; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -S -passes=instcombine | FileCheck %s declare i32 @llvm.ctpop.i32(i32) declare i64 @llvm.ctpop.i64(i64) declare i8 @llvm.ctpop.i8(i8) declare i7 @llvm.ctpop.i7(i7) declare i1 @llvm.ctpop.i1(i1) declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32>) declare void @llvm.assume(i1) declare void @use(i32) define i1 @test1(i32 %arg) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: ret i1 false ; %and = and i32 %arg, 15 %cnt = call i32 @llvm.ctpop.i32(i32 %and) %res = icmp eq i32 %cnt, 9 ret i1 %res } define i1 @test2(i32 %arg) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: ret i1 false ; %and = and i32 %arg, 1 %cnt = call i32 @llvm.ctpop.i32(i32 %and) %res = icmp eq i32 %cnt, 2 ret i1 %res } define i1 @test3(i32 %arg) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: [[ASSUME:%.*]] = icmp eq i32 [[ARG:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[ASSUME]]) ; CHECK-NEXT: ret i1 false ; ;; Use an assume to make all the bits known without triggering constant ;; folding. This is trying to hit a corner case where we have to avoid ;; taking the log of 0. %assume = icmp eq i32 %arg, 0 call void @llvm.assume(i1 %assume) %cnt = call i32 @llvm.ctpop.i32(i32 %arg) %res = icmp eq i32 %cnt, 2 ret i1 %res } ; Negative test for when we know nothing define i1 @test4(i8 %arg) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: [[CNT:%.*]] = call i8 @llvm.ctpop.i8(i8 [[ARG:%.*]]), !range [[RNG0:![0-9]+]] ; CHECK-NEXT: [[RES:%.*]] = icmp eq i8 [[CNT]], 2 ; CHECK-NEXT: ret i1 [[RES]] ; %cnt = call i8 @llvm.ctpop.i8(i8 %arg) %res = icmp eq i8 %cnt, 2 ret i1 %res } ; Test when the number of possible known bits isn't one less than a power of 2 ; and the compare value is greater but less than the next power of 2. define i1 @test5(i32 %arg) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: ret i1 false ; %and = and i32 %arg, 3 %cnt = call i32 @llvm.ctpop.i32(i32 %and) %res = icmp eq i32 %cnt, 3 ret i1 %res } ; Test when the number of possible known bits isn't one less than a power of 2 ; and the compare value is greater but less than the next power of 2. ; TODO: The icmp is unnecessary given the known bits of the input, but range ; metadata doesn't support vectors define <2 x i1> @test5vec(<2 x i32> %arg) { ; CHECK-LABEL: @test5vec( ; CHECK-NEXT: [[AND:%.*]] = and <2 x i32> [[ARG:%.*]], <i32 3, i32 3> ; CHECK-NEXT: [[CNT:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[AND]]) ; CHECK-NEXT: [[RES:%.*]] = icmp eq <2 x i32> [[CNT]], <i32 3, i32 3> ; CHECK-NEXT: ret <2 x i1> [[RES]] ; %and = and <2 x i32> %arg, <i32 3, i32 3> %cnt = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %and) %res = icmp eq <2 x i32> %cnt, <i32 3, i32 3> ret <2 x i1> %res } ; No intrinsic or range needed - ctpop of bool bit is the bit itself. define i1 @test6(i1 %arg) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: ret i1 [[ARG:%.