//===- RISCVInstrInfoVSDPatterns.td - RVV SDNode patterns --*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file contains the required infrastructure and SDNode patterns to /// support code generation for the standard 'V' (Vector) extension, version /// version 1.0. /// /// This file is included from and depends upon RISCVInstrInfoVPseudos.td /// /// Note: the patterns for RVV intrinsics are found in /// RISCVInstrInfoVPseudos.td. /// //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Helpers to define the SDNode patterns. //===----------------------------------------------------------------------===// def rvv_vnot : PatFrag<(ops node:$in), (xor node:$in, (riscv_vmset_vl (XLenVT srcvalue)))>; multiclass VPatUSLoadStoreSDNode<ValueType type, int log2sew, LMULInfo vlmul, OutPatFrag avl, VReg reg_class, int sew = !shl(1, log2sew)> { defvar load_instr = !cast<Instruction>("PseudoVLE"#sew#"_V_"#vlmul.MX); defvar store_instr = !cast<Instruction>("PseudoVSE"#sew#"_V_"#vlmul.MX); // Load def : Pat<(type (load GPR:$rs1)), (load_instr GPR:$rs1, avl, log2sew)>; // Store def : Pat<(store type:$rs2, GPR:$rs1), (store_instr reg_class:$rs2, GPR:$rs1, avl, log2sew)>; } multiclass VPatUSLoadStoreWholeVRSDNode<ValueType type, int log2sew, LMULInfo vlmul, VReg reg_class, int sew = !shl(1, log2sew)> { defvar load_instr = !cast<Instruction>("VL"#!substr(vlmul.MX, 1)#"RE"#sew#"_V"); defvar store_instr = !cast<Instruction>("VS"#!substr(vlmul.MX, 1)#"R_V"); // Load def : Pat<(type (load GPR:$rs1)), (load_instr GPR:$rs1)>; // Store def : Pat<(store type:$rs2, GPR:$rs1), (store_instr reg_class:$rs2, GPR:$rs1)>; } multiclass VPatUSLoadStoreMaskSDNode<MTypeInfo m> { defvar load_instr = !cast<Instruction>("PseudoVLM_V_"#m.BX); defvar store_instr = !cast<Instruction>("PseudoVSM_V_"#m.BX); // Load def : Pat<(m.Mask (load GPR:$rs1)), (load_instr GPR:$rs1, m.AVL, m.Log2SEW)>; // Store def : Pat<(store m.Mask:$rs2, GPR:$rs1), (store_instr VR:$rs2, GPR:$rs1, m.AVL, m.Log2SEW)>; } class VPatBinarySDNode_VV<SDNode vop, string instruction_name, ValueType result_type, ValueType op_type, int sew, LMULInfo vlmul, OutPatFrag avl, VReg op_reg_class> : Pat<(result_type (vop (op_type op_reg_class:$rs1), (op_type op_reg_class:$rs2))), (!cast<Instruction>(instruction_name#"_VV_"# vlmul.MX) op_reg_class:$rs1, op_reg_class:$rs2, avl, sew)>; class VPatBinarySDNode_XI<SDNode vop, string instruction_name, string suffix, ValueType result_type, ValueType vop_type, int sew, LMULInfo vlmul, OutPatFrag avl, VReg vop_reg_class, ComplexPattern SplatPatKind, DAGOperand xop_kind> : Pat<(result_type (vop (vop_type vop_reg_class:$rs1), (vop_type (SplatPatKind xop_kind:$rs2)))), (!cast<Instruction>(instruction_name#_#suffix#_# vlmul.MX) vop_reg_class:$rs1, xop_kind:$rs2, avl, sew)>; multiclass VPatBinarySDNode_VV_VX<SDNode vop, string instruction_name> { foreach vti = AllIntegerVectors in { def : VPatBinarySDNode_VV<vop, instruction_name, vti.Vector, vti.Vector, vti.Log2SEW, vti.LMul, vti.AVL, vti.RegClass>; def : VPatBinarySDNode_XI<vop, instruction_name, "VX", vti.Vector, vti.Vector, vti.Log2SEW, vti.LMul, vti.AVL, vti.RegClass, SplatPat, GPR>; } } multiclass VPatBinarySDNode_VV_VX_VI<SDNode vop, string instruction_name, Operand ImmType = simm5> : VPatBinarySDNode_VV_VX<vop, instruction_name> { foreach vti = AllIntegerVectors in { def : VPatBinarySDNode_XI<vop, instruction_name, "VI", vti.Vector, vti.Vector, vti.Log2SEW, vti.LMul, vti.AVL, vti.RegClass, !cast<ComplexPattern>(SplatPat#_#ImmType), ImmType>; } } class VPatBinarySDNode_VF<SDNode vop, string instruction_name, ValueType result_type, ValueType vop_type, ValueType xop_type, int sew, LMULInfo vlmul, OutPatFrag avl, VReg vop_reg_class, DAGOperand xop_kind> : Pat<(result_type (vop (vop_type vop_reg_class:$rs1), (vop_type (SplatFPOp xop_kind:$rs2)))), (!cast<Instruction>(instruction_name#"_"#vlmul.MX) vop_reg_class:$rs1, (xop_type xop_kind:$rs2), avl, sew)>; multiclass VPatBinaryFPSDNode_VV_VF<SDNode vop, string instruction_name> { foreach vti = AllFloatVectors in { def : VPatBinarySDNode_VV<vop, instruction_name, vti.Vector, vti.Vector, vti.Log2SEW, vti.LMul, vti.AVL, vti.RegClass>; def : VPatBinarySDNode_VF<vop, instruction_name#"_V"#vti.ScalarSuffix, vti.Vector, vti.Vector, vti.Scalar, vti.Log2SEW, vti.LMul, vti.AVL, vti.RegClass, vti.ScalarRegClass>; } } multiclass VPatBinaryFPSDNode_R_VF<SDNode vop, string instruction_name> { foreach fvti = AllFloatVectors in def : Pat<(fvti.Vector (vop (fvti.Vector (SplatFPOp fvti.Scalar:$rs2)), (fvti.Vector fvti.RegClass:$rs1))), (!cast<Instruction>(instruction_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX) fvti.RegClass:$rs1, (fvti.Scalar fvti.ScalarRegClass:$rs2), fvti.AVL, fvti.Log2SEW)>; } multiclass VPatIntegerSetCCSDNode_VV<string instruction_name, CondCode cc> { foreach vti = AllIntegerVectors in { defvar instruction = !cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX); def : Pat<(vti.Mask (setcc (vti.Vector vti.RegClass:$rs1), (vti.Vector vti.RegClass:$rs2), cc)), (instruction vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW)>; } } multiclass VPatIntegerSetCCSDNode_VV_Swappable<string instruction_name, CondCode cc, CondCode invcc> : VPatIntegerSetCCSDNode_VV<instruction_name, cc> { foreach vti = AllIntegerVectors in { defvar instruction = !cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX); def : Pat<(vti.Mask (setcc (vti.Vector vti.RegClass:$rs2), (vti.Vector vti.RegClass:$rs1), invcc)), (instruction vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW)>; } } multiclass VPatIntegerSetCCSDNode_XI< string instruction_name, CondCode cc, string kind, ComplexPattern SplatPatKind, DAGOperand xop_kind> { foreach vti = AllIntegerVectors in { defvar instruction = !cast<Instruction>(instruction_name#_#kind#_#vti.LMul.MX); def : Pat<(vti.Mask (setcc (vti.Vector vti.RegClass:$rs1), (vti.Vector (SplatPatKind xop_kind:$rs2)), cc)), (instruction vti.RegClass:$rs1, xop_kind:$rs2, vti.AVL, vti.Log2SEW)>; } } multiclass VPatIntegerSetCCSDNode_XI_Swappable<string instruction_name, CondCode cc, CondCode invcc, string kind, ComplexPattern SplatPatKind, DAGOperand xop_kind> : VPatIntegerSetCCSDNode_XI<instruction_name, cc, kind, SplatPatKind, xop_kind> { foreach vti = AllIntegerVectors in { defvar instruction = !cast<Instruction>(instruction_name#_#kind#_#vti.LMul.MX); def : Pat<(vti.Mask (setcc (vti.Vector vti.RegClass:$rs1), (vti.Vector (SplatPatKind xop_kind:$rs2)), cc)), (instruction vti.RegClass:$rs1, xop_kind:$rs2, vti.AVL, vti.Log2SEW)>; def : Pat<(vti.Mask (setcc (vti.Vector (SplatPatKind xop_kind:$rs2)), (vti.Vector vti.RegClass:$rs1), invcc)), (instruction vti.RegClass:$rs1, xop_kind:$rs2, vti.AVL, vti.Log2SEW)>; } } multiclass VPatIntegerSetCCSDNode_VX_Swappable<string instruction_name, CondCode cc, CondCode invcc> : VPatIntegerSetCCSDNode_XI_Swappable<instruction_name, cc, invcc, "VX", SplatPat, GPR>; multiclass VPatIntegerSetCCSDNode_VI<string instruction_name, CondCode cc> : VPatIntegerSetCCSDNode_XI<instruction_name, cc, "VI", SplatPat_simm5, simm5>; multiclass VPatIntegerSetCCSDNode_VIPlus1<string instruction_name, CondCode cc, ComplexPattern splatpat_kind> { foreach vti = AllIntegerVectors in { defvar instruction = !cast<Instruction>(instruction_name#"_VI_"#vti.LMul.MX); def : Pat<(vti.Mask (setcc (vti.Vector vti.RegClass:$rs1), (vti.Vector (splatpat_kind simm5:$rs2)), cc)), (instruction vti.RegClass:$rs1, (DecImm simm5:$rs2), vti.AVL, vti.Log2SEW)>; } } multiclass VPatFPSetCCSDNode_VV_VF_FV<CondCode cc, string inst_name, string swapped_op_inst_name> { foreach fvti = AllFloatVectors in { def : Pat<(fvti.Mask (setcc (fvti.Vector fvti.RegClass:$rs1), (fvti.Vector fvti.RegClass:$rs2), cc)), (!cast<Instruction>(inst_name#"_VV_"#fvti.LMul.MX) fvti.RegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW)>; def : Pat<(fvti.Mask (setcc (fvti.Vector fvti.RegClass:$rs1), (SplatFPOp fvti.ScalarRegClass:$rs2), cc)), (!cast<Instruction>(inst_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX) fvti.RegClass:$rs1, fvti.ScalarRegClass:$rs2, fvti.AVL, fvti.Log2SEW)>; def : Pat<(fvti.Mask (setcc (SplatFPOp fvti.ScalarRegClass:$rs2), (fvti.Vector fvti.RegClass:$rs1), cc)), (!cast<Instruction>(swapped_op_inst_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX) fvti.RegClass:$rs1, fvti.ScalarRegClass:$rs2, fvti.AVL, fvti.Log2SEW)>; } } multiclass VPatExtendSDNode_V<list<SDNode> ops, string inst_name, string suffix, list <VTypeInfoToFraction> fraction_list> { foreach vtiTofti = fraction_list in { defvar vti = vtiTofti.Vti; defvar fti = vtiTofti.Fti; foreach op = ops in def : Pat<(vti.Vector (op (fti.Vector fti.RegClass:$rs2))), (!cast<Instruction>(inst_name#"_"#suffix#"_"#vti.LMul.MX) fti.RegClass:$rs2, fti.AVL, vti.Log2SEW)>; } } multiclass VPatConvertI2FPSDNode_V<SDNode vop, string instruction_name> { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo<fvti>.Vti; def : Pat<(fvti.Vector (vop (ivti.Vector ivti.RegClass:$rs1))), (!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX) ivti.RegClass:$rs1, fvti.AVL, fvti.Log2SEW)>; } } multiclass VPatConvertFP2ISDNode_V<SDNode vop, string instruction_name> { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo<fvti>.Vti; def : Pat<(ivti.Vector (vop (fvti.Vector fvti.RegClass:$rs1))), (!cast<Instruction>(instruction_name#"_"#ivti.LMul.MX) fvti.RegClass:$rs1, ivti.AVL, ivti.Log2SEW)>; } } multiclass VPatWConvertI2FPSDNode_V<SDNode vop, string instruction_name> { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar ivti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; def : Pat<(fwti.Vector (vop (ivti.Vector ivti.RegClass:$rs1))), (!cast<Instruction>(instruction_name#"_"#ivti.LMul.MX) ivti.RegClass:$rs1, ivti.AVL, ivti.Log2SEW)>; } } multiclass VPatWConvertFP2ISDNode_V<SDNode vop, string instruction_name> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti; def : Pat<(iwti.Vector (vop (fvti.Vector fvti.RegClass:$rs1))), (!