#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalCalc.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
char LiveIntervals::ID = 0;
char &llvm::LiveIntervalsID = LiveIntervals::ID;
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis",
false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
"Live Interval Analysis", false, false)
#ifndef NDEBUG
static cl::opt<bool> EnablePrecomputePhysRegs(
"precompute-phys-liveness", cl::Hidden,
cl::desc("Eagerly compute live intervals for all physreg units."));
#else
static bool EnablePrecomputePhysRegs = false;
#endif
namespace llvm {
cl::opt<bool> UseSegmentSetForPhysRegs(
"use-segment-set-for-physregs", cl::Hidden, cl::init(true),
cl::desc(
"Use segment set for the computation of the live ranges of physregs."));
}
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addRequiredTransitiveID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addPreserved<SlotIndexes>();
AU.addRequiredTransitive<SlotIndexes>();
MachineFunctionPass::getAnalysisUsage(AU);
}
LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
}
LiveIntervals::~LiveIntervals() { delete LICalc; }
void LiveIntervals::releaseMemory() {
for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
delete VirtRegIntervals[Register::index2VirtReg(i)];
VirtRegIntervals.clear();
RegMaskSlots.clear();
RegMaskBits.clear();
RegMaskBlocks.clear();
for (LiveRange *LR : RegUnitRanges)
delete LR;
RegUnitRanges.clear();
VNInfoAllocator.Reset();
}
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
MRI = &MF->getRegInfo();
TRI = MF->getSubtarget().getRegisterInfo();
TII = MF->getSubtarget().getInstrInfo();
Indexes = &getAnalysis<SlotIndexes>();
DomTree = &getAnalysis<MachineDominatorTree>();
if (!LICalc)
LICalc = new LiveIntervalCalc();
VirtRegIntervals.resize(MRI->getNumVirtRegs());
computeVirtRegs();
computeRegMasks();
computeLiveInRegUnits();
if (EnablePrecomputePhysRegs) {
for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
getRegUnit(i);
}
LLVM_DEBUG(dump());
return false;
}
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
OS << "********** INTERVALS **********\n";
for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
if (LiveRange *LR = RegUnitRanges[Unit])
OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
Register Reg = Register::index2VirtReg(i);
if (hasInterval(Reg))
OS << getInterval(Reg) << '\n';
}
OS << "RegMasks:";
for (SlotIndex Idx : RegMaskSlots)
OS << ' ' << Idx;
OS << '\n';
printInstrs(OS);
}
void LiveIntervals::printInstrs(raw_ostream &OS) const {
OS << "********** MACHINEINSTRS **********\n";
MF->print(OS, Indexes);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
printInstrs(dbgs());
}
#endif
LiveInterval *LiveIntervals::createInterval(Register reg) {
float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
return new LiveInterval(reg, Weight);
}
bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
assert(LICalc && "LICalc not initialized.");
assert(LI.empty() && "Should only compute empty intervals.");
LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
return computeDeadValues(LI, nullptr);
}
void LiveIntervals::computeVirtRegs() {
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
Register Reg = Register::index2VirtReg(i);
if (MRI->reg_nodbg_empty(Reg))
continue;
LiveInterval &LI = createEmptyInterval(Reg);
bool NeedSplit = computeVirtRegInterval(LI);
if (NeedSplit) {
SmallVector<LiveInterval*, 8> SplitLIs;
splitSeparateComponents(LI, SplitLIs);
}
}
}
void LiveIntervals::computeRegMasks() {
RegMaskBlocks.resize(MF->getNumBlockIDs());
for (const MachineBasicBlock &MBB : *MF) {
std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
RMB.first = RegMaskSlots.size();
if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
RegMaskBits.push_back(Mask);
}
if (MBB.isEHPad())
if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
RegMaskBits.push_back(Mask);
}
for (const MachineInstr &MI : MBB) {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isRegMask())
continue;
RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
RegMaskBits.push_back(MO.getRegMask());
}
}
if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
assert(!MBB.empty() && "empty return block?");
RegMaskSlots.push_back(
Indexes->getInstructionIndex(MBB.back()).getRegSlot());
RegMaskBits.push_back(Mask);
}
