#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h" 
#include "llvm/IR/GlobalValue.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "x86-pseudo"
#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
namespace {
class X86ExpandPseudo : public MachineFunctionPass {
public:
  static char ID;
  X86ExpandPseudo() : MachineFunctionPass(ID) {}
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addPreservedID(MachineLoopInfoID);
    AU.addPreservedID(MachineDominatorsID);
    MachineFunctionPass::getAnalysisUsage(AU);
  }
  const X86Subtarget *STI = nullptr;
  const X86InstrInfo *TII = nullptr;
  const X86RegisterInfo *TRI = nullptr;
  const X86MachineFunctionInfo *X86FI = nullptr;
  const X86FrameLowering *X86FL = nullptr;
  bool runOnMachineFunction(MachineFunction &Fn) override;
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
  StringRef getPassName() const override {
    return "X86 pseudo instruction expansion pass";
  }
private:
  void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
                               MachineBasicBlock::iterator MBBI);
  void expandCALL_RVMARKER(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI);
  bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
  bool ExpandMBB(MachineBasicBlock &MBB);
        bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF);
        void ExpandVastartSaveXmmRegs(
      MachineBasicBlock *MBB,
      MachineBasicBlock::iterator VAStartPseudoInstr) const;
};
char X86ExpandPseudo::ID = 0;
} 
INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
                false)
void X86ExpandPseudo::ExpandICallBranchFunnel(
    MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
  MachineBasicBlock *JTMBB = MBB;
  MachineInstr *JTInst = &*MBBI;
  MachineFunction *MF = MBB->getParent();
  const BasicBlock *BB = MBB->getBasicBlock();
  auto InsPt = MachineFunction::iterator(MBB);
  ++InsPt;
  std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
  const DebugLoc &DL = JTInst->getDebugLoc();
  MachineOperand Selector = JTInst->getOperand(0);
  const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
  auto CmpTarget = [&](unsigned Target) {
    if (Selector.isReg())
      MBB->addLiveIn(Selector.getReg());
    BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
        .addReg(X86::RIP)
        .addImm(1)
        .addReg(0)
        .addGlobalAddress(CombinedGlobal,
                          JTInst->getOperand(2 + 2 * Target).getImm())
        .addReg(0);
    BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
        .add(Selector)
        .addReg(X86::R11);
  };
  auto CreateMBB = [&]() {
    auto *NewMBB = MF->CreateMachineBasicBlock(BB);
    MBB->addSuccessor(NewMBB);
    if (!MBB->isLiveIn(X86::EFLAGS))
      MBB->addLiveIn(X86::EFLAGS);
    return NewMBB;
  };
  auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
    BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
    auto *ElseMBB = CreateMBB();
    MF->insert(InsPt, ElseMBB);
    MBB = ElseMBB;
    MBBI = MBB->end();
  };
  auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
    auto *ThenMBB = CreateMBB();
    TargetMBBs.push_back({ThenMBB, Target});
    EmitCondJump(CC, ThenMBB);
  };
  auto EmitTailCall = [&](unsigned Target) {
    BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
        .add(JTInst->getOperand(3 + 2 * Target));
  };
  std::function<void(unsigned, unsigned)> EmitBranchFunnel =
      [&](unsigned FirstTarget, unsigned NumTargets) {
    if (NumTargets == 1) {
      EmitTailCall(FirstTarget);
      return;
    }
    if (NumTargets == 2) {
      CmpTarget(FirstTarget + 1);
      EmitCondJumpTarget(X86::COND_B, FirstTarget);
      EmitTailCall(FirstTarget + 1);
      return;
    }
    if (NumTargets < 6) {
      CmpTarget(FirstTarget + 1);
      EmitCondJumpTarget(X86::COND_B, FirstTarget);
      EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
      EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
      return;
    }
    auto *ThenMBB = CreateMBB();
    CmpTarget(FirstTarget + (NumTargets / 2));
    EmitCondJump(X86::COND_B, ThenMBB);
    EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
    EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
                  NumTargets - (NumTargets / 2) - 1);
    MF->insert(InsPt, ThenMBB);
    MBB = ThenMBB;
    MBBI = MBB->end();
    EmitBranchFunnel(FirstTarget, NumTargets / 2);
  };
  EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
  for (auto P : TargetMBBs) {
    MF->insert(InsPt, P.first);
    BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
        .add(JTInst->getOperand(3 + 2 * P.second));
  }
  JTMBB->erase(JTInst);
}
void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator MBBI) {
      MachineInstr &MI = *MBBI;
  MachineInstr *OriginalCall;
  assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
         "invalid operand for regular call");
  unsigned Opc = -1;
  if (MI.getOpcode() == X86::CALL64m_RVMARKER)
    Opc = X86::CALL64m;
  else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