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX) fvti.RegClass:$rs1, fvti.AVL, fvti.Log2SEW)>; } } multiclass VPatNConvertI2FPSDNode_V<SDNode vop, string instruction_name> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti; def : Pat<(fvti.Vector (vop (iwti.Vector iwti.RegClass:$rs1))), (!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX) iwti.RegClass:$rs1, fvti.AVL, fvti.Log2SEW)>; } } multiclass VPatNConvertFP2ISDNode_V<SDNode vop, string instruction_name> { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; def : Pat<(vti.Vector (vop (fwti.Vector fwti.RegClass:$rs1))), (!cast<Instruction>(instruction_name#"_"#vti.LMul.MX) fwti.RegClass:$rs1, vti.AVL, vti.Log2SEW)>; } } multiclass VPatWidenBinarySDNode_VV_VX<SDNode op, PatFrags extop1, PatFrags extop2, string instruction_name> { foreach vtiToWti = AllWidenableIntVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(op (wti.Vector (extop1 (vti.Vector vti.RegClass:$rs2))), (wti.Vector (extop2 (vti.Vector vti.RegClass:$rs1)))), (!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX) vti.RegClass:$rs2, vti.RegClass:$rs1, vti.AVL, vti.Log2SEW)>; def : Pat<(op (wti.Vector (extop1 (vti.Vector vti.RegClass:$rs2))), (wti.Vector (extop2 (vti.Vector (SplatPat GPR:$rs1))))), (!cast<Instruction>(instruction_name#"_VX_"#vti.LMul.MX) vti.RegClass:$rs2, GPR:$rs1, vti.AVL, vti.Log2SEW)>; } } multiclass VPatWidenBinarySDNode_WV_WX<SDNode op, PatFrags extop, string instruction_name> { foreach vtiToWti = AllWidenableIntVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(op (wti.Vector wti.RegClass:$rs2), (wti.Vector (extop (vti.Vector vti.RegClass:$rs1)))), (!cast<Instruction>(instruction_name#"_WV_"#vti.LMul.MX) wti.RegClass:$rs2, vti.RegClass:$rs1, vti.AVL, vti.Log2SEW)>; def : Pat<(op (wti.Vector wti.RegClass:$rs2), (wti.Vector (extop (vti.Vector (SplatPat GPR:$rs1))))), (!cast<Instruction>(instruction_name#"_WX_"#vti.LMul.MX) wti.RegClass:$rs2, GPR:$rs1, vti.AVL, vti.Log2SEW)>; } } multiclass VPatWidenBinarySDNode_VV_VX_WV_WX<SDNode op, PatFrags extop, string instruction_name> { defm : VPatWidenBinarySDNode_VV_VX<op, extop, extop, instruction_name>; defm : VPatWidenBinarySDNode_WV_WX<op, extop, instruction_name>; } multiclass VPatWidenMulAddSDNode_VV<PatFrags extop1, PatFrags extop2, string instruction_name> { foreach vtiToWti = AllWidenableIntVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat< (add (wti.Vector wti.RegClass:$rd), (mul_oneuse (wti.Vector (extop1 (vti.Vector vti.RegClass:$rs1))), (wti.Vector (extop2 (vti.Vector vti.RegClass:$rs2))))), (!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX) wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC )>; } } multiclass VPatWidenMulAddSDNode_VX<PatFrags extop1, PatFrags extop2, string instruction_name> { foreach vtiToWti = AllWidenableIntVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat< (add (wti.Vector wti.RegClass:$rd), (mul_oneuse (wti.Vector (extop1 (vti.Vector (SplatPat GPR:$rs1)))), (wti.Vector (extop2 (vti.Vector vti.RegClass:$rs2))))), (!cast<Instruction>(instruction_name#"_VX_"#vti.LMul.MX) wti.RegClass:$rd, GPR:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC )>; } } multiclass VPatWidenBinaryFPSDNode_VV_VF<SDNode op, string instruction_name> { foreach vtiToWti = AllWidenableFloatVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(op (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue))), (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue)))), (!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX) vti.RegClass:$rs2, vti.RegClass:$rs1, vti.AVL, vti.Log2SEW)>; def : Pat<(op (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue))), (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue)))), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) vti.RegClass:$rs2, vti.ScalarRegClass:$rs1, vti.AVL, vti.Log2SEW)>; def : Pat<(op (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue))), (wti.Vector (SplatFPOp (fpext_oneuse vti.ScalarRegClass:$rs1)))), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) vti.RegClass:$rs2, vti.ScalarRegClass:$rs1, vti.AVL, vti.Log2SEW)>; } } multiclass VPatWidenBinaryFPSDNode_WV_WF<SDNode op, string instruction_name> { foreach vtiToWti = AllWidenableFloatVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(op (wti.Vector wti.RegClass:$rs2), (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue)))), (!cast<Instruction>(instruction_name#"_WV_"#vti.LMul.MX) wti.RegClass:$rs2, vti.RegClass:$rs1, vti.AVL, vti.Log2SEW)>; def : Pat<(op (wti.Vector wti.RegClass:$rs2), (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue)))), (!cast<Instruction>(instruction_name#"_W"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rs2, vti.ScalarRegClass:$rs1, vti.AVL, vti.Log2SEW)>; def : Pat<(op (wti.Vector wti.RegClass:$rs2), (wti.Vector (SplatFPOp (fpext_oneuse vti.ScalarRegClass:$rs1)))), (!cast<Instruction>(instruction_name#"_W"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rs2, vti.ScalarRegClass:$rs1, vti.AVL, vti.Log2SEW)>; } } multiclass VPatWidenBinaryFPSDNode_VV_VF_WV_WF<SDNode op, string instruction_name> { defm : VPatWidenBinaryFPSDNode_VV_VF<op, instruction_name>; defm : VPatWidenBinaryFPSDNode_WV_WF<op, instruction_name>; } multiclass VPatWidenFPMulAccSDNode_VV_VF<string instruction_name> { foreach vtiToWti = AllWidenableFloatVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(fma (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue))), (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue))), (wti.Vector wti.RegClass:$rd)), (!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX) wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fma (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue))), (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue))), (wti.Vector wti.RegClass:$rd)), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; } } multiclass VPatWidenFPNegMulAccSDNode_VV_VF<string instruction_name> { foreach vtiToWti = AllWidenableFloatVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(fma (fneg (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue)))), (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)), (fneg wti.RegClass:$rd)), (!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX) wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fma (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue)), (fneg (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)))), (fneg wti.RegClass:$rd)), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fma (fneg (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue)))), (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)), (fneg wti.RegClass:$rd)), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; } } multiclass VPatWidenFPMulSacSDNode_VV_VF<string instruction_name> { foreach vtiToWti = AllWidenableFloatVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(fma (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue))), (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)), (fneg wti.RegClass:$rd)), (!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX) wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fma (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue))), (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)), (fneg wti.RegClass:$rd)), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; } } multiclass VPatWidenFPNegMulSacSDNode_VV_VF<string instruction_name> { foreach vtiToWti = AllWidenableFloatVectors in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; def : Pat<(fma (fneg (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue)))), (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)), wti.RegClass:$rd), (!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX) wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fma (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue))), (fneg (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)))), wti.RegClass:$rd), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fma (fneg (wti.Vector (riscv_fpextend_vl_oneuse (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)), (vti.Mask true_mask), (XLenVT srcvalue)))), (riscv_fpextend_vl_oneuse (vti.Vector vti.RegClass:$rs2), (vti.Mask true_mask), (XLenVT srcvalue)), wti.RegClass:$rd), (!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; } } multiclass VPatMultiplyAddSDNode_VV_VX<SDNode op, string instruction_name> { foreach vti = AllIntegerVectors in { defvar suffix = vti.LMul.MX; // NOTE: We choose VMADD because it has the most commuting freedom. So it // works best with how TwoAddressInstructionPass tries commuting. def : Pat<(vti.Vector (op vti.RegClass:$rs2, (mul_oneuse vti.RegClass:$rs1, vti.RegClass:$rd))), (!cast<Instruction>(instruction_name#"_VV_"# suffix) vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; // The choice of VMADD here is arbitrary, vmadd.vx and vmacc.vx are equally // commutable. def : Pat<(vti.Vector (op vti.RegClass:$rs2, (mul_oneuse (SplatPat XLenVT:$rs1), vti.RegClass:$rd))), (!cast<Instruction>(instruction_name#"_VX_" # suffix) vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW, TAIL_AGNOSTIC)>; } } //===----------------------------------------------------------------------===// // Patterns. //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { // 7.4. Vector Unit-Stride Instructions foreach vti = !listconcat(FractionalGroupIntegerVectors, FractionalGroupFloatVectors) in defm : VPatUSLoadStoreSDNode<vti.Vector, vti.Log2SEW, vti.LMul, vti.AVL, vti.RegClass>; foreach vti = [VI8M1, VI16M1, VI32M1, VI64M1, VF16M1, VF32M1, VF64M1] in defm : VPatUSLoadStoreWholeVRSDNode<vti.Vector, vti.Log2SEW, vti.LMul, vti.RegClass>; foreach vti = !listconcat(GroupIntegerVectors, GroupFloatVectors) in defm : VPatUSLoadStoreWholeVRSDNode<vti.Vector, vti.Log2SEW, vti.LMul, vti.RegClass>; foreach mti = AllMasks in defm : VPatUSLoadStoreMaskSDNode<mti>; // 12.1. Vector Single-Width Integer Add and Subtract defm : VPatBinarySDNode_VV_VX_VI<add, "PseudoVADD">; defm : VPatBinarySDNode_VV_VX<sub, "PseudoVSUB">; // Handle VRSUB specially since it's the only integer binary op with reversed // pattern operands foreach vti = AllIntegerVectors in { def : Pat<(sub (vti.Vector (SplatPat GPR:$rs2)), (vti.Vector vti.RegClass:$rs1)), (!cast<Instruction>("PseudoVRSUB_VX_"# vti.LMul.MX) vti.RegClass:$rs1, GPR:$rs2, vti.AVL, vti.Log2SEW)>; def : Pat<(sub (vti.Vector (SplatPat_simm5 simm5:$rs2)), (vti.Vector vti.RegClass:$rs1)), (!cast<Instruction>("PseudoVRSUB_VI_"# vti.LMul.MX) vti.RegClass:$rs1, simm5:$rs2, vti.AVL, vti.Log2SEW)>; } // 12.2. Vector Widening Integer Add and Subtract defm : VPatWidenBinarySDNode_VV_VX_WV_WX<add, sext_oneuse, "PseudoVWADD">; defm : VPatWidenBinarySDNode_VV_VX_WV_WX<add, zext_oneuse, "PseudoVWADDU">; defm : VPatWidenBinarySDNode_VV_VX_WV_WX<add, anyext_oneuse, "PseudoVWADDU">; defm : VPatWidenBinarySDNode_VV_VX_WV_WX<sub, sext_oneuse, "PseudoVWSUB">; defm : VPatWidenBinarySDNode_VV_VX_WV_WX<sub, zext_oneuse, "PseudoVWSUBU">; defm : VPatWidenBinarySDNode_VV_VX_WV_WX<sub, anyext_oneuse, "PseudoVWSUBU">; // 12.3. Vector Integer Extension defm : VPatExtendSDNode_V<[zext, anyext], "PseudoVZEXT", "VF2", AllFractionableVF2IntVectors>; defm : VPatExtendSDNode_V<[sext], "PseudoVSEXT", "VF2", AllFractionableVF2IntVectors>; defm : VPatExtendSDNode_V<[zext, anyext], "PseudoVZEXT", "VF4", AllFractionableVF4IntVectors>; defm : VPatExtendSDNode_V<[sext], "PseudoVSEXT", "VF4", AllFractionableVF4IntVectors>; defm : VPatExtendSDNode_V<[zext, anyext], "PseudoVZEXT", "VF8", AllFractionableVF8IntVectors>; defm : VPatExtendSDNode_V<[sext], "PseudoVSEXT", "VF8", AllFractionableVF8IntVectors>; // 12.5. Vector Bitwise Logical Instructions defm : VPatBinarySDNode_VV_VX_VI<and, "PseudoVAND">; defm : VPatBinarySDNode_VV_VX_VI<or, "PseudoVOR">; defm : VPatBinarySDNode_VV_VX_VI<xor, "PseudoVXOR">; // 12.6. Vector Single-Width Bit Shift Instructions defm : VPatBinarySDNode_VV_VX_VI<shl, "PseudoVSLL", uimm5>; defm : VPatBinarySDNode_VV_VX_VI<srl, "PseudoVSRL", uimm5>; defm : VPatBinarySDNode_VV_VX_VI<sra, "PseudoVSRA", uimm5>; foreach vti = AllIntegerVectors in { // Emit shift by 1 as an add since it might be faster. def : Pat<(shl (vti.Vector vti.RegClass:$rs1), (vti.Vector (riscv_vmv_v_x_vl (vti.Vector undef), 1, (XLenVT srcvalue)))), (!cast<Instruction>("PseudoVADD_VV_"# vti.LMul.MX) vti.RegClass:$rs1, vti.RegClass:$rs1, vti.AVL, vti.Log2SEW)>; } // 12.8. Vector Integer Comparison Instructions defm : VPatIntegerSetCCSDNode_VV<"PseudoVMSEQ", SETEQ>; defm : VPatIntegerSetCCSDNode_VV<"PseudoVMSNE", SETNE>; defm : VPatIntegerSetCCSDNode_VV_Swappable<"PseudoVMSLT", SETLT, SETGT>; defm : VPatIntegerSetCCSDNode_VV_Swappable<"PseudoVMSLTU", SETULT, SETUGT>; defm : VPatIntegerSetCCSDNode_VV_Swappable<"PseudoVMSLE", SETLE, SETGE>; defm : VPatIntegerSetCCSDNode_VV_Swappable<"PseudoVMSLEU", SETULE, SETUGE>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSEQ", SETEQ, SETEQ>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSNE", SETNE, SETNE>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSLT", SETLT, SETGT>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSLTU", SETULT, SETUGT>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSLE", SETLE, SETGE>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSLEU", SETULE, SETUGE>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSGT", SETGT, SETLT>; defm : VPatIntegerSetCCSDNode_VX_Swappable<"PseudoVMSGTU", SETUGT, SETULT>; // There is no VMSGE(U)_VX instruction defm : VPatIntegerSetCCSDNode_VI<"PseudoVMSEQ", SETEQ>; defm : VPatIntegerSetCCSDNode_VI<"PseudoVMSNE", SETNE>; defm : VPatIntegerSetCCSDNode_VI<"PseudoVMSLE", SETLE>; defm : VPatIntegerSetCCSDNode_VI<"PseudoVMSLEU", SETULE>; defm : VPatIntegerSetCCSDNode_VI<"PseudoVMSGT", SETGT>; defm : VPatIntegerSetCCSDNode_VI<"PseudoVMSGTU", SETUGT>; defm : VPatIntegerSetCCSDNode_VIPlus1<"PseudoVMSLE", SETLT, SplatPat_simm5_plus1_nonzero>; defm : VPatIntegerSetCCSDNode_VIPlus1<"PseudoVMSLEU", SETULT, SplatPat_simm5_plus1_nonzero>; defm : VPatIntegerSetCCSDNode_VIPlus1<"PseudoVMSGT", SETGE, SplatPat_simm5_plus1>; defm : VPatIntegerSetCCSDNode_VIPlus1<"PseudoVMSGTU", SETUGE, SplatPat_simm5_plus1_nonzero>; // 12.9. Vector Integer Min/Max Instructions defm : VPatBinarySDNode_VV_VX<umin, "PseudoVMINU">; defm : VPatBinarySDNode_VV_VX<smin, "PseudoVMIN">; defm : VPatBinarySDNode_VV_VX<umax, "PseudoVMAXU">; defm : VPatBinarySDNode_VV_VX<smax, "PseudoVMAX">; // 12.10. Vector