RMB.second = RegMaskSlots.size() - RMB.first;
}
}
void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
assert(LICalc && "LICalc not initialized.");
LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
bool IsReserved = false;
for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
bool IsRootReserved = true;
for (MCSuperRegIterator Super(*Root, TRI, true);
Super.isValid(); ++Super) {
MCRegister Reg = *Super;
if (!MRI->reg_empty(Reg))
LICalc->createDeadDefs(LR, Reg);
if (!MRI->isReserved(Reg))
IsRootReserved = false;
}
IsReserved |= IsRootReserved;
}
assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
"reserved computation mismatch");
if (!IsReserved) {
for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
for (MCSuperRegIterator Super(*Root, TRI, true);
Super.isValid(); ++Super) {
MCRegister Reg = *Super;
if (!MRI->reg_empty(Reg))
LICalc->extendToUses(LR, Reg);
}
}
}
if (UseSegmentSetForPhysRegs)
LR.flushSegmentSet();
}
void LiveIntervals::computeLiveInRegUnits() {
RegUnitRanges.resize(TRI->getNumRegUnits());
LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
SmallVector<unsigned, 8> NewRanges;
for (const MachineBasicBlock &MBB : *MF) {
if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
continue;
SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
for (const auto &LI : MBB.liveins()) {
for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
unsigned Unit = *Units;
LiveRange *LR = RegUnitRanges[Unit];
if (!LR) {
LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
NewRanges.push_back(Unit);
}
VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
(void)VNI;
LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
}
}
LLVM_DEBUG(dbgs() << '\n');
}
LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
for (unsigned Unit : NewRanges)
computeRegUnitRange(*RegUnitRanges[Unit], Unit);
}
static void createSegmentsForValues(LiveRange &LR,
iterator_range<LiveInterval::vni_iterator> VNIs) {
for (VNInfo *VNI : VNIs) {
if (VNI->isUnused())
continue;
SlotIndex Def = VNI->def;
LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
}
}
void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
ShrinkToUsesWorkList &WorkList,
Register Reg, LaneBitmask LaneMask) {
SmallPtrSet<VNInfo*, 8> UsedPHIs;
SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
-> const LiveRange& {
if (M.none())
return I;
for (const LiveInterval::SubRange &SR : I.subranges()) {
if ((SR.LaneMask & M).any()) {
assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
return SR;
}
}
llvm_unreachable("Subrange for mask not found");
};
const LiveInterval &LI = getInterval(Reg);
const LiveRange &OldRange = getSubRange(LI, LaneMask);
while (!WorkList.empty()) {
SlotIndex Idx = WorkList.back().first;
VNInfo *VNI = WorkList.back().second;
WorkList.pop_back();
const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
assert(ExtVNI == VNI && "Unexpected existing value number");
(void)ExtVNI;
if (!VNI->isPHIDef() || VNI->def != BlockStart ||
!UsedPHIs.insert(VNI).second)
continue;
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
if (!LiveOut.insert(Pred).second)
continue;
SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
WorkList.push_back(std::make_pair(Stop, PVNI));
}
continue;
}
LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
if (!LiveOut.insert(Pred).second)
continue;
SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
assert(OldVNI == VNI && "Wrong value out of predecessor");
(void)OldVNI;
WorkList.push_back(std::make_pair(Stop, VNI));
} else {
#ifndef NDEBUG
assert(LaneMask.any() &&
"Missing value out of predecessor for main range");
SmallVector<SlotIndex,8> Undefs;
LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
"Missing value out of predecessor for subrange");
#endif
}
}
}
}
bool LiveIntervals::shrinkToUses(LiveInterval *li,
SmallVectorImpl<MachineInstr*> *dead) {
LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
assert(Register::isVirtualRegister(li->reg()) &&
"Can only shrink virtual registers");
bool NeedsCleanup = false;
for (LiveInterval::SubRange &S : li->subranges()) {
shrinkToUses(S, li->reg());
if (S.empty())
NeedsCleanup = true;
}
if (NeedsCleanup)
li->removeEmptySubRanges();
ShrinkToUsesWorkList WorkList;
Register Reg = li->reg();
for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
continue;
SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
LiveQueryResult LRQ = li->Query(Idx);
VNInfo *VNI = LRQ.valueIn();
if (!VNI) {
LLVM_DEBUG(
dbgs() << Idx << '\t' << UseMI
<< "Warning: Instr claims to read non-existent value in "
<< *li << '\n');
continue;
}
if (VNInfo *DefVNI = LRQ.valueDefined())
Idx = DefVNI->def;
WorkList.push_back(std::make_pair(Idx, VNI));
}
LiveRange NewLR;
createSegmentsForValues(NewLR, li->vnis());
extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
li->segments.swap(NewLR.segments);
bool CanSeparate = computeDeadValues(*li, dead);
LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
return CanSeparate;
}
bool LiveIntervals::computeDeadValues(LiveInterval &LI,
SmallVectorImpl<MachineInstr*> *dead) {
bool MayHaveSplitComponents = false;
bool HaveDeadDef = false;
for (VNInfo *VNI : LI.valnos) {
if (VNI->isUnused())
continue;
SlotIndex Def = VNI->def;
LiveRange::iterator I = LI.FindSegmentContaining(Def);
assert(I != LI.end() && "Missing segment for VNI");
Register VReg = LI.reg();
if (MRI->shouldTrackSubRegLiveness(VReg)) {
if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
MachineInstr *MI = getInstructionFromIndex(Def);
MI->setRegisterDefReadUndef(VReg);
}
}
if (I->end != Def.getDeadSlot())
continue;
if (VNI->isPHIDef()) {
VNI->markUnused();
LI.removeSegment(I);
LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
MayHaveSplitComponents = true;
} else {
MachineInstr *MI = getInstructionFromIndex(Def);
assert(MI && "No instruction defining live value");
MI->addRegisterDead(LI.reg(), TRI);
if (HaveDeadDef)
MayHaveSplitComponents = true;
HaveDeadDef = true;
if (dead && MI->allDefsAreDead()) {
LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
dead->push_back(MI);
}
}
}
return MayHaveSplitComponents;
}
void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
assert(Register::isVirtualRegister(Reg) &&
"Can only shrink virtual registers");
ShrinkToUsesWorkList WorkList;
SlotIndex LastIdx;
for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
if (!MO.readsReg())
continue;
unsigned SubReg = MO.getSubReg();
if (SubReg != 0) {
LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
if ((LaneMask & SR.LaneMask).none())
continue;
}
MachineInstr *UseMI = MO.getParent();
SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
if (Idx == LastIdx)
continue;
LastIdx = Idx;
LiveQueryResult LRQ = SR.Query(Idx);
VNInfo *VNI = LRQ.valueIn();
if (!VNI)
continue;
if (VNInfo *DefVNI = LRQ.valueDefined())
Idx = DefVNI->def;
WorkList.push_back(std::make_pair(Idx, VNI));
}
LiveRange NewLR;
createSegmentsForValues(NewLR, SR.vnis());
extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
SR.segments.swap(NewLR.segments);
for (VNInfo *VNI : SR.valnos) {
if (VNI->isUnused())
continue;
const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
assert(Segment != nullptr && "Missing segment for VNI");
if (Segment->end != VNI->def.getDeadSlot())
continue;
if (VNI->isPHIDef()) {
LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
<< " may separate interval\n");
VNI->markUnused();
SR.removeSegment(*Segment);
}
}
LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
}
void LiveIntervals::extendToIndices(LiveRange &LR,
ArrayRef<SlotIndex> Indices,
ArrayRef<SlotIndex> Undefs) {
assert(LICalc && "LICalc not initialized.");
LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
for (SlotIndex Idx : Indices)
LICalc->extend(LR, Idx, 0, Undefs);
}
void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
SmallVectorImpl<SlotIndex> *EndPoints) {
LiveQueryResult LRQ = LR.Query(Kill);
VNInfo *VNI = LRQ.valueOutOrDead();
if (!VNI)
return;
MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
if (LRQ.endPoint() < MBBEnd) {
LR.removeSegment(Kill, LRQ.endPoint());
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
return;
}
LR.removeSegment(Kill, MBBEnd);
if (EndPoints) EndPoints->push_back(MBBEnd);
using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
VisitedTy Visited;
for (MachineBasicBlock *Succ : KillMBB->successors()) {
for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
I != E;) {
MachineBasicBlock *MBB = *I;
SlotIndex MBBStart, MBBEnd;
std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
LiveQueryResult LRQ = LR.Query(MBBStart);
if (LRQ.valueIn() != VNI) {
I.skipChildren();
continue;
}
if (LRQ.endPoint() < MBBEnd) {
