Compiler projects using llvm
//==- CGObjCRuntime.cpp - Interface to Shared Objective-C Runtime Features ==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This abstract class defines the interface for Objective-C runtime-specific
// code generation.  It provides some concrete helper methods for functionality
// shared between all (or most) of the Objective-C runtimes supported by clang.
//
//===----------------------------------------------------------------------===//

#include "CGObjCRuntime.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtObjC.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "llvm/Support/SaveAndRestore.h"

using namespace clang;
using namespace CodeGen;

uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
                                              const ObjCInterfaceDecl *OID,
                                              const ObjCIvarDecl *Ivar) {
  return CGM.getContext().lookupFieldBitOffset(OID, nullptr, Ivar) /
         CGM.getContext().getCharWidth();
}

uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
                                              const ObjCImplementationDecl *OID,
                                              const ObjCIvarDecl *Ivar) {
  return CGM.getContext().lookupFieldBitOffset(OID->getClassInterface(), OID,
                                               Ivar) /
         CGM.getContext().getCharWidth();
}

unsigned CGObjCRuntime::ComputeBitfieldBitOffset(
    CodeGen::CodeGenModule &CGM,
    const ObjCInterfaceDecl *ID,
    const ObjCIvarDecl *Ivar) {
  return CGM.getContext().lookupFieldBitOffset(ID, ID->getImplementation(),
                                               Ivar);
}

LValue CGObjCRuntime::EmitValueForIvarAtOffset(CodeGen::CodeGenFunction &CGF,
                                               const ObjCInterfaceDecl *OID,
                                               llvm::Value *BaseValue,
                                               const ObjCIvarDecl *Ivar,
                                               unsigned CVRQualifiers,
                                               llvm::Value *Offset) {
  // Compute (type*) ( (char *) BaseValue + Offset)
  QualType InterfaceTy{OID->getTypeForDecl(), 0};
  QualType ObjectPtrTy =
      CGF.CGM.getContext().getObjCObjectPointerType(InterfaceTy);
  QualType IvarTy =
      Ivar->getUsageType(ObjectPtrTy).withCVRQualifiers(CVRQualifiers);
  llvm::Type *LTy = CGF.CGM.getTypes().ConvertTypeForMem(IvarTy);
  llvm::Value *V = CGF.Builder.CreateBitCast(BaseValue, CGF.Int8PtrTy);
  V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, V, Offset, "add.ptr");

  if (!Ivar->isBitField()) {
    V = CGF.Builder.CreateBitCast(V, llvm::PointerType::getUnqual(LTy));
    LValue LV = CGF.MakeNaturalAlignAddrLValue(V, IvarTy);
    return LV;
  }

  // We need to compute an access strategy for this bit-field. We are given the
  // offset to the first byte in the bit-field, the sub-byte offset is taken
  // from the original layout. We reuse the normal bit-field access strategy by
  // treating this as an access to a struct where the bit-field is in byte 0,
  // and adjust the containing type size as appropriate.
  //
  // FIXME: Note that currently we make a very conservative estimate of the
  // alignment of the bit-field, because (a) it is not clear what guarantees the
  // runtime makes us, and (b) we don't have a way to specify that the struct is
  // at an alignment plus offset.
  //
  // Note, there is a subtle invariant here: we can only call this routine on
  // non-synthesized ivars but we may be called for synthesized ivars.  However,
  // a synthesized ivar can never be a bit-field, so this is safe.
  uint64_t FieldBitOffset =
      CGF.CGM.getContext().lookupFieldBitOffset(OID, nullptr, Ivar);
  uint64_t BitOffset = FieldBitOffset % CGF.CGM.getContext().getCharWidth();
  uint64_t AlignmentBits = CGF.CGM.getTarget().getCharAlign();
  uint64_t BitFieldSize = Ivar->getBitWidthValue(CGF.getContext());
  CharUnits StorageSize = CGF.CGM.getContext().toCharUnitsFromBits(
      llvm::alignTo(BitOffset + BitFieldSize, AlignmentBits));
  CharUnits Alignment = CGF.CGM.getContext().toCharUnitsFromBits(AlignmentBits);

  // Allocate a new CGBitFieldInfo object to describe this access.
  //
  // FIXME: This is incredibly wasteful, these should be uniqued or part of some
  // layout object. However, this is blocked on other cleanups to the
  // Objective-C code, so for now we just live with allocating a bunch of these
  // objects.
  CGBitFieldInfo *Info = new (CGF.CGM.getContext()) CGBitFieldInfo(
    CGBitFieldInfo::MakeInfo(CGF.CGM.getTypes(), Ivar, BitOffset, BitFieldSize,
                             CGF.CGM.getContext().toBits(StorageSize),
                             CharUnits::fromQuantity(0)));