*]] ; %cnt = call i1 @llvm.ctpop.i1(i1 %arg) ret i1 %cnt } define i8 @mask_one_bit(i8 %x) { ; CHECK-LABEL: @mask_one_bit( ; CHECK-NEXT: [[A:%.*]] = lshr i8 [[X:%.*]], 4 ; CHECK-NEXT: [[R:%.*]] = and i8 [[A]], 1 ; CHECK-NEXT: ret i8 [[R]] ; %a = and i8 %x, 16 %r = call i8 @llvm.ctpop.i8(i8 %a) ret i8 %r } define <2 x i32> @mask_one_bit_splat(<2 x i32> %x, <2 x i32>* %p) { ; CHECK-LABEL: @mask_one_bit_splat( ; CHECK-NEXT: [[A:%.*]] = and <2 x i32> [[X:%.*]], <i32 2048, i32 2048> ; CHECK-NEXT: store <2 x i32> [[A]], <2 x i32>* [[P:%.*]], align 8 ; CHECK-NEXT: [[R:%.*]] = lshr exact <2 x i32> [[A]], <i32 11, i32 11> ; CHECK-NEXT: ret <2 x i32> [[R]] ; %a = and <2 x i32> %x, <i32 2048, i32 2048> store <2 x i32> %a, <2 x i32>* %p %r = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %a) ret <2 x i32> %r } define i32 @_parity_of_not(i32 %x) { ; CHECK-LABEL: @_parity_of_not( ; CHECK-NEXT: [[TMP1:%.*]] = call i32 @llvm.ctpop.i32(i32 [[X:%.*]]), !range [[RNG1:![0-9]+]] ; CHECK-NEXT: [[R:%.*]] = and i32 [[TMP1]], 1 ; CHECK-NEXT: ret i32 [[R]] ; %neg = xor i32 %x, -1 %cnt = tail call i32 @llvm.ctpop.i32(i32 %neg) %r = and i32 %cnt, 1 ret i32 %r } ; Negative test - need even # of bits in type. define i7 @_parity_of_not_odd_type(i7 %x) { ; CHECK-LABEL: @_parity_of_not_odd_type( ; CHECK-NEXT: [[NEG:%.*]] = xor i7 [[X:%.*]], -1 ; CHECK-NEXT: [[CNT:%.*]] = tail call i7 @llvm.ctpop.i7(i7 [[NEG]]), !range [[RNG2:![0-9]+]] ; CHECK-NEXT: [[R:%.*]] = and i7 [[CNT]], 1 ; CHECK-NEXT: ret i7 [[R]] ; %neg = xor i7 %x, -1 %cnt = tail call i7 @llvm.ctpop.i7(i7 %neg) %r = and i7 %cnt, 1 ret i7 %r } define <2 x i32> @_parity_of_not_vec(<2 x i32> %x) { ; CHECK-LABEL: @_parity_of_not_vec( ; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[X:%.*]]) ; CHECK-NEXT: [[R:%.*]] = and <2 x i32> [[TMP1]], <i32 1, i32 1> ; CHECK-NEXT: ret <2 x i32> [[R]] ; %neg = xor <2 x i32> %x, <i32 -1 ,i32 -1> %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %neg) %r = and <2 x i32> %cnt, <i32 1 ,i32 1> ret <2 x i32> %r } define <2 x i32> @_parity_of_not_undef(<2 x i32> %x) { ; CHECK-LABEL: @_parity_of_not_undef( ; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[X:%.*]]) ; CHECK-NEXT: [[R:%.*]] = and <2 x i32> [[TMP1]], <i32 1, i32 1> ; CHECK-NEXT: ret <2 x i32> [[R]] ; %neg = xor <2 x i32> %x, <i32 undef ,i32 -1> %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %neg) %r = and <2 x i32> %cnt, <i32 1 ,i32 1> ret <2 x i32> %r } define <2 x i32> @_parity_of_not_undef2(<2 x i32> %x) { ; CHECK-LABEL: @_parity_of_not_undef2( ; CHECK-NEXT: [[NEG:%.*]] = xor <2 x i32> [[X:%.*]], <i32 -1, i32 -1> ; CHECK-NEXT: [[CNT:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[NEG]]) ; CHECK-NEXT: [[R:%.