LR.removeSegment(MBBStart, LRQ.endPoint());
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
I.skipChildren();
continue;
}
LR.removeSegment(MBBStart, MBBEnd);
if (EndPoints) EndPoints->push_back(MBBEnd);
++I;
}
}
}
void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
Register Reg = Register::index2VirtReg(i);
if (MRI->reg_nodbg_empty(Reg))
continue;
const LiveInterval &LI = getInterval(Reg);
if (LI.empty())
continue;
Register PhysReg = VRM->getPhys(Reg);
if (!PhysReg)
continue;
RU.clear();
for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid();
++Unit) {
const LiveRange &RURange = getRegUnit(*Unit);
if (RURange.empty())
continue;
RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
}
for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
++RI) {
if (RI->end.isBlock())
continue;
MachineInstr *MI = getInstructionFromIndex(RI->end);
if (!MI)
continue;
for (auto &RUP : RU) {
const LiveRange &RURange = *RUP.first;
LiveRange::const_iterator &I = RUP.second;
if (I == RURange.end())
continue;
I = RURange.advanceTo(I, RI->end);
if (I == RURange.end() || I->start >= RI->end)
continue;
goto CancelKill;
}
if (MRI->subRegLivenessEnabled()) {
LaneBitmask DefinedLanesMask;
if (LI.hasSubRanges()) {
DefinedLanesMask = LaneBitmask::getNone();
for (const LiveInterval::SubRange &SR : LI.subranges())
for (const LiveRange::Segment &Segment : SR.segments) {
if (Segment.start >= RI->end)
break;
if (Segment.end == RI->end) {
DefinedLanesMask |= SR.LaneMask;
break;
}
}
} else
DefinedLanesMask = LaneBitmask::getAll();
bool IsFullWrite = false;
for (const MachineOperand &MO : MI->operands()) {
if (!MO.isReg() || MO.getReg() != Reg)
continue;
if (MO.isUse()) {
unsigned SubReg = MO.getSubReg();
LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
: MRI->getMaxLaneMaskForVReg(Reg);
if ((UseMask & ~DefinedLanesMask).any())
goto CancelKill;
} else if (MO.getSubReg() == 0) {
assert(MO.isDef());
IsFullWrite = true;
}
}
if (!IsFullWrite) {
LiveRange::const_iterator N = std::next(RI);
if (N != LI.end() && N->start == RI->end)
goto CancelKill;
}
}
MI->addRegisterKilled(Reg, nullptr);
continue;
CancelKill:
MI->clearRegisterKills(Reg, nullptr);
}
}
}
MachineBasicBlock*
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
assert(!LI.empty() && "LiveInterval is empty.");
SlotIndex Start = LI.beginIndex();
if (Start.isBlock())
return nullptr;
SlotIndex Stop = LI.endIndex();
if (Stop.isBlock())
return nullptr;
MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
return MBB1 == MBB2 ? MBB1 : nullptr;
}
bool
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
for (const VNInfo *PHI : LI.valnos) {
if (PHI->isUnused() || !PHI->isPHIDef())
continue;
const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
if (PHIMBB->pred_size() > 100)
return true;
for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
return true;
}
return false;
}
float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
const MachineBlockFrequencyInfo *MBFI,
const MachineInstr &MI) {
return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
}
float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
const MachineBlockFrequencyInfo *MBFI,
const MachineBasicBlock *MBB) {
return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
}
LiveRange::Segment
LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
LiveInterval &Interval = createEmptyInterval(Reg);
VNInfo *VN = Interval.getNextValue(
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
getVNInfoAllocator());
LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
getMBBEndIdx(startInst.getParent()), VN);
Interval.addSegment(S);
return S;
}
static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
if (MI->getOpcode() != TargetOpcode::STATEPOINT)
return false;
StatepointOpers SO(MI);
if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
return false;
for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
++Idx) {
const MachineOperand &MO = MI->getOperand(Idx);
if (MO.isReg() && MO.getReg() == Reg)
return true;
}
return false;
}
bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
BitVector &UsableRegs) {
if (LI.empty())
return false;
LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
ArrayRef<SlotIndex> Slots;
ArrayRef<const uint32_t*> Bits;
if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