    Opc = X86::CALL64r;
  else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
    Opc = X86::CALL64pcrel32;
  else
    llvm_unreachable("unexpected opcode");
  OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
  bool RAXImplicitDead = false;
  for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
            if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
        TRI->regsOverlap(Op.getReg(), X86::RAX)) {
      Op.setIsDead(false);
      Op.setIsDef(true);
      RAXImplicitDead = true;
    }
    OriginalCall->addOperand(Op);
  }
          auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
                     .addReg(X86::RDI, RegState::Define)
                     .addReg(X86::RAX)
                     .getInstr();
  if (MI.shouldUpdateCallSiteInfo())
    MBB.getParent()->moveCallSiteInfo(&MI, Marker);
    const uint32_t *RegMask =
      TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
  MachineInstr *RtCall =
      BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
          .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
          .addRegMask(RegMask)
          .addReg(X86::RAX,
                  RegState::Implicit |
                      (RAXImplicitDead ? (RegState::Dead | RegState::Define)
                                       : RegState::Define))
          .getInstr();
  MI.eraseFromParent();
  auto &TM = MBB.getParent()->getTarget();
      if (TM.getTargetTriple().isOSDarwin())
    finalizeBundle(MBB, OriginalCall->getIterator(),
                   std::next(RtCall->getIterator()));
}
bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator MBBI) {
  MachineInstr &MI = *MBBI;
  unsigned Opcode = MI.getOpcode();
  const DebugLoc &DL = MBBI->getDebugLoc();
  switch (Opcode) {
  default:
    return false;
  case X86::TCRETURNdi:
  case X86::TCRETURNdicc:
  case X86::TCRETURNri:
  case X86::TCRETURNmi:
  case X86::TCRETURNdi64:
  case X86::TCRETURNdi64cc:
  case X86::TCRETURNri64:
  case X86::TCRETURNmi64: {
    bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
                                                         : 1);
    assert(StackAdjust.isImm() && "Expecting immediate value.");
        int StackAdj = StackAdjust.getImm();
    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
    int Offset = 0;
    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
        Offset = StackAdj - MaxTCDelta;
    assert(Offset >= 0 && "Offset should never be negative");
    if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
      assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
    }
    if (Offset) {
            Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
      X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, true);
    }
        bool IsWin64 = STI->isTargetWin64();
    if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
        Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
      unsigned Op;
      switch (Opcode) {
      case X86::TCRETURNdi:
        Op = X86::TAILJMPd;
        break;
      case X86::TCRETURNdicc:
        Op = X86::TAILJMPd_CC;
        break;
      case X86::TCRETURNdi64cc:
        assert(!MBB.getParent()->hasWinCFI() &&
               "Conditional tail calls confuse "
               "the Win64 unwinder.");
        Op = X86::TAILJMPd64_CC;
        break;
      default:
                        Op = X86::TAILJMPd64;
        break;
      }
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      if (JumpTarget.isGlobal()) {
        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
                             JumpTarget.getTargetFlags());
      } else {
        assert(JumpTarget.isSymbol());
        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
                              JumpTarget.getTargetFlags());
      }
      if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
        MIB.addImm(MBBI->getOperand(2).getImm());
      }
    } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
      unsigned Op = (Opcode == X86::TCRETURNmi)
                        ? X86::TAILJMPm
                        : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
        MIB.add(MBBI->getOperand(i));
    } else if (Opcode == X86::TCRETURNri64) {
      JumpTarget.setIsKill();
      BuildMI(MBB, MBBI, DL,
              TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
          .add(JumpTarget);
    } else {
      JumpTarget.setIsKill();
      BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
          .add(JumpTarget);
    }
    MachineInstr &NewMI = *std::prev(MBBI);
    NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
        if (MBBI->isCandidateForCallSiteEntry())
      MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
        MBB.erase(MBBI);
    return true;
  }
  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    MachineOperand &DestAddr = MBBI->getOperand(0);
    assert(DestAddr.isReg() && "Offset should be in register!");
    const bool Uses64BitFramePtr =
        STI->isTarget64BitLP64() || STI->isTargetNaCl64();