*]] = and <2 x i32> [[CNT]], <i32 1, i32 undef> ; CHECK-NEXT: ret <2 x i32> [[R]] ; %neg = xor <2 x i32> %x, <i32 -1 ,i32 -1> %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %neg) %r = and <2 x i32> %cnt, <i32 1 ,i32 undef> ret <2 x i32> %r } ; PR48999 define i32 @ctpop_add(i32 %a, i32 %b) { ; CHECK-LABEL: @ctpop_add( ; CHECK-NEXT: [[AND8:%.*]] = lshr i32 [[A:%.*]], 3 ; CHECK-NEXT: [[CTPOP1:%.*]] = and i32 [[AND8]], 1 ; CHECK-NEXT: [[AND2:%.*]] = lshr i32 [[B:%.*]], 1 ; CHECK-NEXT: [[CTPOP2:%.*]] = and i32 [[AND2]], 1 ; CHECK-NEXT: [[RES:%.*]] = add nuw nsw i32 [[CTPOP1]], [[CTPOP2]] ; CHECK-NEXT: ret i32 [[RES]] ; %and8 = and i32 %a, 8 %ctpop1 = tail call i32 @llvm.ctpop.i32(i32 %and8) %and2 = and i32 %b, 2 %ctpop2 = tail call i32 @llvm.ctpop.i32(i32 %and2) %res = add i32 %ctpop1, %ctpop2 ret i32 %res } define i32 @ctpop_add_no_common_bits(i32 %a, i32 %b) { ; CHECK-LABEL: @ctpop_add_no_common_bits( ; CHECK-NEXT: [[TMP1:%.*]] = call i32 @llvm.fshl.i32(i32 [[A:%.*]], i32 [[B:%.*]], i32 16) ; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.ctpop.i32(i32 [[TMP1]]), !range [[RNG1]] ; CHECK-NEXT: ret i32 [[TMP2]] ; %shl16 = shl i32 %a, 16 %ctpop1 = tail call i32 @llvm.ctpop.i32(i32 %shl16) %lshl16 = lshr i32 %b, 16 %ctpop2 = tail call i32 @llvm.ctpop.i32(i32 %lshl16) %res = add i32 %ctpop1, %ctpop2 ret i32 %res } define <2 x i32> @ctpop_add_no_common_bits_vec(<2 x i32> %a, <2 x i32> %b) { ; CHECK-LABEL: @ctpop_add_no_common_bits_vec( ; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[A:%.*]], <2 x i32> [[B:%.*]], <2 x i32> <i32 16, i32 16>) ; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[TMP1]]) ; CHECK-NEXT: ret <2 x i32> [[TMP2]] ; %shl16 = shl <2 x i32> %a, <i32 16, i32 16> %ctpop1 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %shl16) %lshl16 = lshr <2 x i32> %b, <i32 16, i32 16> %ctpop2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %lshl16) %res = add <2 x i32> %ctpop1, %ctpop2 ret <2 x i32> %res } define <2 x i32> @ctpop_add_no_common_bits_vec_use(<2 x i32> %a, <2 x i32> %b, <2 x i32>* %p) { ; CHECK-LABEL: @ctpop_add_no_common_bits_vec_use( ; CHECK-NEXT: [[SHL16:%.*]] = shl <2 x i32> [[A:%.*]], <i32 16, i32 16> ; CHECK-NEXT: [[CTPOP1:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[SHL16]]) ; CHECK-NEXT: [[LSHL16:%.*]] = lshr <2 x i32> [[B:%.*]], <i32 16, i32 16> ; CHECK-NEXT: [[CTPOP2:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[LSHL16]]) ; CHECK-NEXT: store <2 x i32> [[CTPOP2]], <2 x i32>* [[P:%.*]], align 8 ; CHECK-NEXT: [[RES:%.