  Address Addr = Address(V, CGF.Int8Ty, Alignment);
  Addr = CGF.Builder.CreateElementBitCast(Addr,
                                   llvm::Type::getIntNTy(CGF.getLLVMContext(),
                                                         Info->StorageSize));
  return LValue::MakeBitfield(Addr, *Info, IvarTy,
                              LValueBaseInfo(AlignmentSource::Decl),
                              TBAAAccessInfo());
}

namespace {
  struct CatchHandler {
    const VarDecl *Variable;
    const Stmt *Body;
    llvm::BasicBlock *Block;
    llvm::Constant *TypeInfo;
    /// Flags used to differentiate cleanups and catchalls in Windows SEH
    unsigned Flags;
  };

  struct CallObjCEndCatch final : EHScopeStack::Cleanup {
    CallObjCEndCatch(bool MightThrow, llvm::FunctionCallee Fn)
        : MightThrow(MightThrow), Fn(Fn) {}
    bool MightThrow;
    llvm::FunctionCallee Fn;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      if (MightThrow)
        CGF.EmitRuntimeCallOrInvoke(Fn);
      else
        CGF.EmitNounwindRuntimeCall(Fn);
    }
  };
}

void CGObjCRuntime::EmitTryCatchStmt(CodeGenFunction &CGF,
                                     const ObjCAtTryStmt &S,
                                     llvm::FunctionCallee beginCatchFn,
                                     llvm::FunctionCallee endCatchFn,
                                     llvm::FunctionCallee exceptionRethrowFn) {
  // Jump destination for falling out of catch bodies.
  CodeGenFunction::JumpDest Cont;
  if (S.getNumCatchStmts())
    Cont = CGF.getJumpDestInCurrentScope("eh.cont");

  bool useFunclets = EHPersonality::get(CGF).usesFuncletPads();

  CodeGenFunction::FinallyInfo FinallyInfo;
  if (!useFunclets)
    if (const ObjCAtFinallyStmt *Finally = S.getFinallyStmt())
      FinallyInfo.enter(CGF, Finally->getFinallyBody(),
                        beginCatchFn, endCatchFn, exceptionRethrowFn);

  SmallVector<CatchHandler, 8> Handlers;


  // Enter the catch, if there is one.
  if (S.getNumCatchStmts()) {
    for (const ObjCAtCatchStmt *CatchStmt : S.catch_stmts()) {
      const VarDecl *CatchDecl = CatchStmt->getCatchParamDecl();

      Handlers.push_back(CatchHandler());
      CatchHandler &Handler = Handlers.back();
      Handler.Variable = CatchDecl;
      Handler.Body = CatchStmt->getCatchBody();
      Handler.Block = CGF.createBasicBlock("catch");
      Handler.Flags = 0;

      // @catch(...) always matches.
      if (!CatchDecl) {
        auto catchAll = getCatchAllTypeInfo();
        Handler.TypeInfo = catchAll.RTTI;
        Handler.Flags = catchAll.Flags;
        // Don't consider any other catches.
        break;
      }

      Handler.TypeInfo = GetEHType(CatchDecl->getType());
    }

    EHCatchScope *Catch = CGF.EHStack.pushCatch(Handlers.size());
    for (unsigned I = 0, E = Handlers.size(); I != E; ++I)
      Catch->setHandler(I, { Handlers[I].TypeInfo, Handlers[I].Flags }, Handlers[I].Block);
  }

  if (useFunclets)
    if (const ObjCAtFinallyStmt *Finally = S.getFinallyStmt()) {
        CodeGenFunction HelperCGF(CGM, /*suppressNewContext=*/true);
        if (!CGF.CurSEHParent)
            CGF.CurSEHParent = cast<NamedDecl>(CGF.CurFuncDecl);
        // Outline the finally block.
        const Stmt *FinallyBlock = Finally->getFinallyBody();
        HelperCGF.startOutlinedSEHHelper(CGF, /*isFilter*/false, FinallyBlock);

        // Emit the original filter expression, convert to i32, and return.
        HelperCGF.EmitStmt(FinallyBlock);

        HelperCGF.FinishFunction(FinallyBlock->getEndLoc());

        llvm::Function *FinallyFunc = HelperCGF.CurFn;


        // Push a cleanup for __finally blocks.
        CGF.pushSEHCleanup(NormalAndEHCleanup, FinallyFunc);
    }


  // Emit the try body.
  CGF.EmitStmt(S.getTryBody());

  // Leave the try.
  if (S.getNumCatchStmts())
    CGF.popCatchScope();

  // Remember where we were.
  CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();

  // Emit the handlers.
  for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
    CatchHandler &Handler = Handlers[I];

