; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=riscv32 -target-abi=ilp32 -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV32I %s ; RUN: llc -mtriple=riscv32 -target-abi=ilp32 -mattr=+d -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV32IFD %s ; RUN: llc -mtriple=riscv64 -target-abi=lp64 -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV64I %s ; RUN: llc -mtriple=riscv64 -target-abi=lp64 -mattr=+d -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV64IFD %s ; ; This file tests cases where simple floating point operations can be ; profitably handled though bit manipulation if a soft-float ABI is being used ; (e.g. fneg implemented by XORing the sign bit). This is typically handled in ; DAGCombiner::visitBITCAST, but this target-independent code may not trigger ; in cases where we perform custom legalisation (e.g. RV32IFD). ; TODO: Add an appropriate target-specific DAG combine that can handle ; RISCVISD::SplitF64/BuildPairF64 used for RV32IFD. define double @fneg(double %a) nounwind { ; RV32I-LABEL: fneg: ; RV32I: # %bb.0: ; RV32I-NEXT: lui a2, 524288 ; RV32I-NEXT: xor a1, a1, a2 ; RV32I-NEXT: ret ; ; RV32IFD-LABEL: fneg: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: lui a2, 524288 ; RV32IFD-NEXT: xor a1, a1, a2 ; RV32IFD-NEXT: ret ; ; RV64I-LABEL: fneg: ; RV64I: # %bb.0: ; RV64I-NEXT: li a1, -1 ; RV64I-NEXT: slli a1, a1, 63 ; RV64I-NEXT: xor a0, a0, a1 ; RV64I-NEXT: ret ; ; RV64IFD-LABEL: fneg: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: li a1, -1 ; RV64IFD-NEXT: slli a1, a1, 63 ; RV64IFD-NEXT: xor a0, a0, a1 ; RV64IFD-NEXT: ret %1 = fneg double %a ret double %1 } declare double @llvm.fabs.f64(double) define double @fabs(double %a) nounwind { ; RV32I-LABEL: fabs: ; RV32I: # %bb.0: ; RV32I-NEXT: slli a1, a1, 1 ; RV32I-NEXT: srli a1, a1, 1 ; RV32I-NEXT: ret ; ; RV32IFD-LABEL: fabs: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: slli a1, a1, 1 ; RV32IFD-NEXT: srli a1, a1, 1 ; RV32IFD-NEXT: ret ; ; RV64I-LABEL: fabs: ; RV64I: # %bb.0: ; RV64I-NEXT: slli a0, a0, 1 ; RV64I-NEXT: srli a0, a0, 1 ; RV64I-NEXT: ret ; ; RV64IFD-LABEL: fabs: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: slli a0, a0, 1 ; RV64IFD-NEXT: srli a0, a0, 1 ; RV64IFD-NEXT: ret %1 = call double @llvm.fabs.f64(double %a) ret double %1 } declare double @llvm.copysign.f64(double, double) ; DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN will convert to bitwise ; operations if floating point isn't supported. A combine could be written to ; do the same even when f64 is legal. define double @fcopysign_fneg(double %a, double %b) nounwind { ; RV32I-LABEL: fcopysign_fneg: ; RV32I: # %bb.0: ; RV32I-NEXT: not a2, a3 ; RV32I-NEXT: lui a3, 524288 ; RV32I-NEXT: and a2, a2, a3 ; RV32I-NEXT: slli a1, a1, 1 ; RV32I-NEXT: srli a1, a1, 1 ; RV32I-NEXT: or a1, a1, a2 ; RV32I-NEXT: ret ; ; RV32IFD-LABEL: fcopysign_fneg: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -16 ; RV32IFD-NEXT: sw a2, 8(sp) ; RV32IFD-NEXT: sw a3, 12(sp) ; RV32IFD-NEXT: fld ft0, 8(sp) ; RV32IFD-NEXT: sw a0, 8(sp) ; RV32IFD-NEXT: sw a1, 12(sp) ; RV32IFD-NEXT: fld ft1, 8(sp) ; RV32IFD-NEXT: fsgnjn.d ft0, ft1, ft0 ; RV32IFD-NEXT: fsd ft0, 8(sp) ; RV32IFD-NEXT: lw a0, 8(sp) ; RV32IFD-NEXT: lw a1, 12(sp) ; RV32IFD-NEXT: addi sp, sp, 16 ; RV32IFD-NEXT: ret ; ; RV64I-LABEL: fcopysign_fneg: ; RV64I: # %bb.0: ; RV64I-NEXT: not a1, a1 ; RV64I-NEXT: slli a0, a0, 1 ; RV64I-NEXT: srli a0, a0, 1 ; RV64I-NEXT: srli a1, a1, 63 ; RV64I-NEXT: slli a1, a1, 63 ; RV64I-NEXT: or a0, a0, a1 ; RV64I-NEXT: ret ; ; RV64IFD-LABEL: fcopysign_fneg: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: li a2, -1 ; RV64IFD-NEXT: slli a2, a2, 63 ; RV64IFD-NEXT: xor a1, a1, a2 ; RV64IFD-NEXT: fmv.d.x ft0, a1 ; RV64IFD-NEXT: fmv.d.x ft1, a0 ; RV64IFD-NEXT: fsgnj.d ft0, ft1, ft0 ; RV64IFD-NEXT: fmv.x.d a0, ft0 ; RV64IFD-NEXT: ret %1 = fneg double %b %2 = call double @llvm.copysign.f64(double %a, double %1) ret double %2 }