//===- GenericCycleInfo.h - Info for Cycles in any IR ------*- C++ -*------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Find all cycles in a control-flow graph, including irreducible loops.
///
/// See docs/CycleTerminology.rst for a formal definition of cycles.
///
/// Briefly:
/// - A cycle is a generalization of a loop which can represent
/// irreducible control flow.
/// - Cycles identified in a program are implementation defined,
/// depending on the DFS traversal chosen.
/// - Cycles are well-nested, and form a forest with a parent-child
/// relationship.
/// - In any choice of DFS, every natural loop L is represented by a
/// unique cycle C which is a superset of L.
/// - In the absence of irreducible control flow, the cycles are
/// exactly the natural loops in the program.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_GENERICCYCLEINFO_H
#define LLVM_ADT_GENERICCYCLEINFO_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GenericSSAContext.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Printable.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
namespace llvm {
template <typename ContextT> class GenericCycleInfo;
template <typename ContextT> class GenericCycleInfoCompute;
/// A possibly irreducible generalization of a \ref Loop.
template <typename ContextT> class GenericCycle {
public:
using BlockT = typename ContextT::BlockT;
using FunctionT = typename ContextT::FunctionT;
template <typename> friend class GenericCycleInfo;
template <typename> friend class GenericCycleInfoCompute;
private:
/// The parent cycle. Is null for the root "cycle". Top-level cycles point
/// at the root.
GenericCycle *ParentCycle = nullptr;
/// The entry block(s) of the cycle. The header is the only entry if
/// this is a loop. Is empty for the root "cycle", to avoid
/// unnecessary memory use.
SmallVector<BlockT *, 1> Entries;
/// Child cycles, if any.
std::vector<std::unique_ptr<GenericCycle>> Children;
/// Basic blocks that are contained in the cycle, including entry blocks,
/// and including blocks that are part of a child cycle.
std::vector<BlockT *> Blocks;
/// Depth of the cycle in the tree. The root "cycle" is at depth 0.
///
/// \note Depths are not necessarily contiguous. However, child loops always
/// have strictly greater depth than their parents, and sibling loops
/// always have the same depth.
unsigned Depth = 0;
void clear() {
Entries.clear();
Children.clear();
Blocks.clear();
Depth = 0;
ParentCycle = nullptr;
}
void appendEntry(BlockT *Block) { Entries.push_back(Block); }
void appendBlock(BlockT *Block) { Blocks.push_back(Block); }
GenericCycle(const GenericCycle &) = delete;
GenericCycle &operator=(const GenericCycle &) = delete;
GenericCycle(GenericCycle &&Rhs) = delete;
GenericCycle &operator=(GenericCycle &&Rhs) = delete;
public:
GenericCycle() = default;
/// \brief Whether the cycle is a natural loop.
bool isReducible() const { return Entries.size() == 1; }
BlockT *getHeader() const { return Entries[0]; }
const SmallVectorImpl<BlockT *> & getEntries() const {
return Entries;
}
/// \brief Return whether \p Block is an entry block of the cycle.
bool isEntry(BlockT *Block) const { return is_contained(Entries, Block); }
/// \brief Return whether \p Block is contained in the cycle.
bool contains(const BlockT *Block) const {
return is_contained(Blocks, Block);
}
/// \brief Returns true iff this cycle contains \p C.
///
/// Note: Non-strict containment check, i.e. returns true if C is the
/// same cycle.
bool contains(const GenericCycle *C) const;
const GenericCycle *getParentCycle() const { return ParentCycle; }
GenericCycle *getParentCycle() { return ParentCycle; }
unsigned getDepth() const { return Depth; }
/// Return all of the successor blocks of this cycle.
///
/// These are the blocks _outside of the current cycle_ which are
/// branched to.
void getExitBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const;
/// Return the preheader block for this cycle. Pre-header is well-defined for
/// reducible cycle in docs/LoopTerminology.rst as: the only one entering
/// block and its only edge is to the entry block. Return null for irreducible
/// cycles.
BlockT *getCyclePreheader() const;
/// If the cycle has exactly one entry with exactly one predecessor, return
/// it, otherwise return nullptr.
BlockT *getCyclePredecessor() const;
/// Iteration over child cycles.
//@{
using const_child_iterator_base =
typename std::vector<std::unique_ptr<GenericCycle>>::const_iterator;
struct const_child_iterator
: iterator_adaptor_base<const_child_iterator, const_child_iterator_base> {
using Base =
iterator_adaptor_base<const_child_iterator, const_child_iterator_base>;
const_child_iterator() = default;
explicit const_child_iterator(const_child_iterator_base I) : Base(I) {}
const const_child_iterator_base &wrapped() { return Base::wrapped(); }
GenericCycle *operator*() const { return Base::I->get(); }
};
const_child_iterator child_begin() const {
return const_child_iterator{Children.begin()};
}
const_child_iterator child_end() const {
return const_child_iterator{Children.end()};
}
size_t getNumChildren() const { return Children.size(); }
iterator_range<const_child_iterator> children() const {
return llvm::make_range(const_child_iterator{Children.begin()},
const_child_iterator{Children.end()});
}
//@}
/// Iteration over blocks in the cycle (including entry blocks).
//@{
using const_block_iterator = typename std::vector<BlockT *>::const_iterator;
const_block_iterator block_begin() const {
return const_block_iterator{Blocks.begin()};
}
const_block_iterator block_end() const {
return const_block_iterator{Blocks.end()};
}
size_t getNumBlocks() const { return Blocks.size(); }
iterator_range<const_block_iterator> blocks() const {
return llvm::make_range(block_begin(), block_end());
}
//@}
/// Iteration over entry blocks.
