//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains instruction defs that are common to all hw codegen // targets. // //===----------------------------------------------------------------------===// class AddressSpacesImpl { int Flat = 0; int Global = 1; int Region = 2; int Local = 3; int Constant = 4; int Private = 5; int Constant32Bit = 6; } def AddrSpaces : AddressSpacesImpl; class AMDGPUInst <dag outs, dag ins, string asm = "", list<dag> pattern = []> : Instruction { field bit isRegisterLoad = 0; field bit isRegisterStore = 0; let Namespace = "AMDGPU"; let OutOperandList = outs; let InOperandList = ins; let AsmString = asm; let Pattern = pattern; let Itinerary = NullALU; // SoftFail is a field the disassembler can use to provide a way for // instructions to not match without killing the whole decode process. It is // mainly used for ARM, but Tablegen expects this field to exist or it fails // to build the decode table. field bits<96> SoftFail = 0; let DecoderNamespace = Namespace; let TSFlags{63} = isRegisterLoad; let TSFlags{62} = isRegisterStore; } class AMDGPUShaderInst <dag outs, dag ins, string asm = "", list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> { field bits<32> Inst = 0xffffffff; } //===---------------------------------------------------------------------===// // Return instruction //===---------------------------------------------------------------------===// class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { let Namespace = "AMDGPU"; dag OutOperandList = outs; dag InOperandList = ins; let Pattern = pattern; let AsmString = !strconcat(asmstr, "\n"); let isPseudo = 1; let Itinerary = NullALU; bit hasIEEEFlag = 0; bit hasZeroOpFlag = 0; let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let isCodeGenOnly = 1; } def TruePredicate : Predicate<"">; // FIXME: Tablegen should specially supports this def FalsePredicate : Predicate<"false">; // Add a predicate to the list if does not already exist to deduplicate it. class PredConcat<list<Predicate> lst, Predicate pred> { list<Predicate> ret = !listconcat([pred], !filter(item, lst, !ne(item, pred))); } // Add a Register to the list if does not already exist class RegAppend<list<Register> lst, Register reg> { list<Register> ret = !listconcat([reg], !filter(item, lst, !ne(item, reg))); } // Get the union of two Register lists class RegListUnion<list<Register> lstA, list<Register> lstB> { list<Register> ret = !foldl(lstA, lstB, temp, item, RegAppend<temp, item>.ret); } class PredicateControl { Predicate SubtargetPredicate = TruePredicate; Predicate AssemblerPredicate = TruePredicate; Predicate WaveSizePredicate = TruePredicate; list<Predicate> OtherPredicates = []; list<Predicate> Predicates = PredConcat< PredConcat<PredConcat<OtherPredicates, SubtargetPredicate>.ret, AssemblerPredicate>.ret, WaveSizePredicate>.ret; } class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl; let RecomputePerFunction = 1 in { def FP16Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; def FP32Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals()">; def FP64Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; def NoFP16Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; def NoFP32Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals()">; def NoFP64Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">; } def FMA : Predicate<"Subtarget->hasFMA()">; def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>; def u16ImmTarget : AsmOperandClass { let Name = "U16Imm"; let RenderMethod = "addImmOperands"; } def s16ImmTarget : AsmOperandClass { let Name = "S16Imm"; let RenderMethod = "addImmOperands"; } let OperandType = "OPERAND_IMMEDIATE" in { def u32imm : Operand<i32> { let PrintMethod = "printU32ImmOperand"; } def u16imm : Operand<i16> { let PrintMethod = "printU16ImmOperand"; let ParserMatchClass = u16ImmTarget; } def s16imm : Operand<i16> { let PrintMethod = "printU16ImmOperand"; let ParserMatchClass = s16ImmTarget; } def u8imm : Operand<i8> { let PrintMethod = "printU8ImmOperand"; } } // End OperandType = "OPERAND_IMMEDIATE" //===--------------------------------------------------------------------===// // Custom Operands //===--------------------------------------------------------------------===// def brtarget : Operand<OtherVT>; //===----------------------------------------------------------------------===// // Misc. PatFrags //===----------------------------------------------------------------------===// class HasOneUseUnaryOp<SDPatternOperator op> : PatFrag< (ops node:$src0), (op $src0), [{ return N->hasOneUse(); }]> { let GISelPredicateCode = [{ return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg()); }]; } class HasOneUseBinOp<SDPatternOperator op> : PatFrag< (ops node:$src0, node:$src1), (op $src0, $src1), [{ return N->hasOneUse(); }]> { let GISelPredicateCode = [{ return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg()); }]; } class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag< (ops node:$src0, node:$src1, node:$src2), (op $src0, $src1, $src2), [{ return N->hasOneUse(); }]> { let GISelPredicateCode = [{ return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg()); }]; } class is_canonicalized<SDPatternOperator op> : PatFrag< (ops node:$src0, node:$src1), (op $src0, $src1), [{ const SITargetLowering &Lowering = *static_cast<const SITargetLowering *>(getTargetLowering()); return Lowering.isCanonicalized(*CurDAG, N->getOperand(0)) && Lowering.isCanonicalized(*CurDAG, N->getOperand(1)); }]> { // TODO: Improve the Legalizer for g_build_vector in Global Isel to match this class let GISelPredicateCode = [{ const SITargetLowering *TLI = static_cast<const SITargetLowering *>( MF.getSubtarget().getTargetLowering()); return TLI->isCanonicalized(MI.getOperand(1).getReg(), const_cast<MachineFunction&>(MF)) && TLI->isCanonicalized(MI.getOperand(2).getReg(), const_cast<MachineFunction&>(MF)); }]; } let Properties = [SDNPCommutative, SDNPAssociative] in { def smax_oneuse : HasOneUseBinOp<smax>; def smin_oneuse : HasOneUseBinOp<smin>; def umax_oneuse : HasOneUseBinOp<umax>; def umin_oneuse : HasOneUseBinOp<umin>; def fminnum_oneuse : HasOneUseBinOp<fminnum>; def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>; def fminnum_ieee_oneuse : HasOneUseBinOp<fminnum_ieee>; def fmaxnum_ieee_oneuse : HasOneUseBinOp<fmaxnum_ieee>; def and_oneuse : HasOneUseBinOp<and>; def or_oneuse : HasOneUseBinOp<or>; def xor_oneuse : HasOneUseBinOp<xor>; } // Properties = [SDNPCommutative, SDNPAssociative] def not_oneuse : HasOneUseUnaryOp<not>; def add_oneuse : HasOneUseBinOp<add>; def sub_oneuse : HasOneUseBinOp<sub>; def srl_oneuse : HasOneUseBinOp<srl>; def shl_oneuse : HasOneUseBinOp<shl>; def select_oneuse : HasOneUseTernaryOp<select>; def AMDGPUmul_u24_oneuse : HasOneUseBinOp<AMDGPUmul_u24>; def AMDGPUmul_i24_oneuse : HasOneUseBinOp<AMDGPUmul_i24>; //===----------------------------------------------------------------------===// // PatFrags for shifts //===----------------------------------------------------------------------===// // Constrained shift PatFrags. def csh_mask_16 : PatFrag<(ops node:$src0), (and node:$src0, imm), [{ return isUnneededShiftMask(N, 4); }]> { let GISelPredicateCode = [{ return isUnneededShiftMask(MI, 4); }]; } def csh_mask_32 : PatFrag<(ops node:$src0), (and node:$src0, imm), [{ return isUnneededShiftMask(N, 5); }]> { let GISelPredicateCode = [{ return isUnneededShiftMask(MI, 5); }]; } def csh_mask_64 : PatFrag<(ops node:$src0), (and node:$src0, imm), [{ return isUnneededShiftMask(N, 6); }]> { let GISelPredicateCode = [{ return isUnneededShiftMask(MI, 6); }]; } foreach width = [16, 32, 64] in { defvar csh_mask = !cast<SDPatternOperator>("csh_mask_"#width); def cshl_#width : PatFrags<(ops node:$src0, node:$src1), [(shl