*]] = add nuw nsw <2 x i32> [[CTPOP1]], [[CTPOP2]] ; CHECK-NEXT: ret <2 x i32> [[RES]] ; %shl16 = shl <2 x i32> %a, <i32 16, i32 16> %ctpop1 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %shl16) %lshl16 = lshr <2 x i32> %b, <i32 16, i32 16> %ctpop2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %lshl16) store <2 x i32> %ctpop2, <2 x i32>* %p %res = add <2 x i32> %ctpop1, %ctpop2 ret <2 x i32> %res } define <2 x i32> @ctpop_add_no_common_bits_vec_use2(<2 x i32> %a, <2 x i32> %b, <2 x i32>* %p) { ; CHECK-LABEL: @ctpop_add_no_common_bits_vec_use2( ; CHECK-NEXT: [[SHL16:%.*]] = shl <2 x i32> [[A:%.*]], <i32 16, i32 16> ; CHECK-NEXT: [[CTPOP1:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[SHL16]]) ; CHECK-NEXT: store <2 x i32> [[CTPOP1]], <2 x i32>* [[P:%.*]], align 8 ; CHECK-NEXT: [[LSHL16:%.*]] = lshr <2 x i32> [[B:%.*]], <i32 16, i32 16> ; CHECK-NEXT: [[CTPOP2:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[LSHL16]]) ; CHECK-NEXT: [[RES:%.*]] = add nuw nsw <2 x i32> [[CTPOP1]], [[CTPOP2]] ; CHECK-NEXT: ret <2 x i32> [[RES]] ; %shl16 = shl <2 x i32> %a, <i32 16, i32 16> %ctpop1 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %shl16) store <2 x i32> %ctpop1, <2 x i32>* %p %lshl16 = lshr <2 x i32> %b, <i32 16, i32 16> %ctpop2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %lshl16) %res = add <2 x i32> %ctpop1, %ctpop2 ret <2 x i32> %res } define i8 @ctpop_rotate_left(i8 %a, i8 %amt) { ; CHECK-LABEL: @ctpop_rotate_left( ; CHECK-NEXT: [[RES:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]] ; CHECK-NEXT: ret i8 [[RES]] ; %rotl = tail call i8 @llvm.fshl.i8(i8 %a, i8 %a, i8 %amt) %res = tail call i8 @llvm.ctpop.i8(i8 %rotl) ret i8 %res } define i8 @ctpop_rotate_right(i8 %a, i8 %amt) { ; CHECK-LABEL: @ctpop_rotate_right( ; CHECK-NEXT: [[RES:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]] ; CHECK-NEXT: ret i8 [[RES]] ; %rotr = tail call i8 @llvm.fshr.i8(i8 %a, i8 %a, i8 %amt) %res = tail call i8 @llvm.ctpop.i8(i8 %rotr) ret i8 %res } declare i8 @llvm.fshl.i8(i8, i8, i8) declare i8 @llvm.fshr.i8(i8, i8, i8) define i8 @sub_ctpop(i8 %a) { ; CHECK-LABEL: @sub_ctpop( ; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[A:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = call i8 @llvm.ctpop.i8(i8 [[TMP1]]), !range [[RNG0]] ; CHECK-NEXT: ret i8 [[TMP2]] ; %cnt = tail call i8 @llvm.ctpop.i8(i8 %a) %res = sub i8 8, %cnt ret i8 %res } define i8 @sub_ctpop_wrong_cst(i8 %a) { ; CHECK-LABEL: @sub_ctpop_wrong_cst( ; CHECK-NEXT: [[CNT:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]] ; CHECK-NEXT: [[RES:%.*]] = sub nsw i8 5, [[CNT]] ; CHECK-NEXT: ret i8 [[RES]] ; %cnt = tail call i8 @llvm.ctpop.i8(i8 %a) %res = sub i8 5, %cnt ret i8 %res } define i8 @sub_ctpop_unknown(i8 %a, i8 %b) { ; CHECK-LABEL: @sub_ctpop_unknown( ; CHECK-NEXT: [[CNT:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]] ; CHECK-NEXT: [[RES:%.*]] = sub i8 [[B:%.