Single-Width Integer Multiply Instructions defm : VPatBinarySDNode_VV_VX<mul, "PseudoVMUL">; defm : VPatBinarySDNode_VV_VX<mulhs, "PseudoVMULH">; defm : VPatBinarySDNode_VV_VX<mulhu, "PseudoVMULHU">; // 12.11. Vector Integer Divide Instructions defm : VPatBinarySDNode_VV_VX<udiv, "PseudoVDIVU">; defm : VPatBinarySDNode_VV_VX<sdiv, "PseudoVDIV">; defm : VPatBinarySDNode_VV_VX<urem, "PseudoVREMU">; defm : VPatBinarySDNode_VV_VX<srem, "PseudoVREM">; // 12.12. Vector Widening Integer Multiply Instructions defm : VPatWidenBinarySDNode_VV_VX<mul, sext_oneuse, sext_oneuse, "PseudoVWMUL">; defm : VPatWidenBinarySDNode_VV_VX<mul, zext_oneuse, zext_oneuse, "PseudoVWMULU">; defm : VPatWidenBinarySDNode_VV_VX<mul, anyext_oneuse, anyext_oneuse, "PseudoVWMULU">; defm : VPatWidenBinarySDNode_VV_VX<mul, zext_oneuse, anyext_oneuse, "PseudoVWMULU">; defm : VPatWidenBinarySDNode_VV_VX<mul, sext_oneuse, zext_oneuse, "PseudoVWMULSU">; defm : VPatWidenBinarySDNode_VV_VX<mul, sext_oneuse, anyext_oneuse, "PseudoVWMULSU">; // 12.13 Vector Single-Width Integer Multiply-Add Instructions. defm : VPatMultiplyAddSDNode_VV_VX<add, "PseudoVMADD">; defm : VPatMultiplyAddSDNode_VV_VX<sub, "PseudoVNMSUB">; // 12.14 Vector Widening Integer Multiply-Add Instructions defm : VPatWidenMulAddSDNode_VV<sext_oneuse, sext_oneuse, "PseudoVWMACC">; defm : VPatWidenMulAddSDNode_VX<sext_oneuse, sext_oneuse, "PseudoVWMACC">; defm : VPatWidenMulAddSDNode_VV<zext_oneuse, zext_oneuse, "PseudoVWMACCU">; defm : VPatWidenMulAddSDNode_VX<zext_oneuse, zext_oneuse, "PseudoVWMACCU">; defm : VPatWidenMulAddSDNode_VV<sext_oneuse, zext_oneuse, "PseudoVWMACCSU">; defm : VPatWidenMulAddSDNode_VX<sext_oneuse, zext_oneuse, "PseudoVWMACCSU">; defm : VPatWidenMulAddSDNode_VX<zext_oneuse, sext_oneuse, "PseudoVWMACCUS">; // 12.15. Vector Integer Merge Instructions foreach vti = AllIntegerVectors in { def : Pat<(vti.Vector (vselect (vti.Mask V0), vti.RegClass:$rs1, vti.RegClass:$rs2)), (!cast<Instruction>("PseudoVMERGE_VVM_"#vti.LMul.MX) vti.RegClass:$rs2, vti.RegClass:$rs1, (vti.Mask V0), vti.AVL, vti.Log2SEW)>; def : Pat<(vti.Vector (vselect (vti.Mask V0), (SplatPat XLenVT:$rs1), vti.RegClass:$rs2)), (!cast<Instruction>("PseudoVMERGE_VXM_"#vti.LMul.MX) vti.RegClass:$rs2, GPR:$rs1, (vti.Mask V0), vti.AVL, vti.Log2SEW)>; def : Pat<(vti.Vector (vselect (vti.Mask V0), (SplatPat_simm5 simm5:$rs1), vti.RegClass:$rs2)), (!cast<Instruction>("PseudoVMERGE_VIM_"#vti.LMul.MX) vti.RegClass:$rs2, simm5:$rs1, (vti.Mask V0), vti.AVL, vti.Log2SEW)>; } // 12.1. Vector Single-Width Saturating Add and Subtract defm : VPatBinarySDNode_VV_VX_VI<saddsat, "PseudoVSADD">; defm : VPatBinarySDNode_VV_VX_VI<uaddsat, "PseudoVSADDU">; defm : VPatBinarySDNode_VV_VX<ssubsat, "PseudoVSSUB">; defm : VPatBinarySDNode_VV_VX<usubsat, "PseudoVSSUBU">; // 16.1. Vector Mask-Register Logical Instructions foreach mti = AllMasks in { def : Pat<(mti.Mask (and VR:$rs1, VR:$rs2)), (!cast<Instruction>("PseudoVMAND_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; def : Pat<(mti.Mask (or VR:$rs1, VR:$rs2)), (!cast<Instruction>("PseudoVMOR_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; def : Pat<(mti.Mask (xor VR:$rs1, VR:$rs2)), (!cast<Instruction>("PseudoVMXOR_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; def : Pat<(mti.Mask (rvv_vnot (and VR:$rs1, VR:$rs2))), (!cast<Instruction>("PseudoVMNAND_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; def : Pat<(mti.Mask (rvv_vnot (or VR:$rs1, VR:$rs2))), (!cast<Instruction>("PseudoVMNOR_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; def : Pat<(mti.Mask (rvv_vnot (xor VR:$rs1, VR:$rs2))), (!cast<Instruction>("PseudoVMXNOR_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; def : Pat<(mti.Mask (and VR:$rs1, (rvv_vnot VR:$rs2))), (!cast<Instruction>("PseudoVMANDN_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; def : Pat<(mti.Mask (or VR:$rs1, (rvv_vnot VR:$rs2))), (!cast<Instruction>("PseudoVMORN_MM_"#mti.LMul.MX) VR:$rs1, VR:$rs2, mti.AVL, mti.Log2SEW)>; // Handle rvv_vnot the same as the vmnot.m pseudoinstruction. def : Pat<(mti.Mask (rvv_vnot VR:$rs)), (!cast<Instruction>("PseudoVMNAND_MM_"#mti.LMul.MX) VR:$rs, VR:$rs, mti.AVL, mti.Log2SEW)>; } } // Predicates = [HasVInstructions] let Predicates = [HasVInstructionsAnyF] in { // 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions defm : VPatBinaryFPSDNode_VV_VF<fadd, "PseudoVFADD">; defm : VPatBinaryFPSDNode_VV_VF<fsub, "PseudoVFSUB">; defm : VPatBinaryFPSDNode_R_VF<fsub, "PseudoVFRSUB">; // 14.3. Vector Widening Floating-Point Add/Subtract Instructions defm : VPatWidenBinaryFPSDNode_VV_VF_WV_WF<fadd, "PseudoVFWADD">; defm : VPatWidenBinaryFPSDNode_VV_VF_WV_WF<fsub, "PseudoVFWSUB">; // 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions defm : VPatBinaryFPSDNode_VV_VF<fmul, "PseudoVFMUL">; defm : VPatBinaryFPSDNode_VV_VF<fdiv, "PseudoVFDIV">; defm : VPatBinaryFPSDNode_R_VF<fdiv, "PseudoVFRDIV">; // 14.5. Vector Widening Floating-Point Multiply Instructions defm : VPatWidenBinaryFPSDNode_VV_VF<fmul, "PseudoVFWMUL">; // 14.6 Vector Single-Width Floating-Point Fused Multiply-Add Instructions. foreach fvti = AllFloatVectors in { // NOTE: We choose VFMADD because it has the most commuting freedom. So it // works best with how TwoAddressInstructionPass tries commuting. defvar suffix = fvti.LMul.MX; def : Pat<(fvti.Vector (fma fvti.RegClass:$rs1, fvti.RegClass:$rd, fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVFMADD_VV_"# suffix) fvti.RegClass:$rd, fvti.RegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fvti.Vector (fma fvti.RegClass:$rs1, fvti.RegClass:$rd, (fneg fvti.RegClass:$rs2))), (!cast<Instruction>("PseudoVFMSUB_VV_"# suffix) fvti.RegClass:$rd, fvti.RegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fvti.Vector (fma (fneg fvti.RegClass:$rs1), fvti.RegClass:$rd, (fneg fvti.RegClass:$rs2))), (!cast<Instruction>("PseudoVFNMADD_VV_"# suffix) fvti.RegClass:$rd, fvti.RegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fvti.Vector (fma (fneg fvti.RegClass:$rs1), fvti.RegClass:$rd, fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVFNMSUB_VV_"# suffix) fvti.RegClass:$rd, fvti.RegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; // The choice of VFMADD here is arbitrary, vfmadd.vf and vfmacc.vf are equally // commutable. def : Pat<(fvti.Vector (fma (SplatFPOp fvti.ScalarRegClass:$rs1), fvti.RegClass:$rd, fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVFMADD_V" # fvti.ScalarSuffix # "_" # suffix) fvti.RegClass:$rd, fvti.ScalarRegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fvti.Vector (fma (SplatFPOp fvti.ScalarRegClass:$rs1), fvti.RegClass:$rd, (fneg fvti.RegClass:$rs2))), (!cast<Instruction>("PseudoVFMSUB_V" # fvti.ScalarSuffix # "_" # suffix) fvti.RegClass:$rd, fvti.ScalarRegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fvti.Vector (fma (SplatFPOp fvti.ScalarRegClass:$rs1), (fneg fvti.RegClass:$rd), (fneg fvti.RegClass:$rs2))), (!cast<Instruction>("PseudoVFNMADD_V" # fvti.ScalarSuffix # "_" # suffix) fvti.RegClass:$rd, fvti.ScalarRegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fvti.Vector (fma (SplatFPOp fvti.ScalarRegClass:$rs1), (fneg fvti.RegClass:$rd), fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVFNMSUB_V" # fvti.ScalarSuffix # "_" # suffix) fvti.RegClass:$rd, fvti.ScalarRegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; // The splat might be negated. def : Pat<(fvti.Vector (fma (fneg (SplatFPOp fvti.ScalarRegClass:$rs1)), fvti.RegClass:$rd, (fneg fvti.RegClass:$rs2))), (!cast<Instruction>("PseudoVFNMADD_V" # fvti.ScalarSuffix # "_" # suffix) fvti.RegClass:$rd, fvti.ScalarRegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; def : Pat<(fvti.Vector (fma (fneg (SplatFPOp fvti.ScalarRegClass:$rs1)), fvti.RegClass:$rd, fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVFNMSUB_V" # fvti.ScalarSuffix # "_" # suffix) fvti.RegClass:$rd, fvti.ScalarRegClass:$rs1, fvti.RegClass:$rs2, fvti.AVL, fvti.Log2SEW, TAIL_AGNOSTIC)>; } // 14.7. Vector Widening Floating-Point Fused Multiply-Add Instructions defm : VPatWidenFPMulAccSDNode_VV_VF<"PseudoVFWMACC">; defm : VPatWidenFPNegMulAccSDNode_VV_VF<"PseudoVFWNMACC">; defm : VPatWidenFPMulSacSDNode_VV_VF<"PseudoVFWMSAC">; defm : VPatWidenFPNegMulSacSDNode_VV_VF<"PseudoVFWNMSAC">; foreach vti = AllFloatVectors in { // 14.8. Vector Floating-Point Square-Root Instruction def : Pat<(fsqrt (vti.Vector vti.RegClass:$rs2)), (!cast<Instruction>("PseudoVFSQRT_V_"# vti.LMul.MX) vti.RegClass:$rs2, vti.AVL, vti.Log2SEW)>; // 14.12. Vector Floating-Point Sign-Injection Instructions def : Pat<(fabs (vti.Vector vti.RegClass:$rs)), (!cast<Instruction>("PseudoVFSGNJX_VV_"# vti.LMul.MX) vti.RegClass:$rs, vti.RegClass:$rs, vti.AVL, vti.Log2SEW)>; // Handle fneg with VFSGNJN using the same input for both operands. def : Pat<(fneg (vti.Vector vti.RegClass:$rs)), (!cast<Instruction>("PseudoVFSGNJN_VV_"# vti.LMul.MX) vti.RegClass:$rs, vti.RegClass:$rs, vti.AVL, vti.Log2SEW)>; def : Pat<(vti.Vector (fcopysign (vti.Vector vti.RegClass:$rs1), (vti.Vector vti.RegClass:$rs2))), (!cast<Instruction>("PseudoVFSGNJ_VV_"# vti.LMul.MX) vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW)>; def : Pat<(vti.Vector (fcopysign (vti.Vector vti.RegClass:$rs1), (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs2)))), (!cast<Instruction>("PseudoVFSGNJ_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) vti.RegClass:$rs1, vti.ScalarRegClass:$rs2, vti.AVL, vti.Log2SEW)>; def : Pat<(vti.Vector (fcopysign (vti.Vector vti.RegClass:$rs1), (vti.Vector (fneg vti.RegClass:$rs2)))), (!cast<Instruction>("PseudoVFSGNJN_VV_"# vti.LMul.MX) vti.RegClass:$rs1, vti.RegClass:$rs2, vti.AVL, vti.Log2SEW)>; def : Pat<(vti.Vector (fcopysign (vti.Vector vti.RegClass:$rs1), (vti.Vector (fneg (SplatFPOp vti.ScalarRegClass:$rs2))))), (!cast<Instruction>("PseudoVFSGNJN_V"#vti.ScalarSuffix#"_"#vti.LMul.MX) vti.RegClass:$rs1, vti.ScalarRegClass:$rs2, vti.AVL, vti.Log2SEW)>; } // 14.11. Vector Floating-Point MIN/MAX Instructions defm : VPatBinaryFPSDNode_VV_VF<fminnum, "PseudoVFMIN">; defm : VPatBinaryFPSDNode_VV_VF<fmaxnum, "PseudoVFMAX">; // 14.13. Vector Floating-Point Compare Instructions defm : VPatFPSetCCSDNode_VV_VF_FV<SETEQ, "PseudoVMFEQ", "PseudoVMFEQ">; defm : VPatFPSetCCSDNode_VV_VF_FV<SETOEQ, "PseudoVMFEQ", "PseudoVMFEQ">; defm : VPatFPSetCCSDNode_VV_VF_FV<SETNE, "PseudoVMFNE", "PseudoVMFNE">; defm : VPatFPSetCCSDNode_VV_VF_FV<SETUNE, "PseudoVMFNE", "PseudoVMFNE">; defm : VPatFPSetCCSDNode_VV_VF_FV<SETLT, "PseudoVMFLT", "PseudoVMFGT">; defm : VPatFPSetCCSDNode_VV_VF_FV<SETOLT, "PseudoVMFLT", "PseudoVMFGT">; defm : VPatFPSetCCSDNode_VV_VF_FV<SETLE, "PseudoVMFLE", "PseudoVMFGE">; defm : VPatFPSetCCSDNode_VV_VF_FV<SETOLE, "PseudoVMFLE", "PseudoVMFGE">; // Floating-point vselects: // 12.15. Vector Integer Merge Instructions // 14.15. Vector Floating-Point Merge Instruction foreach fvti = AllFloatVectors in { def : Pat<(fvti.Vector (vselect (fvti.Mask V0), fvti.RegClass:$rs1, fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVMERGE_VVM_"#fvti.LMul.MX) fvti.RegClass:$rs2, fvti.RegClass:$rs1, (fvti.Mask V0), fvti.AVL, fvti.Log2SEW)>; def : Pat<(fvti.Vector (vselect (fvti.Mask V0), (SplatFPOp fvti.ScalarRegClass:$rs1), fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVFMERGE_V"#fvti.ScalarSuffix#"M_"#fvti.LMul.MX) fvti.RegClass:$rs2, (fvti.Scalar fvti.ScalarRegClass:$rs1), (fvti.Mask V0), fvti.AVL, fvti.Log2SEW)>; def : Pat<(fvti.Vector (vselect (fvti.Mask V0), (SplatFPOp (fvti.Scalar fpimm0)), fvti.RegClass:$rs2)), (!cast<Instruction>("PseudoVMERGE_VIM_"#fvti.LMul.MX) fvti.RegClass:$rs2, 0, (fvti.Mask V0), fvti.AVL, fvti.Log2SEW)>; } // 14.17. Vector Single-Width Floating-Point/Integer Type-Convert Instructions defm : VPatConvertFP2ISDNode_V<fp_to_sint, "PseudoVFCVT_RTZ_X_F_V">; defm : VPatConvertFP2ISDNode_V<fp_to_uint, "PseudoVFCVT_RTZ_XU_F_V">; defm : VPatConvertI2FPSDNode_V<sint_to_fp, "PseudoVFCVT_F_X_V">; defm : VPatConvertI2FPSDNode_V<uint_to_fp, "PseudoVFCVT_F_XU_V">; // 14.18. Widening Floating-Point/Integer Type-Convert Instructions defm : VPatWConvertFP2ISDNode_V<fp_to_sint, "PseudoVFWCVT_RTZ_X_F_V">; defm : VPatWConvertFP2ISDNode_V<fp_to_uint, "PseudoVFWCVT_RTZ_XU_F_V">; defm : VPatWConvertI2FPSDNode_V<sint_to_fp, "PseudoVFWCVT_F_X_V">; defm : VPatWConvertI2FPSDNode_V<uint_to_fp, "PseudoVFWCVT_F_XU_V">; // 14.19. Narrowing Floating-Point/Integer Type-Convert Instructions defm : VPatNConvertFP2ISDNode_V<fp_to_sint, "PseudoVFNCVT_RTZ_X_F_W">; defm : VPatNConvertFP2ISDNode_V<fp_to_uint, "PseudoVFNCVT_RTZ_XU_F_W">; defm : VPatNConvertI2FPSDNode_V<sint_to_fp, "PseudoVFNCVT_F_X_W">; defm : VPatNConvertI2FPSDNode_V<uint_to_fp, "PseudoVFNCVT_F_XU_W">; foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; def : Pat<(fvti.Vector (fpround (fwti.Vector fwti.RegClass:$rs1))), (!cast<Instruction>("PseudoVFNCVT_F_F_W_"#fvti.LMul.MX) fwti.RegClass:$rs1, fvti.AVL, fvti.Log2SEW)>; } } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // Vector Splats //===----------------------------------------------------------------------===// let Predicates = [HasVInstructionsAnyF] in { foreach fvti = AllFloatVectors in { def : Pat<(fvti.Vector (SplatFPOp fvti.ScalarRegClass:$rs1)), (!cast<Instruction>("PseudoVFMV_V_"#fvti.ScalarSuffix#"_"#fvti.LMul.MX) (fvti.Scalar fvti.ScalarRegClass:$rs1), fvti.AVL, fvti.Log2SEW)>; def : Pat<(fvti.Vector (SplatFPOp (fvti.Scalar fpimm0))), (!cast<Instruction>("PseudoVMV_V_I_"#fvti.LMul.MX) 0, fvti.AVL, fvti.Log2SEW)>; } } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // Vector Element Extracts //===----------------------------------------------------------------------===// let Predicates = [HasVInstructionsAnyF] in foreach vti = AllFloatVectors in { // Fold store of vmv.f.s to a vse with VL=1. defvar store_instr = !cast<Instruction>("PseudoVSE"#vti.SEW#"_V_"#vti.LMul.MX); let AddedComplexity = 2 in { // Add complexity to increase the priority of this pattern being matched. def : Pat<(store (vti.Scalar (int_riscv_vfmv_f_s (vti.Vector vti.RegClass:$rs2))), GPR:$rs1), (store_instr vti.RegClass:$rs2, GPR:$rs1, 1, vti.Log2SEW)>; def : Pat<(store (extractelt (vti.Vector vti.RegClass:$rs2), 0), GPR:$rs1), (store_instr vti.RegClass:$rs2, GPR:$rs1, 1, vti.Log2SEW)>; } defvar vmv_f_s_inst = !cast<Instruction>(!strconcat("PseudoVFMV_", vti.ScalarSuffix, "_S_", vti.LMul.MX)); // Only pattern-match extract-element operations where the index is 0. Any // other index will have been custom-lowered to slide the vector correctly // into place. def : Pat<(vti.Scalar (extractelt (vti.Vector vti.RegClass:$rs2), 0)), (vmv_f_s_inst vti.RegClass:$rs2, vti.Log2SEW)>; }