    CGF.EmitBlock(Handler.Block);
    llvm::CatchPadInst *CPI = nullptr;
    SaveAndRestore<llvm::Instruction *> RestoreCurrentFuncletPad(CGF.CurrentFuncletPad);
    if (useFunclets)
      if ((CPI = dyn_cast_or_null<llvm::CatchPadInst>(Handler.Block->getFirstNonPHI()))) {
        CGF.CurrentFuncletPad = CPI;
        CPI->setOperand(2, CGF.getExceptionSlot().getPointer());
      }
    llvm::Value *RawExn = CGF.getExceptionFromSlot();

    // Enter the catch.
    llvm::Value *Exn = RawExn;
    if (beginCatchFn)
      Exn = CGF.EmitNounwindRuntimeCall(beginCatchFn, RawExn, "exn.adjusted");

    CodeGenFunction::LexicalScope cleanups(CGF, Handler.Body->getSourceRange());

    if (endCatchFn) {
      // Add a cleanup to leave the catch.
      bool EndCatchMightThrow = (Handler.Variable == nullptr);

      CGF.EHStack.pushCleanup<CallObjCEndCatch>(NormalAndEHCleanup,
                                                EndCatchMightThrow,
                                                endCatchFn);
    }

    // Bind the catch parameter if it exists.
    if (const VarDecl *CatchParam = Handler.Variable) {
      llvm::Type *CatchType = CGF.ConvertType(CatchParam->getType());
      llvm::Value *CastExn = CGF.Builder.CreateBitCast(Exn, CatchType);

      CGF.EmitAutoVarDecl(*CatchParam);
      EmitInitOfCatchParam(CGF, CastExn, CatchParam);
    }
    if (CPI)
        CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);

    CGF.ObjCEHValueStack.push_back(Exn);
    CGF.EmitStmt(Handler.Body);
    CGF.ObjCEHValueStack.pop_back();

    // Leave any cleanups associated with the catch.
    cleanups.ForceCleanup();

    CGF.EmitBranchThroughCleanup(Cont);
  }

  // Go back to the try-statement fallthrough.
  CGF.Builder.restoreIP(SavedIP);

  // Pop out of the finally.
  if (!useFunclets && S.getFinallyStmt())
    FinallyInfo.exit(CGF);

  if (Cont.isValid())
    CGF.EmitBlock(Cont.getBlock());
}

void CGObjCRuntime::EmitInitOfCatchParam(CodeGenFunction &CGF,
                                         llvm::Value *exn,
                                         const VarDecl *paramDecl) {

  Address paramAddr = CGF.GetAddrOfLocalVar(paramDecl);

  switch (paramDecl->getType().getQualifiers().getObjCLifetime()) {
  case Qualifiers::OCL_Strong:
    exn = CGF.EmitARCRetainNonBlock(exn);
    LLVM_FALLTHROUGH;

  case Qualifiers::OCL_None:
  case Qualifiers::OCL_ExplicitNone:
  case Qualifiers::OCL_Autoreleasing:
    CGF.Builder.CreateStore(exn, paramAddr);
    return;

  case Qualifiers::OCL_Weak:
    CGF.EmitARCInitWeak(paramAddr, exn);
    return;
  }
  llvm_unreachable("invalid ownership qualifier");
}

namespace {
  struct CallSyncExit final : EHScopeStack::Cleanup {
    llvm::FunctionCallee SyncExitFn;
    llvm::Value *SyncArg;
    CallSyncExit(llvm::FunctionCallee SyncExitFn, llvm::Value *SyncArg)
        : SyncExitFn(SyncExitFn), SyncArg(SyncArg) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitNounwindRuntimeCall(SyncExitFn, SyncArg);
    }
  };
}

void CGObjCRuntime::EmitAtSynchronizedStmt(CodeGenFunction &CGF,
                                           const ObjCAtSynchronizedStmt &S,
                                           llvm::FunctionCallee syncEnterFn,
                                           llvm::FunctionCallee syncExitFn) {
  CodeGenFunction::RunCleanupsScope cleanups(CGF);

  // Evaluate the lock operand.  This is guaranteed to dominate the
  // ARC release and lock-release cleanups.
  const Expr *lockExpr = S.getSynchExpr();
  llvm::Value *lock;
  if (CGF.getLangOpts().ObjCAutoRefCount) {
    lock = CGF.EmitARCRetainScalarExpr(lockExpr);
    lock = CGF.EmitObjCConsumeObject(lockExpr->getType(), lock);
  } else {
    lock = CGF.EmitScalarExpr(lockExpr);
  }
  lock = CGF.Builder.CreateBitCast(lock, CGF.VoidPtrTy);

  // Acquire the lock.
  CGF.Builder.CreateCall(syncEnterFn, lock)->setDoesNotThrow();

  // Register an all-paths cleanup to release the lock.
  CGF.EHStack.pushCleanup<CallSyncExit>(NormalAndEHCleanup, syncExitFn, lock);