*]], [[CNT]] ; CHECK-NEXT: ret i8 [[RES]] ; %cnt = tail call i8 @llvm.ctpop.i8(i8 %a) %res = sub i8 %b, %cnt ret i8 %res } define <2 x i32> @sub_ctpop_vec(<2 x i32> %a) { ; CHECK-LABEL: @sub_ctpop_vec( ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i32> [[A:%.*]], <i32 -1, i32 -1> ; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[TMP1]]) ; CHECK-NEXT: ret <2 x i32> [[TMP2]] ; %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %a) %res = sub <2 x i32> <i32 32, i32 32>, %cnt ret <2 x i32> %res } define <2 x i32> @sub_ctpop_vec_extra_use(<2 x i32> %a, <2 x i32>* %p) { ; CHECK-LABEL: @sub_ctpop_vec_extra_use( ; CHECK-NEXT: [[CNT:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[A:%.*]]) ; CHECK-NEXT: store <2 x i32> [[CNT]], <2 x i32>* [[P:%.*]], align 8 ; CHECK-NEXT: [[RES:%.*]] = sub nuw nsw <2 x i32> <i32 32, i32 32>, [[CNT]] ; CHECK-NEXT: ret <2 x i32> [[RES]] ; %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %a) store <2 x i32> %cnt, <2 x i32>* %p %res = sub <2 x i32> <i32 32, i32 32>, %cnt ret <2 x i32> %res } define i32 @zext_ctpop(i16 %x) { ; CHECK-LABEL: @zext_ctpop( ; CHECK-NEXT: [[TMP1:%.*]] = call i16 @llvm.ctpop.i16(i16 [[X:%.*]]), !range [[RNG3:![0-9]+]] ; CHECK-NEXT: [[P:%.*]] = zext i16 [[TMP1]] to i32 ; CHECK-NEXT: ret i32 [[P]] ; %z = zext i16 %x to i32 %p = call i32 @llvm.ctpop.i32(i32 %z) ret i32 %p } define <2 x i32> @zext_ctpop_vec(<2 x i7> %x) { ; CHECK-LABEL: @zext_ctpop_vec( ; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i7> @llvm.ctpop.v2i7(<2 x i7> [[X:%.*]]) ; CHECK-NEXT: [[P:%.*]] = zext <2 x i7> [[TMP1]] to <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[P]] ; %z = zext <2 x i7> %x to <2 x i32> %p = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %z) ret <2 x i32> %p } define i32 @zext_ctpop_extra_use(i16 %x, i32* %q) { ; CHECK-LABEL: @zext_ctpop_extra_use( ; CHECK-NEXT: [[Z:%.*]] = zext i16 [[X:%.*]] to i32 ; CHECK-NEXT: store i32 [[Z]], i32* [[Q:%.*]], align 4 ; CHECK-NEXT: [[P:%.*]] = call i32 @llvm.ctpop.i32(i32 [[Z]]), !range [[RNG4:![0-9]+]] ; CHECK-NEXT: ret i32 [[P]] ; %z = zext i16 %x to i32 store i32 %z, i32* %q %p = call i32 @llvm.ctpop.i32(i32 %z) ret i32 %p } define i32 @parity_xor(i32 %arg, i32 %arg1) { ; CHECK-LABEL: @parity_xor( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[ARG1:%.*]], [[ARG:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.ctpop.i32(i32 [[TMP1]]), !range [[RNG1]] ; CHECK-NEXT: [[I4:%.*]] = and i32 [[TMP2]], 1 ; CHECK-NEXT: ret i32 [[I4]] ; %i = tail call i32 @llvm.ctpop.i32(i32 %arg) %i2 = tail call i32 @llvm.ctpop.i32(i32 %arg1) %i3 = xor i32 %i2, %i %i4 = and i32 %i3, 1 ret i32 %i4 } define i32 @parity_xor_trunc(i64 %arg, i64 %arg1) { ; CHECK-LABEL: @parity_xor_trunc( ; CHECK-NEXT: [[TMP1:%.*]] = xor i64 [[ARG1:%.*]], [[ARG:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.ctpop.i64(i64 [[TMP1]]), !range [[RNG5:![0-9]+]] ; CHECK-NEXT: [[I4:%.