node:$src0, node:$src1), (shl node:$src0, (csh_mask node:$src1))]>; defvar cshl = !cast<SDPatternOperator>("cshl_"#width); def cshl_#width#_oneuse : HasOneUseBinOp<cshl>; def clshl_rev_#width : PatFrag <(ops node:$src0, node:$src1), (cshl $src1, $src0)>; def csrl_#width : PatFrags<(ops node:$src0, node:$src1), [(srl node:$src0, node:$src1), (srl node:$src0, (csh_mask node:$src1))]>; defvar csrl = !cast<SDPatternOperator>("csrl_"#width); def csrl_#width#_oneuse : HasOneUseBinOp<csrl>; def clshr_rev_#width : PatFrag <(ops node:$src0, node:$src1), (csrl $src1, $src0)>; def csra_#width : PatFrags<(ops node:$src0, node:$src1), [(sra node:$src0, node:$src1), (sra node:$src0, (csh_mask node:$src1))]>; defvar csra = !cast<SDPatternOperator>("csra_"#width); def csra_#width#_oneuse : HasOneUseBinOp<csra>; def cashr_rev_#width : PatFrag <(ops node:$src0, node:$src1), (csra $src1, $src0)>; } // end foreach width def srl_16 : PatFrag< (ops node:$src0), (srl_oneuse node:$src0, (i32 16)) >; def hi_i16_elt : PatFrag< (ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0)))) >; def hi_f16_elt : PatLeaf< (vt), [{ if (N->getOpcode() != ISD::BITCAST) return false; SDValue Tmp = N->getOperand(0); if (Tmp.getOpcode() != ISD::SRL) return false; if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1)) return RHS->getZExtValue() == 16; return false; }]>; //===----------------------------------------------------------------------===// // PatLeafs for floating-point comparisons //===----------------------------------------------------------------------===// def COND_OEQ : PatFrags<(ops), [(OtherVT SETOEQ), (OtherVT SETEQ)]>; def COND_ONE : PatFrags<(ops), [(OtherVT SETONE), (OtherVT SETNE)]>; def COND_OGT : PatFrags<(ops), [(OtherVT SETOGT), (OtherVT SETGT)]>; def COND_OGE : PatFrags<(ops), [(OtherVT SETOGE), (OtherVT SETGE)]>; def COND_OLT : PatFrags<(ops), [(OtherVT SETOLT), (OtherVT SETLT)]>; def COND_OLE : PatFrags<(ops), [(OtherVT SETOLE), (OtherVT SETLE)]>; def COND_O : PatFrags<(ops), [(OtherVT SETO)]>; def COND_UO : PatFrags<(ops), [(OtherVT SETUO)]>; //===----------------------------------------------------------------------===// // PatLeafs for unsigned / unordered comparisons //===----------------------------------------------------------------------===// def COND_UEQ : PatFrag<(ops), (OtherVT SETUEQ)>; def COND_UNE : PatFrag<(ops), (OtherVT SETUNE)>; def COND_UGT : PatFrag<(ops), (OtherVT SETUGT)>; def COND_UGE : PatFrag<(ops), (OtherVT SETUGE)>; def COND_ULT : PatFrag<(ops), (OtherVT SETULT)>; def COND_ULE : PatFrag<(ops), (OtherVT SETULE)>; // XXX - For some reason R600 version is preferring to use unordered // for setne? def COND_UNE_NE : PatFrags<(ops), [(OtherVT SETUNE), (OtherVT SETNE)]>; //===----------------------------------------------------------------------===// // PatLeafs for signed comparisons //===----------------------------------------------------------------------===// def COND_SGT : PatFrag<(ops), (OtherVT SETGT)>; def COND_SGE : PatFrag<(ops), (OtherVT SETGE)>; def COND_SLT : PatFrag<(ops), (OtherVT SETLT)>; def COND_SLE : PatFrag<(ops), (OtherVT SETLE)>; //===----------------------------------------------------------------------===// // PatLeafs for integer equality //===----------------------------------------------------------------------===// def COND_EQ : PatFrags<(ops), [(OtherVT SETEQ), (OtherVT SETUEQ)]>; def COND_NE : PatFrags<(ops), [(OtherVT SETNE), (OtherVT SETUNE)]>; // FIXME: Should not need code predicate //def COND_NULL : PatLeaf<(OtherVT null_frag)>; def COND_NULL : PatLeaf < (cond), [{(void)N; return false;}] >; //===----------------------------------------------------------------------===// // PatLeafs for Texture Constants //===----------------------------------------------------------------------===// def TEX_ARRAY : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 9 || TType == 