  // Emit the body of the statement.
  CGF.EmitStmt(S.getSynchBody());
}

/// Compute the pointer-to-function type to which a message send
/// should be casted in order to correctly call the given method
/// with the given arguments.
///
/// \param method - may be null
/// \param resultType - the result type to use if there's no method
/// \param callArgs - the actual arguments, including implicit ones
CGObjCRuntime::MessageSendInfo
CGObjCRuntime::getMessageSendInfo(const ObjCMethodDecl *method,
                                  QualType resultType,
                                  CallArgList &callArgs) {
  // If there's a method, use information from that.
  if (method) {
    const CGFunctionInfo &signature =
      CGM.getTypes().arrangeObjCMessageSendSignature(method, callArgs[0].Ty);

    llvm::PointerType *signatureType =
      CGM.getTypes().GetFunctionType(signature)->getPointerTo();

    const CGFunctionInfo &signatureForCall =
      CGM.getTypes().arrangeCall(signature, callArgs);

    return MessageSendInfo(signatureForCall, signatureType);
  }

  // There's no method;  just use a default CC.
  const CGFunctionInfo &argsInfo =
    CGM.getTypes().arrangeUnprototypedObjCMessageSend(resultType, callArgs);

  // Derive the signature to call from that.
  llvm::PointerType *signatureType =
    CGM.getTypes().GetFunctionType(argsInfo)->getPointerTo();
  return MessageSendInfo(argsInfo, signatureType);
}

bool CGObjCRuntime::canMessageReceiverBeNull(CodeGenFunction &CGF,
                                             const ObjCMethodDecl *method,
                                             bool isSuper,
                                       const ObjCInterfaceDecl *classReceiver,
                                             llvm::Value *receiver) {
  // Super dispatch assumes that self is non-null; even the messenger
  // doesn't have a null check internally.
  if (isSuper)
    return false;

  // If this is a direct dispatch of a class method, check whether the class,
  // or anything in its hierarchy, was weak-linked.
  if (classReceiver && method && method->isClassMethod())
    return isWeakLinkedClass(classReceiver);

  // If we're emitting a method, and self is const (meaning just ARC, for now),
  // and the receiver is a load of self, then self is a valid object.
  if (auto curMethod =
               dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) {
    auto self = curMethod->getSelfDecl();
    if (self->getType().isConstQualified()) {
      if (auto LI = dyn_cast<llvm::LoadInst>(receiver->stripPointerCasts())) {
        llvm::Value *selfAddr = CGF.GetAddrOfLocalVar(self).getPointer();
        if (selfAddr == LI->getPointerOperand()) {
          return false;
        }
      }
    }
  }

  // Otherwise, assume it can be null.
  return true;
}

bool CGObjCRuntime::isWeakLinkedClass(const ObjCInterfaceDecl *ID) {
  do {
    if (ID->isWeakImported())
      return true;
  } while ((ID = ID->getSuperClass()));

  return false;
}

void CGObjCRuntime::destroyCalleeDestroyedArguments(CodeGenFunction &CGF,
                                              const ObjCMethodDecl *method,
                                              const CallArgList &callArgs) {
  CallArgList::const_iterator I = callArgs.begin();
  for (auto i = method->param_begin(), e = method->param_end();
         i != e; ++i, ++I) {
    const ParmVarDecl *param = (*i);
    if (param->hasAttr<NSConsumedAttr>()) {
      RValue RV = I->getRValue(CGF);
      assert(RV.isScalar() &&
             "NullReturnState::complete - arg not on object");
      CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime);
    } else {
      QualType QT = param->getType();
      auto *RT = QT->getAs<RecordType>();
      if (RT && RT->getDecl()->isParamDestroyedInCallee()) {
        RValue RV = I->getRValue(CGF);
        QualType::DestructionKind DtorKind = QT.isDestructedType();
        switch (DtorKind) {
        case QualType::DK_cxx_destructor:
          CGF.destroyCXXObject(CGF, RV.getAggregateAddress(), QT);
          break;
        case QualType::DK_nontrivial_c_struct:
          CGF.destroyNonTrivialCStruct(CGF, RV.getAggregateAddress(), QT);
          break;
        default:
          llvm_unreachable("unexpected dtor kind");
          break;
        }
      }
    }
  }
}

llvm::Constant *
clang::CodeGen::emitObjCProtocolObject(CodeGenModule &CGM,
                                       const ObjCProtocolDecl *protocol) {
  return CGM.getObjCRuntime().GetOrEmitProtocol(protocol);
}

std::string CGObjCRuntime::getSymbolNameForMethod(const ObjCMethodDecl *OMD,
                                                  bool includeCategoryName) {
  std::string buffer;
  llvm::raw_string_ostream out(buffer);
  CGM.getCXXABI().getMangleContext().mangleObjCMethodName(OMD, out,
                                       /*includePrefixByte=*/true,
                                       includeCategoryName);
  return buffer;
}