*]] = trunc i64 [[TMP2]] to i32 ; CHECK-NEXT: [[I5:%.*]] = and i32 [[I4]], 1 ; CHECK-NEXT: ret i32 [[I5]] ; %i = tail call i64 @llvm.ctpop.i64(i64 %arg) %i2 = tail call i64 @llvm.ctpop.i64(i64 %arg1) %i3 = xor i64 %i2, %i %i4 = trunc i64 %i3 to i32 %i5 = and i32 %i4, 1 ret i32 %i5 } define <2 x i32> @parity_xor_vec(<2 x i32> %arg, <2 x i32> %arg1) { ; CHECK-LABEL: @parity_xor_vec( ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i32> [[ARG1:%.*]], [[ARG:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[TMP1]]) ; CHECK-NEXT: [[I4:%.*]] = and <2 x i32> [[TMP2]], <i32 1, i32 1> ; CHECK-NEXT: ret <2 x i32> [[I4]] ; %i = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %arg) %i2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %arg1) %i3 = xor <2 x i32> %i2, %i %i4 = and <2 x i32> %i3, <i32 1, i32 1> ret <2 x i32> %i4 } define i32 @parity_xor_wrong_cst(i32 %arg, i32 %arg1) { ; CHECK-LABEL: @parity_xor_wrong_cst( ; CHECK-NEXT: [[I:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG:%.*]]), !range [[RNG1]] ; CHECK-NEXT: [[I2:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG1:%.*]]), !range [[RNG1]] ; CHECK-NEXT: [[I3:%.*]] = xor i32 [[I2]], [[I]] ; CHECK-NEXT: [[I4:%.*]] = and i32 [[I3]], 3 ; CHECK-NEXT: ret i32 [[I4]] ; %i = tail call i32 @llvm.ctpop.i32(i32 %arg) %i2 = tail call i32 @llvm.ctpop.i32(i32 %arg1) %i3 = xor i32 %i2, %i %i4 = and i32 %i3, 3 ret i32 %i4 } define i32 @parity_xor_extra_use(i32 %arg, i32 %arg1) { ; CHECK-LABEL: @parity_xor_extra_use( ; CHECK-NEXT: [[I:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG:%.*]]), !range [[RNG1]] ; CHECK-NEXT: [[I2:%.*]] = and i32 [[I]], 1 ; CHECK-NEXT: tail call void @use(i32 [[I2]]) ; CHECK-NEXT: [[I3:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG1:%.*]]), !range [[RNG1]] ; CHECK-NEXT: [[I4:%.*]] = and i32 [[I3]], 1 ; CHECK-NEXT: [[I5:%.*]] = xor i32 [[I4]], [[I2]] ; CHECK-NEXT: ret i32 [[I5]] ; %i = tail call i32 @llvm.ctpop.i32(i32 %arg) %i2 = and i32 %i, 1 tail call void @use(i32 %i2) %i3 = tail call i32 @llvm.ctpop.i32(i32 %arg1) %i4 = and i32 %i3, 1 %i5 = xor i32 %i4, %i2 ret i32 %i5 } define i32 @parity_xor_extra_use2(i32 %arg, i32 %arg1) { ; CHECK-LABEL: @parity_xor_extra_use2( ; CHECK-NEXT: [[I:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG1:%.*]]), !range [[RNG1]] ; CHECK-NEXT: [[I2:%.*]] = and i32 [[I]], 1 ; CHECK-NEXT: tail call void @use(i32 [[I2]]) ; CHECK-NEXT: [[I3:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG:%.*]]), !range [[RNG1]] ; CHECK-NEXT: [[I4:%.*]] = and i32 [[I3]], 1 ; CHECK-NEXT: [[I5:%.*]] = xor i32 [[I2]], [[I4]] ; CHECK-NEXT: ret i32 [[I5]] ; %i = tail call i32 @llvm.ctpop.i32(i32 %arg1) %i2 = and i32 %i, 1 tail call void @use(i32 %i2) %i3 = tail call i32 @llvm.ctpop.i32(i32 %arg) %i4 = and i32 %i3, 1 %i5 = xor i32 %i2, %i4 ret i32 %i5 }