10 || TType == 16; }] >; def TEX_RECT : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 5; }] >; def TEX_SHADOW : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return (TType >= 6 && TType <= 8) || TType == 13; }] >; def TEX_SHADOW_ARRAY : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 11 || TType == 12 || TType == 17; }] >; //===----------------------------------------------------------------------===// // Load/Store Pattern Fragments //===----------------------------------------------------------------------===// def atomic_cmp_swap_glue : SDNode <"ISD::ATOMIC_CMP_SWAP", SDTAtomic3, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand, SDNPInGlue] >; class AddressSpaceList<list<int> AS> { list<int> AddrSpaces = AS; } class Aligned<int Bytes> { int MinAlignment = Bytes; } class StoreHi16<SDPatternOperator op, ValueType vt> : PatFrag < (ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr)> { let IsStore = 1; let MemoryVT = vt; } def LoadAddress_constant : AddressSpaceList<[ AddrSpaces.Constant, AddrSpaces.Constant32Bit ]>; def LoadAddress_global : AddressSpaceList<[ AddrSpaces.Global, AddrSpaces.Constant, AddrSpaces.Constant32Bit ]>; def StoreAddress_global : AddressSpaceList<[ AddrSpaces.Global ]>; def LoadAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, AddrSpaces.Global, AddrSpaces.Constant, AddrSpaces.Constant32Bit ]>; def StoreAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, AddrSpaces.Global ]>; def LoadAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; def StoreAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; def LoadAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; def StoreAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; def LoadAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; def StoreAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in { let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in { def load_#as : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = 1; let IsNonExtLoad = 1; } def extloadi8_#as : PatFrag<(ops node:$ptr), (extloadi8 node:$ptr)> { let IsLoad = 1; } def extloadi16_#as : PatFrag<(ops node:$ptr), (extloadi16 node:$ptr)> { let IsLoad = 1; } def sextloadi8_#as : PatFrag<(ops node:$ptr), (sextloadi8 node:$ptr)> { let IsLoad = 1; } def sextloadi16_#as : PatFrag<(ops node:$ptr), (sextloadi16 node:$ptr)> { let IsLoad = 1; } def zextloadi8_#as : PatFrag<(ops node:$ptr), (zextloadi8 node:$ptr)> { let IsLoad = 1; } def zextloadi16_#as : PatFrag<(ops node:$ptr), (zextloadi16 node:$ptr)> { let IsLoad = 1; } def atomic_load_8_#as : PatFrag<(ops node:$ptr), (atomic_load_8 node:$ptr)> { let IsAtomic = 1; let MemoryVT = i8; } def atomic_load_16_#as : PatFrag<(ops node:$ptr), (atomic_load_16 node:$ptr)> { let IsAtomic = 1; let MemoryVT = i16; } def atomic_load_32_#as : PatFrag<(ops node:$ptr), (atomic_load_32 node:$ptr)> { let IsAtomic = 1; let MemoryVT = i32; } def atomic_load_64_#as : PatFrag<(ops node:$ptr), (atomic_load_64 node:$ptr)> { let IsAtomic = 1; let MemoryVT = i64; } } // End let AddressSpaces } // End foreach as foreach as = [ "global", "flat", "local", "private", "region" ] in { let IsStore = 1, AddressSpaces = !cast<AddressSpaceList>("StoreAddress_"#as).AddrSpaces in { def store_#as : PatFrag<(ops node:$val, node:$ptr), (unindexedstore node:$val, node:$ptr)> { let IsTruncStore = 0; } // truncstore fragments. def truncstore_#as : PatFrag<(ops node:$val, node:$ptr), (unindexedstore node:$val, node:$ptr)> { let IsTruncStore = 1; } // TODO: We don't really need the truncstore here. We can use // unindexedstore with MemoryVT directly, which will save an // unnecessary check that the memory size is less than the value type // in the generated matcher table. def truncstorei8_#as : PatFrag<(ops node:$val, node:$ptr), (truncstorei8 node:$val, node:$ptr)>; def truncstorei16_#as : PatFrag<(ops node:$val, node:$ptr), (truncstorei16 