Slots = getRegMaskSlotsInBlock(MBB->getNumber());
Bits = getRegMaskBitsInBlock(MBB->getNumber());
} else {
Slots = getRegMaskSlots();
Bits = getRegMaskBits();
}
ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
if (SlotI == SlotE)
return false;
bool Found = false;
auto unionBitMask = [&](unsigned Idx) {
if (!Found) {
UsableRegs.clear();
UsableRegs.resize(TRI->getNumRegs(), true);
Found = true;
}
UsableRegs.clearBitsNotInMask(Bits[Idx]);
};
while (true) {
assert(*SlotI >= LiveI->start);
while (*SlotI < LiveI->end) {
unionBitMask(SlotI - Slots.begin());
if (++SlotI == SlotE)
return Found;
}
if (*SlotI == LiveI->end)
if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
if (hasLiveThroughUse(MI, LI.reg()))
unionBitMask(SlotI++ - Slots.begin());
if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
return Found;
while (LiveI->end < *SlotI)
++LiveI;
while (*SlotI < LiveI->start)
if (++SlotI == SlotE)
return Found;
}
}
class LiveIntervals::HMEditor {
private:
LiveIntervals& LIS;
const MachineRegisterInfo& MRI;
const TargetRegisterInfo& TRI;
SlotIndex OldIdx;
SlotIndex NewIdx;
SmallPtrSet<LiveRange*, 8> Updated;
bool UpdateFlags;
public:
HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
const TargetRegisterInfo& TRI,
SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
: LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
UpdateFlags(UpdateFlags) {}
LiveRange *getRegUnitLI(unsigned Unit) {
if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
return &LIS.getRegUnit(Unit);
return LIS.getCachedRegUnit(Unit);
}
void updateAllRanges(MachineInstr *MI) {
LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
<< *MI);
bool hasRegMask = false;
for (MachineOperand &MO : MI->operands()) {
if (MO.isRegMask())
hasRegMask = true;
if (!MO.isReg())
continue;
if (MO.isUse()) {
if (!MO.readsReg())
continue;
MO.setIsKill(false);
}
Register Reg = MO.getReg();
if (!Reg)
continue;
if (Register::isVirtualRegister(Reg)) {
LiveInterval &LI = LIS.getInterval(Reg);
if (LI.hasSubRanges()) {
unsigned SubReg = MO.getSubReg();
LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
: MRI.getMaxLaneMaskForVReg(Reg);
for (LiveInterval::SubRange &S : LI.subranges()) {
if ((S.LaneMask & LaneMask).none())
continue;
updateRange(S, Reg, S.LaneMask);
}
}
updateRange(LI, Reg, LaneBitmask::getNone());
if (LI.hasSubRanges()) {
unsigned SubReg = MO.getSubReg();
LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
: MRI.getMaxLaneMaskForVReg(Reg);
for (LiveInterval::SubRange &S : LI.subranges()) {
if ((S.LaneMask & LaneMask).none() || LI.covers(S))
continue;
LI.clear();
LIS.constructMainRangeFromSubranges(LI);
break;
}
}
continue;
}
for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid();
++Units)
if (LiveRange *LR = getRegUnitLI(*Units))
updateRange(*LR, *Units, LaneBitmask::getNone());
}
if (hasRegMask)
updateRegMaskSlots();
}
private:
void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
if (!Updated.insert(&LR).second)
return;
LLVM_DEBUG({
dbgs() << " ";
if (Register::isVirtualRegister(Reg)) {
dbgs() << printReg(Reg);
if (LaneMask.any())
dbgs() << " L" << PrintLaneMask(LaneMask);
} else {
dbgs() << printRegUnit(Reg, &TRI);
}
dbgs() << ":\t" << LR << '\n';
});
if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
handleMoveDown(LR);
else
handleMoveUp(LR, Reg, LaneMask);
LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n');
LR.verify();
}
void handleMoveDown(LiveRange &LR) {
LiveRange::iterator E = LR.end();
LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
return;
LiveRange::iterator OldIdxOut;
if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
return;
if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
if (MOP.isReg() && MOP.isUse())
MOP.setIsKill(false);
LiveRange::iterator Next = std::next(OldIdxIn);
if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
LiveRange::iterator NewIdxIn =
LR.advanceTo(Next, NewIdx.getBaseIndex());
if (NewIdxIn == E ||
!SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
LiveRange::iterator Prev = std::prev(NewIdxIn);
Prev->end = NewIdx.getRegSlot();
}
OldIdxIn->end = Next->start;
return;
}
bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
if (!isKill)
return;
OldIdxOut = Next;
if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
return;
} else {
OldIdxOut = OldIdxIn;
}
assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
"No def?");
VNInfo *OldIdxVNI = OldIdxOut->valno;
assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
OldIdxVNI->def = NewIdxDef;
OldIdxOut->start = OldIdxVNI->def;
return;
}
LiveRange::iterator AfterNewIdx
= LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
bool OldIdxDefIsDead = OldIdxOut->end.isDead();
if (!OldIdxDefIsDead &&
SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
VNInfo *DefVNI;
if (OldIdxOut != LR.begin() &&
!SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
OldIdxOut->start)) {
LiveRange::iterator IPrev = std::prev(OldIdxOut);
DefVNI = OldIdxVNI;
IPrev->end = OldIdxOut->end;
} else {
LiveRange::iterator INext = std::next(OldIdxOut);
assert(INext != E && "Must have following segment");
DefVNI = OldIdxVNI;
INext->start = OldIdxOut->end;
INext->valno->def = INext->start;
}
if (AfterNewIdx == E) {
std::copy(std::next(OldIdxOut), E, OldIdxOut);
LiveRange::iterator NewSegment = std::prev(E);
*NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
DefVNI);
DefVNI->def = NewIdxDef;
LiveRange::iterator Prev = std::prev(NewSegment);
Prev->end = NewIdxDef;
} else {
std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
LiveRange::iterator Prev = std::prev(AfterNewIdx);
if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
LiveRange::iterator NewSegment = AfterNewIdx;
*NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
Prev->valno->def = NewIdxDef;
*Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
DefVNI->def = Prev->start;
} else {
*Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
DefVNI->def = NewIdxDef;
assert(DefVNI != AfterNewIdx->valno);
}
}
return;
}
if (AfterNewIdx != E &&
SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
LR.removeValNo(OldIdxVNI);
} else {
assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
VNInfo *NewSegmentVNI = OldIdxVNI;
NewSegmentVNI->def = NewIdxDef;
*NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
NewSegmentVNI);
}
}
void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
LiveRange::iterator E = LR.end();
LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
return;
LiveRange::iterator OldIdxOut;
if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
if (!isKill)
return;
SlotIndex DefBeforeOldIdx
= std::max(OldIdxIn->start.getDeadSlot(),
NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
OldIdxOut = std::next(OldIdxIn);
if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
return;
} else {
OldIdxOut = OldIdxIn;
OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
}
assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
"No def?");
VNInfo *OldIdxVNI = OldIdxOut->valno;
assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
bool OldIdxDefIsDead = OldIdxOut->end.isDead();
SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
assert(NewIdxOut->valno != OldIdxVNI &&
"Same value defined more than once?");
if (!OldIdxDefIsDead) {
OldIdxVNI->def = NewIdxDef;
OldIdxOut->start = NewIdxDef;
LR.removeValNo(NewIdxOut->valno);
} else {
LR.removeValNo(OldIdxVNI);
}
} else {
if (!OldIdxDefIsDead) {
if (OldIdxIn != E &&
SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
LiveRange::iterator NewIdxIn = NewIdxOut;
assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
const SlotIndex SplitPos = NewIdxDef;
OldIdxVNI = OldIdxIn->valno;
SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
LiveRange::iterator Prev = std::prev(OldIdxIn);
if (OldIdxIn != LR.begin() &&
SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
NewDefEndPoint = std::min(OldIdxIn->start,
std::next(NewIdxOut)->start);
}
OldIdxOut->valno->def = OldIdxIn->start;
*OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
OldIdxOut->valno);
std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
LiveRange::iterator NewSegment = NewIdxIn;
LiveRange::iterator Next = std::next(NewSegment);
if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
*NewSegment = LiveRange::Segment(Next->start, SplitPos,
Next->valno);
*Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
Next->valno->def = SplitPos;
} else {
*NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
NewSegment->valno->def = SplitPos;
}
} else {
OldIdxOut->start = NewIdxDef;
OldIdxVNI->def = NewIdxDef;
if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
OldIdxIn->end = NewIdxDef;
