo);
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt Lower = APInt(BitWidth, 0);
APInt Upper = APInt(BitWidth, 0);
if (auto *BO = dyn_cast<BinaryOperator>(V))
setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
else if (auto *II = dyn_cast<IntrinsicInst>(V))
setLimitsForIntrinsic(*II, Lower, Upper);
else if (auto *SI = dyn_cast<SelectInst>(V))
setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
if (auto *I = dyn_cast<Instruction>(V))
if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
if (CtxI && AC) {
for (auto &AssumeVH : AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
"Got assumption for the wrong function!");
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
if (!isValidAssumeForContext(I, CtxI, DT))
continue;
Value *Arg = I->getArgOperand(0);
ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
if (!Cmp || Cmp->getOperand(0) != V)
continue;
ConstantRange RHS =
computeConstantRange(Cmp->getOperand(1), false,
UseInstrInfo, AC, I, DT, Depth + 1);
CR = CR.intersectWith(
ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
}
}
return CR;
}
static Optional<int64_t>
getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1; i != Idx; ++i, ++GTI)
;
int64_t Offset = 0;
for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!OpC)
return None;
if (OpC->isZero())
continue;
if (StructType *STy = GTI.getStructTypeOrNull()) {
Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
continue;
}
TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
if (Size.isScalable())
return None;
Offset += Size.getFixedSize() * OpC->getSExtValue();
}
return Offset;
}
Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
const DataLayout &DL) {
APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
if (Ptr1 == Ptr2)
return Offset2.getSExtValue() - Offset1.getSExtValue();
const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
GEP1->getSourceElementType() != GEP2->getSourceElementType())
return None;
unsigned Idx = 1;
for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
break;
auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
if (!IOffset1 || !IOffset2)
return None;
return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
Offset1.getSExtValue();
}