//@{
using const_entry_iterator =
typename SmallVectorImpl<BlockT *>::const_iterator;
size_t getNumEntries() const { return Entries.size(); }
iterator_range<const_entry_iterator> entries() const {
return llvm::make_range(Entries.begin(), Entries.end());
}
//@}
Printable printEntries(const ContextT &Ctx) const {
return Printable([this, &Ctx](raw_ostream &Out) {
bool First = true;
for (auto *Entry : Entries) {
if (!First)
Out << ' ';
First = false;
Out << Ctx.print(Entry);
}
});
}
Printable print(const ContextT &Ctx) const {
return Printable([this, &Ctx](raw_ostream &Out) {
Out << "depth=" << Depth << ": entries(" << printEntries(Ctx) << ')';
for (auto *Block : Blocks) {
if (isEntry(Block))
continue;
Out << ' ' << Ctx.print(Block);
}
});
}
};
/// \brief Cycle information for a function.
template <typename ContextT> class GenericCycleInfo {
public:
using BlockT = typename ContextT::BlockT;
using CycleT = GenericCycle<ContextT>;
using FunctionT = typename ContextT::FunctionT;
template <typename> friend class GenericCycle;
template <typename> friend class GenericCycleInfoCompute;
private:
ContextT Context;
/// Map basic blocks to their inner-most containing cycle.
DenseMap<BlockT *, CycleT *> BlockMap;
/// Map basic blocks to their top level containing cycle.
DenseMap<BlockT *, CycleT *> BlockMapTopLevel;
/// Outermost cycles discovered by any DFS.
///
/// Note: The implementation treats the nullptr as the parent of
/// every top-level cycle. See \ref contains for an example.
std::vector<std::unique_ptr<CycleT>> TopLevelCycles;
/// Move \p Child to \p NewParent by manipulating Children vectors.
///
/// Note: This is an incomplete operation that does not update the depth of
/// the subtree.
void moveTopLevelCycleToNewParent(CycleT *NewParent, CycleT *Child);
public:
GenericCycleInfo() = default;
GenericCycleInfo(GenericCycleInfo &&) = default;
GenericCycleInfo &operator=(GenericCycleInfo &&) = default;
void clear();
void compute(FunctionT &F);
FunctionT *getFunction() const { return Context.getFunction(); }
const ContextT &getSSAContext() const { return Context; }
CycleT *getCycle(const BlockT *Block) const;
unsigned getCycleDepth(const BlockT *Block) const;
CycleT *getTopLevelParentCycle(BlockT *Block);
/// Methods for debug and self-test.
//@{
#ifndef NDEBUG
bool validateTree() const;
#endif
void print(raw_ostream &Out) const;
void dump() const { print(dbgs()); }
//@}
/// Iteration over top-level cycles.
//@{
using const_toplevel_iterator_base =
typename std::vector<std::unique_ptr<CycleT>>::const_iterator;
struct const_toplevel_iterator
: iterator_adaptor_base<const_toplevel_iterator,
const_toplevel_iterator_base> {
using Base = iterator_adaptor_base<const_toplevel_iterator,
const_toplevel_iterator_base>;
const_toplevel_iterator() = default;
explicit const_toplevel_iterator(const_toplevel_iterator_base I)
: Base(I) {}
const const_toplevel_iterator_base &wrapped() { return Base::wrapped(); }
CycleT *operator*() const { return Base::I->get(); }
};
const_toplevel_iterator toplevel_begin() const {
return const_toplevel_iterator{TopLevelCycles.begin()};
}
const_toplevel_iterator toplevel_end() const {
return const_toplevel_iterator{TopLevelCycles.end()};
}
iterator_range<const_toplevel_iterator> toplevel_cycles() const {
return llvm::make_range(const_toplevel_iterator{TopLevelCycles.begin()},
const_toplevel_iterator{TopLevelCycles.end()});
}
//@}
};
/// \brief GraphTraits for iterating over a sub-tree of the CycleT tree.
template <typename CycleRefT, typename ChildIteratorT> struct CycleGraphTraits {
using NodeRef = CycleRefT;
using nodes_iterator = ChildIteratorT;
using ChildIteratorType = nodes_iterator;
static NodeRef getEntryNode(NodeRef Graph) { return Graph; }
static ChildIteratorType child_begin(NodeRef Ref) {
return Ref->child_begin();
}
static ChildIteratorType child_end(NodeRef Ref) { return Ref->child_end(); }
// Not implemented:
// static nodes_iterator nodes_begin(GraphType *G)
// static nodes_iterator nodes_end (GraphType *G)
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
// typedef EdgeRef - Type of Edge token in the graph, which should
// be cheap to copy.
// typedef ChildEdgeIteratorType - Type used to iterate over children edges in
// graph, dereference to a EdgeRef.
// static ChildEdgeIteratorType child_edge_begin(NodeRef)
// static ChildEdgeIteratorType child_edge_end(NodeRef)
// Return iterators that point to the beginning and ending of the
// edge list for the given callgraph node.
//
// static NodeRef edge_dest(EdgeRef)
// Return the destination node of an edge.
// static unsigned size (GraphType *G)
// Return total number of nodes in the graph
};
template <typename BlockT>
struct GraphTraits<const GenericCycle<BlockT> *>
: CycleGraphTraits<const GenericCycle<BlockT> *,
typename GenericCycle<BlockT>::const_child_iterator> {};
template <typename BlockT>
struct GraphTraits<GenericCycle<BlockT> *>
: CycleGraphTraits<GenericCycle<BlockT> *,
typename GenericCycle<BlockT>::const_child_iterator> {};
} // namespace llvm
#endif // LLVM_ADT_GENERICCYCLEINFO_H