}
} else if (OldIdxIn != E
&& SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
&& SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
*NewIdxOut = LiveRange::Segment(
NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
*(NewIdxOut + 1) = LiveRange::Segment(
NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
OldIdxVNI->def = NewIdxDef;
for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
Idx->valno = OldIdxVNI;
if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
if (MO->isReg() && !MO->isUse())
MO->setIsDead(false);
} else {
std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
LiveRange::iterator NewSegment = NewIdxOut;
VNInfo *NewSegmentVNI = OldIdxVNI;
*NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
NewSegmentVNI);
NewSegmentVNI->def = NewIdxDef;
}
}
}
void updateRegMaskSlots() {
SmallVectorImpl<SlotIndex>::iterator RI =
llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
"No RegMask at OldIdx.");
*RI = NewIdx.getRegSlot();
assert((RI == LIS.RegMaskSlots.begin() ||
SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
"Cannot move regmask instruction above another call");
assert((std::next(RI) == LIS.RegMaskSlots.end() ||
SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
"Cannot move regmask instruction below another call");
}
SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
LaneBitmask LaneMask) {
if (Register::isVirtualRegister(Reg)) {
SlotIndex LastUse = Before;
for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
if (MO.isUndef())
continue;
unsigned SubReg = MO.getSubReg();
if (SubReg != 0 && LaneMask.any()
&& (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
continue;
const MachineInstr &MI = *MO.getParent();
SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
if (InstSlot > LastUse && InstSlot < OldIdx)
LastUse = InstSlot.getRegSlot();
}
return LastUse;
}
assert(Before < OldIdx && "Expected upwards move");
SlotIndexes *Indexes = LIS.getSlotIndexes();
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
MachineBasicBlock::iterator MII = MBB->end();
if (MachineInstr *MI = Indexes->getInstructionFromIndex(
Indexes->getNextNonNullIndex(OldIdx)))
if (MI->getParent() == MBB)
MII = MI;
MachineBasicBlock::iterator Begin = MBB->begin();
while (MII != Begin) {
if ((--MII)->isDebugOrPseudoInstr())
continue;
SlotIndex Idx = Indexes->getInstructionIndex(*MII);
if (!SlotIndex::isEarlierInstr(Before, Idx))
return Before;
for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
if (MO->isReg() && !MO->isUndef() &&
Register::isPhysicalRegister(MO->getReg()) &&
TRI.hasRegUnit(MO->getReg(), Reg))
return Idx.getRegSlot();
}
return Before;
}
};
void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
"Cannot move instruction in bundle");
SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
Indexes->removeMachineInstrFromMaps(MI);
SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
OldIndex < getMBBEndIdx(MI.getParent()) &&
"Cannot handle moves across basic block boundaries.");
HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
HME.updateAllRanges(&MI);
}
void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
bool UpdateFlags) {
assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
"Bundle start is not a bundle");
SmallVector<SlotIndex, 16> ToProcess;
const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
auto BundleEnd = getBundleEnd(BundleStart.getIterator());
auto I = BundleStart.getIterator();
I++;
while (I != BundleEnd) {
if (!Indexes->hasIndex(*I))
continue;
SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
ToProcess.push_back(OldIndex);
Indexes->removeMachineInstrFromMaps(*I, true);
I++;
}
for (SlotIndex OldIndex : ToProcess) {
HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
HME.updateAllRanges(&BundleStart);
}
const SlotIndex Index = getInstructionIndex(BundleStart);
for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
MachineOperand &MO = BundleStart.getOperand(Idx);
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
LiveInterval &LI = getInterval(Reg);
LiveQueryResult LRQ = LI.Query(Index);
if (LRQ.isDeadDef())
MO.setIsDead();
}
}
}
void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
const MachineBasicBlock::iterator End,
const SlotIndex EndIdx, LiveRange &LR,
const Register Reg,
LaneBitmask LaneMask) {
LiveInterval::iterator LII = LR.find(EndIdx);