node:$val, node:$ptr)>; def store_hi16_#as : StoreHi16 <truncstorei16, i16>; def truncstorei8_hi16_#as : StoreHi16<truncstorei8, i8>; def truncstorei16_hi16_#as : StoreHi16<truncstorei16, i16>; } // End let IsStore = 1, AddressSpaces = ... let IsAtomic = 1, AddressSpaces = !cast<AddressSpaceList>("StoreAddress_"#as).AddrSpaces in { def atomic_store_8_#as : PatFrag<(ops node:$ptr, node:$val), (atomic_store_8 node:$ptr, node:$val)>; def atomic_store_16_#as : PatFrag<(ops node:$ptr, node:$val), (atomic_store_16 node:$ptr, node:$val)>; def atomic_store_32_#as : PatFrag<(ops node:$ptr, node:$val), (atomic_store_32 node:$ptr, node:$val)>; def atomic_store_64_#as : PatFrag<(ops node:$ptr, node:$val), (atomic_store_64 node:$ptr, node:$val)>; } } // End foreach as multiclass noret_op { let HasNoUse = true in def "_noret" : PatFrag<(ops node:$ptr, node:$data), (!cast<SDPatternOperator>(NAME) node:$ptr, node:$data)>; } defm int_amdgcn_flat_atomic_fadd : noret_op; defm int_amdgcn_flat_atomic_fadd_v2bf16 : noret_op; defm int_amdgcn_flat_atomic_fmin : noret_op; defm int_amdgcn_flat_atomic_fmax : noret_op; defm int_amdgcn_global_atomic_fadd : noret_op; defm int_amdgcn_global_atomic_fadd_v2bf16 : noret_op; defm int_amdgcn_global_atomic_fmin : noret_op; defm int_amdgcn_global_atomic_fmax : noret_op; defm int_amdgcn_ds_fadd_v2bf16 : noret_op; multiclass noret_binary_atomic_op<SDNode atomic_op, bit IsInt = 1> { let HasNoUse = true in defm "_noret" : binary_atomic_op<atomic_op, IsInt>; } multiclass noret_ternary_atomic_op<SDNode atomic_op> { let HasNoUse = true in defm "_noret" : ternary_atomic_op<atomic_op>; } multiclass binary_atomic_op_all_as<SDNode atomic_op, bit IsInt = 1> { foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in { let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in { defm "_"#as : binary_atomic_op<atomic_op, IsInt>; defm "_"#as : noret_binary_atomic_op<atomic_op, IsInt>; } } } defm atomic_swap : binary_atomic_op_all_as<atomic_swap>; defm atomic_load_add : binary_atomic_op_all_as<atomic_load_add>; defm atomic_load_and : binary_atomic_op_all_as<atomic_load_and>; defm atomic_load_max : binary_atomic_op_all_as<atomic_load_max>; defm atomic_load_min : binary_atomic_op_all_as<atomic_load_min>; defm atomic_load_or : binary_atomic_op_all_as<atomic_load_or>; defm atomic_load_sub : binary_atomic_op_all_as<atomic_load_sub>; defm atomic_load_umax : binary_atomic_op_all_as<atomic_load_umax>; defm atomic_load_umin : binary_atomic_op_all_as<atomic_load_umin>; defm atomic_load_xor : binary_atomic_op_all_as<atomic_load_xor>; defm atomic_load_fadd : binary_atomic_op_all_as<atomic_load_fadd, 0>; let MemoryVT = v2f16 in defm atomic_load_fadd_v2f16 : binary_atomic_op_all_as<atomic_load_fadd, 0>; defm AMDGPUatomic_cmp_swap : binary_atomic_op_all_as<AMDGPUatomic_cmp_swap>; def load_align8_local : PatFrag<(ops node:$ptr), (load_local node:$ptr)>, Aligned<8> { let IsLoad = 1; } def load_align16_local : PatFrag<(ops node:$ptr), (load_local node:$ptr)>, Aligned<16> { let IsLoad = 1; } def store_align8_local: PatFrag<(ops node:$val, node:$ptr), (store_local node:$val, node:$ptr)>, Aligned<8> { let IsStore = 1; } def store_align16_local: PatFrag<(ops node:$val, node:$ptr), (store_local node:$val, node:$ptr)>, Aligned<16> { let IsStore = 1; } let AddressSpaces = StoreAddress_local.AddrSpaces in { defm atomic_cmp_swap_local : ternary_atomic_op<atomic_cmp_swap>; defm atomic_cmp_swap_local : noret_ternary_atomic_op<atomic_cmp_swap>; defm atomic_cmp_swap_local_m0 : noret_ternary_atomic_op<atomic_cmp_swap_glue>; defm atomic_cmp_swap_local_m0 : ternary_atomic_op<atomic_cmp_swap_glue>; } let AddressSpaces = StoreAddress_region.AddrSpaces in { defm atomic_cmp_swap_region : noret_ternary_atomic_op<atomic_cmp_swap>; defm atomic_cmp_swap_region_m0 : noret_ternary_atomic_op<atomic_cmp_swap_glue>; defm atomic_cmp_swap_region_m0 : ternary_atomic_op<atomic_cmp_swap_glue>; } //===----------------------------------------------------------------------===// // Misc Pattern Fragments //===----------------------------------------------------------------------===// class Constants { int TWO_PI = 0x40c90fdb; int PI = 0x40490fdb; int TWO_PI_INV = 0x3e22f983; int FP_4294966784 = 0x4f7ffffe; // 4294966784 = 4294967296 - 512 = 2^32 - 2^9 int FP16_ONE = 0x3C00; int FP16_NEG_ONE = 0xBC00; int FP32_ONE = 0x3f800000; int FP32_NEG_ONE = 0xbf800000; int FP64_ONE = 0x3ff0000000000000; int FP64_NEG_ONE = 0xbff0000000000000; } def CONST : Constants; def FP_ZERO : PatLeaf < (fpimm), [{return N->getValueAPF().isZero();}] >; def FP_ONE : PatLeaf < (fpimm), [{return N->isExactlyValue(1.0);}] >; def FP_HALF : PatLeaf < (fpimm), [{return N->isExactlyValue(0.5);}] >; /* Generic helper patterns for intrinsics */ /* -------------------------------------- */ class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul> : AMDGPUPat < (fpow f32:$src0, f32:$src1), (exp_ieee (mul f32:$src1, (log_ieee f32:$src0))) >; /* Other helper patterns */ /* --------------------- */ /* Extract element pattern */ class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx, SubRegIndex sub_reg> : AMDGPUPat< (sub_type (extractelt vec_type:$src, sub_idx)), (EXTRACT_SUBREG $src, sub_reg) >; /* Insert element pattern */ class Insert_Element <ValueType elem_type, ValueType vec_type, int sub_idx, SubRegIndex sub_reg> : AMDGPUPat < (insertelt vec_type:$vec, elem_type:$elem, sub_idx), (INSERT_SUBREG $vec, $elem, sub_reg) >; // XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer // can handle COPY instructions. // bitconvert pattern class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat < (dt (bitconvert (st rc:$src0))), (dt rc:$src0) >; // XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer // can handle COPY instructions. class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat < (vt (AMDGPUdwordaddr (vt rc:$addr))), (vt rc:$addr) >; // rotr pattern class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat < (rotr i32:$src0, i32:$src1), (BIT_ALIGN $src0, $src0, $src1) >; // Special conversion patterns def cvt_rpi_i32_f32 : PatFrag < (ops node:$src), (fp_to_sint (ffloor (fadd $src, FP_HALF))), [{ (void) N; return TM.Options.NoNaNsFPMath; }] >; def cvt_flr_i32_f32 : PatFrag < (ops node:$src), (fp_to_sint (ffloor $src)), [{ (void)N; return TM.Options.NoNaNsFPMath; }] >; let AddedComplexity = 2 in { class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2), !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), (Inst $src0, $src1, $src2)) >; class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2), !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), (Inst $src0, $src1, $src2)) >; } // AddedComplexity. class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat < (fdiv FP_ONE, vt:$src), (RcpInst $src) >; // Instructions which select to the same v_min_f* def fminnum_like : PatFrags<(ops node:$src0, node:$src1), [(fminnum_ieee node:$src0, node:$src1), (fminnum node:$src0, node:$src1)] >; // Instructions which select to the same v_max_f* def fmaxnum_like : PatFrags<(ops node:$src0, node:$src1), [(fmaxnum_ieee node:$src0, node:$src1), (fmaxnum node:$src0, node:$src1)] >; def fminnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), [(fminnum_ieee_oneuse node:$src0, node:$src1), (fminnum_oneuse node:$src0, node:$src1)] >; def fmaxnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), [(fmaxnum_ieee_oneuse node:$src0, node:$src1), (fmaxnum_oneuse node:$src0, node:$src1)] >; def any_fmad : PatFrags<(ops node:$src0, node:$src1, node:$src2), [(fmad node:$src0, node:$src1, node:$src2), (AMDGPUfmad_ftz node:$src0, node:$src1, node:$src2)] >; // FIXME: fsqrt should not select directly def any_amdgcn_sqrt : PatFrags<(ops node:$src0), [(fsqrt node:$src0), (int_amdgcn_sqrt node:$src0)] >;