    Register StackPtr = TRI->getStackRegister();
    BuildMI(MBB, MBBI, DL,
            TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
        .addReg(DestAddr.getReg());
        return true;
  }
  case X86::IRET: {
        int64_t StackAdj = MBBI->getOperand(0).getImm();
    X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
        unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
        if (STI->is64Bit() && STI->hasUINTR() &&
        MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
      RetOp = X86::UIRET;
    BuildMI(MBB, MBBI, DL, TII->get(RetOp));
    MBB.erase(MBBI);
    return true;
  }
  case X86::RET: {
        int64_t StackAdj = MBBI->getOperand(0).getImm();
    MachineInstrBuilder MIB;
    if (StackAdj == 0) {
      MIB = BuildMI(MBB, MBBI, DL,
                    TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
    } else if (isUInt<16>(StackAdj)) {
      MIB = BuildMI(MBB, MBBI, DL,
                    TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
                .addImm(StackAdj);
    } else {
      assert(!STI->is64Bit() &&
             "shouldn't need to do this for x86_64 targets!");
                  BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
      X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
      BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
      MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
    }
    for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
      MIB.add(MBBI->getOperand(I));
    MBB.erase(MBBI);
    return true;
  }
  case X86::LCMPXCHG16B_SAVE_RBX: {
                            const MachineOperand &InArg = MBBI->getOperand(6);
    Register SaveRbx = MBBI->getOperand(7).getReg();
                    TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
        MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
        for (unsigned Idx = 1; Idx < 6; ++Idx)
      NewInstr->addOperand(MBBI->getOperand(Idx));
        TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
                      true);
        MBBI->eraseFromParent();
    return true;
  }
                  case X86::MASKPAIR16LOAD: {
    int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
    assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
    Register Reg = MBBI->getOperand(0).getReg();
    bool DstIsDead = MBBI->getOperand(0).isDead();
    Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
    Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
    auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
      .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
    auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
      .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
    for (int i = 0; i < X86::AddrNumOperands; ++i) {
      MIBLo.add(MBBI->getOperand(1 + i));
      if (i == X86::AddrDisp)
        MIBHi.addImm(Disp + 2);
      else
        MIBHi.add(MBBI->getOperand(1 + i));
    }
        MachineMemOperand *OldMMO = MBBI->memoperands().front();
    MachineFunction *MF = MBB.getParent();
    MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
    MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
    MIBLo.setMemRefs(MMOLo);
    MIBHi.setMemRefs(MMOHi);
        MBB.erase(MBBI);
    return true;
  }
  case X86::MASKPAIR16STORE: {
    int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
    assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
    Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
    bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
    Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
    Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
    auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
    auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
    for (int i = 0; i < X86::AddrNumOperands; ++i) {
      MIBLo.add(MBBI->getOperand(i));
      if (i == X86::AddrDisp)
        MIBHi.addImm(Disp + 2);
      else
        MIBHi.add(MBBI->getOperand(i));
    }
    MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
    MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
        MachineMemOperand *OldMMO = MBBI->memoperands().front();
    MachineFunction *MF = MBB.getParent();
    MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
    MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
    MIBLo.setMemRefs(MMOLo);
    MIBHi.setMemRefs(MMOHi);
        MBB.erase(MBBI);
    return true;
  }
  case X86::MWAITX_SAVE_RBX: {
                            const MachineOperand &InArg = MBBI->getOperand(1);
            TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
        BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
        Register SaveRbx = MBBI->getOperand(2).getReg();
    TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,  true);
        MBBI->eraseFromParent();
    return true;
  }
  case TargetOpcode::ICALL_BRANCH_FUNNEL:
    ExpandICallBranchFunnel(&MBB, MBBI);
    return true;
  case X86::PLDTILECFGV: {
    MI.setDesc(TII->get(X86::LDTILECFG));