SlotIndex lastUseIdx;
if (LII != LR.end() && LII->start < EndIdx) {
lastUseIdx = LII->end;
} else if (LII == LR.begin()) {
} else {
--LII;
}
for (MachineBasicBlock::iterator I = End; I != Begin;) {
--I;
MachineInstr &MI = *I;
if (MI.isDebugOrPseudoInstr())
continue;
SlotIndex instrIdx = getInstructionIndex(MI);
bool isStartValid = getInstructionFromIndex(LII->start);
bool isEndValid = getInstructionFromIndex(LII->end);
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || MO.getReg() != Reg)
continue;
unsigned SubReg = MO.getSubReg();
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
if ((Mask & LaneMask).none())
continue;
if (MO.isDef()) {
if (!isStartValid) {
if (LII->end.isDead()) {
LII = LR.removeSegment(LII, true);
if (LII != LR.begin())
--LII;
} else {
LII->start = instrIdx.getRegSlot();
LII->valno->def = instrIdx.getRegSlot();
if (MO.getSubReg() && !MO.isUndef())
lastUseIdx = instrIdx.getRegSlot();
else
lastUseIdx = SlotIndex();
continue;
}
}
if (!lastUseIdx.isValid()) {
VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
LiveRange::Segment S(instrIdx.getRegSlot(),
instrIdx.getDeadSlot(), VNI);
LII = LR.addSegment(S);
} else if (LII->start != instrIdx.getRegSlot()) {
VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
LII = LR.addSegment(S);
}
if (MO.getSubReg() && !MO.isUndef())
lastUseIdx = instrIdx.getRegSlot();
else
lastUseIdx = SlotIndex();
} else if (MO.isUse()) {
if (!isEndValid && !LII->end.isBlock())
LII->end = instrIdx.getRegSlot();
if (!lastUseIdx.isValid())
lastUseIdx = instrIdx.getRegSlot();
}
}
}
bool isStartValid = getInstructionFromIndex(LII->start);
if (!isStartValid && LII->end.isDead())
LR.removeSegment(*LII, true);
}
void
LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
ArrayRef<Register> OrigRegs) {
while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
--Begin;
while (End != MBB->end() && !Indexes->hasIndex(*End))
++End;
SlotIndex EndIdx;
if (End == MBB->end())
EndIdx = getMBBEndIdx(MBB).getPrevSlot();
else
EndIdx = getInstructionIndex(*End);
Indexes->repairIndexesInRange(MBB, Begin, End);
SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
for (MachineBasicBlock::iterator I = End; I != Begin;) {
--I;
MachineInstr &MI = *I;
if (MI.isDebugOrPseudoInstr())
continue;
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.getReg().isVirtual()) {
Register Reg = MO.getReg();
if (MO.getSubReg() && hasInterval(Reg) &&
!getInterval(Reg).hasSubRanges() &&
MRI->shouldTrackSubRegLiveness(Reg))
removeInterval(Reg);
if (!hasInterval(Reg)) {
createAndComputeVirtRegInterval(Reg);
erase_value(RegsToRepair, Reg);
}
}
}
}
for (Register Reg : RegsToRepair) {
if (!Reg.isVirtual())
continue;
LiveInterval &LI = getInterval(Reg);
if (!LI.hasAtLeastOneValue())
continue;
for (LiveInterval::SubRange &S : LI.subranges())
repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
LI.removeEmptySubRanges();
repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
}
}
void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
if (LiveRange *LR = getCachedRegUnit(*Unit))
if (VNInfo *VNI = LR->getVNInfoAt(Pos))
LR->removeValNo(VNI);
}
}
void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
VNInfo *VNI = LI.getVNInfoAt(Pos);
if (VNI != nullptr) {
assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
LI.removeValNo(VNI);
}
for (LiveInterval::SubRange &S : LI.subranges()) {
if (VNInfo *SVNI = S.getVNInfoAt(Pos))
if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
S.removeValNo(SVNI);
}
LI.removeEmptySubRanges();
}
void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
SmallVectorImpl<LiveInterval*> &SplitLIs) {
ConnectedVNInfoEqClasses ConEQ(*this);
unsigned NumComp = ConEQ.Classify(LI);
if (NumComp <= 1)
return;
LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
Register Reg = LI.reg();
const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
for (unsigned I = 1; I < NumComp; ++I) {
Register NewVReg = MRI->createVirtualRegister(RegClass);
LiveInterval &NewLI = createEmptyInterval(NewVReg);
SplitLIs.push_back(&NewLI);
}
ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
}
void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
assert(LICalc && "LICalc not initialized.");
LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
LICalc->constructMainRangeFromSubranges(LI);
}