    return true;
  }
  case X86::PTILELOADDV:
  case X86::PTILELOADDT1V: {
    for (unsigned i = 2; i > 0; --i)
      MI.removeOperand(i);
    unsigned Opc =
        Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1;
    MI.setDesc(TII->get(Opc));
    return true;
  }
  case X86::PTDPBSSDV:
  case X86::PTDPBSUDV:
  case X86::PTDPBUSDV:
  case X86::PTDPBUUDV:
  case X86::PTDPBF16PSV: {
    MI.untieRegOperand(4);
    for (unsigned i = 3; i > 0; --i)
      MI.removeOperand(i);
    unsigned Opc;
    switch (Opcode) {
    case X86::PTDPBSSDV:   Opc = X86::TDPBSSD; break;
    case X86::PTDPBSUDV:   Opc = X86::TDPBSUD; break;
    case X86::PTDPBUSDV:   Opc = X86::TDPBUSD; break;
    case X86::PTDPBUUDV:   Opc = X86::TDPBUUD; break;
    case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
    default: llvm_unreachable("Impossible Opcode!");
    }
    MI.setDesc(TII->get(Opc));
    MI.tieOperands(0, 1);
    return true;
  }
  case X86::PTILESTOREDV: {
    for (int i = 1; i >= 0; --i)
      MI.removeOperand(i);
    MI.setDesc(TII->get(X86::TILESTORED));
    return true;
  }
  case X86::PTILEZEROV: {
    for (int i = 2; i > 0; --i)       MI.removeOperand(i);
    MI.setDesc(TII->get(X86::TILEZERO));
    return true;
  }
  case X86::CALL64pcrel32_RVMARKER:
  case X86::CALL64r_RVMARKER:
  case X86::CALL64m_RVMARKER:
    expandCALL_RVMARKER(MBB, MBBI);
    return true;
  }
  llvm_unreachable("Previous switch has a fallthrough?");
}
void X86ExpandPseudo::ExpandVastartSaveXmmRegs(
    MachineBasicBlock *EntryBlk,
    MachineBasicBlock::iterator VAStartPseudoInstr) const {
  assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
  MachineFunction *Func = EntryBlk->getParent();
  const TargetInstrInfo *TII = STI->getInstrInfo();
  const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
  Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
    LivePhysRegs LiveRegs(*STI->getRegisterInfo());
  SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
  LiveRegs.addLiveIns(*EntryBlk);
  for (MachineInstr &MI : EntryBlk->instrs()) {
    if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
      break;
    LiveRegs.stepForward(MI, Clobbers);
  }
        const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
  MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
  MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
  MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
  Func->insert(EntryBlkIter, GuardedRegsBlk);
  Func->insert(EntryBlkIter, TailBlk);
    TailBlk->splice(TailBlk->begin(), EntryBlk,
                  std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
                  EntryBlk->end());
  TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
  uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
  uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
    unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
    for (int64_t OpndIdx = 7, RegIdx = 0;
       OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
       OpndIdx++, RegIdx++) {
    auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
    for (int i = 0; i < X86::AddrNumOperands; ++i) {
      if (i == X86::AddrDisp)
        NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
      else
        NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
    }
    NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
    assert(Register::isPhysicalRegister(
        VAStartPseudoInstr->getOperand(OpndIdx).getReg()));
  }
    EntryBlk->addSuccessor(GuardedRegsBlk);
    GuardedRegsBlk->addSuccessor(TailBlk);
  if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
        BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
        .addReg(CountReg)
        .addReg(CountReg);
    BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
        .addMBB(TailBlk)
        .addImm(X86::COND_E);
    EntryBlk->addSuccessor(TailBlk);
  }
    addLiveIns(*GuardedRegsBlk, LiveRegs);
  addLiveIns(*TailBlk, LiveRegs);
    VAStartPseudoInstr->eraseFromParent();
}
bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
  bool Modified = false;
    MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
  while (MBBI != E) {
    MachineBasicBlock::iterator NMBBI = std::next(MBBI);
    Modified |= ExpandMI(MBB, MBBI);
    MBBI = NMBBI;
  }
  return Modified;
}
bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) {
        for (MachineInstr &Instr : MF.front().instrs()) {
    if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
      ExpandVastartSaveXmmRegs(&(MF.front()), Instr);
      return true;
    }
  }
  return false;
}
bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
  STI = &MF.getSubtarget<X86Subtarget>();
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  X86FI = MF.getInfo<X86MachineFunctionInfo>();
  X86FL = STI->getFrameLowering();
  bool Modified = ExpandPseudosWhichAffectControlFlow(MF);
  for (MachineBasicBlock &MBB : MF)
    Modified |= ExpandMBB(MBB);
  return Modified;
}
FunctionPass *llvm::createX86ExpandPseudoPass() {
  return new X86ExpandPseudo();
}