#include "llvm/Transforms/IPO/CalledValuePropagation.h"
#include "llvm/Analysis/SparsePropagation.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
#define DEBUG_TYPE "called-value-propagation"
static cl::opt<unsigned> MaxFunctionsPerValue(
    "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
    cl::desc("The maximum number of functions to track per lattice value"));
namespace {
enum class IPOGrouping { Register, Return, Memory };
using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
class CVPLatticeVal {
public:
        enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
      struct Compare {
    bool operator()(const Function *LHS, const Function *RHS) const {
      return LHS->getName() < RHS->getName();
    }
  };
  CVPLatticeVal() = default;
  CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
  CVPLatticeVal(std::vector<Function *> &&Functions)
      : LatticeState(FunctionSet), Functions(std::move(Functions)) {
    assert(llvm::is_sorted(this->Functions, Compare()));
  }
      const std::vector<Function *> &getFunctions() const {
    return Functions;
  }
    bool isFunctionSet() const { return LatticeState == FunctionSet; }
  bool operator==(const CVPLatticeVal &RHS) const {
    return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
  }
  bool operator!=(const CVPLatticeVal &RHS) const {
    return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
  }
private:
    CVPLatticeStateTy LatticeState = Undefined;
                std::vector<Function *> Functions;
};
class CVPLatticeFunc
    : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
public:
  CVPLatticeFunc()
      : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
                                CVPLatticeVal(CVPLatticeVal::Overdefined),
                                CVPLatticeVal(CVPLatticeVal::Untracked)) {}
    CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
    switch (Key.getInt()) {
    case IPOGrouping::Register:
      if (isa<Instruction>(Key.getPointer())) {
        return getUndefVal();
      } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
        if (canTrackArgumentsInterprocedurally(A->getParent()))
          return getUndefVal();
      } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
        return computeConstant(C);
      }
      return getOverdefinedVal();
    case IPOGrouping::Memory:
    case IPOGrouping::Return:
      if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
        if (canTrackGlobalVariableInterprocedurally(GV))
          return computeConstant(GV->getInitializer());
      } else if (auto *F = cast<Function>(Key.getPointer()))
        if (canTrackReturnsInterprocedurally(F))
          return getUndefVal();
    }
    return getOverdefinedVal();
  }
            CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
    if (X == getOverdefinedVal() || Y == getOverdefinedVal())
      return getOverdefinedVal();
    if (X == getUndefVal() && Y == getUndefVal())
      return getUndefVal();
    std::vector<Function *> Union;
    std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
                   Y.getFunctions().begin(), Y.getFunctions().end(),
                   std::back_inserter(Union), CVPLatticeVal::Compare{});
    if (Union.size() > MaxFunctionsPerValue)
      return getOverdefinedVal();
    return CVPLatticeVal(std::move(Union));
  }
          void ComputeInstructionState(
      Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
    switch (I.getOpcode()) {
    case Instruction::Call:
    case Instruction::Invoke:
      return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
    case Instruction::Load:
      return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
    case Instruction::Ret:
      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
    case Instruction::Select:
      return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
    case Instruction::Store:
      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
    default:
      return visitInst(I, ChangedValues, SS);
    }
  }
    void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
    if (LV == getUndefVal())
      OS << "Undefined  ";
    else if (LV == getOverdefinedVal())
      OS << "Overdefined";
    else if (LV == getUntrackedVal())
      OS << "Untracked  ";
    else
      OS << "FunctionSet";
  }
    void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
    if (Key.getInt() == IPOGrouping::Register)
      OS << "<reg> ";
    else if (Key.getInt() == IPOGrouping::Memory)
      OS << "<mem> ";
    else if (Key.getInt() == IPOGrouping::Return)
      OS << "<ret> ";
    if (isa<Function>(Key.getPointer()))
      OS << Key.getPointer()->getName();
    else
      OS << *Key.getPointer();
  }
      SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
private:
        SmallPtrSet<CallBase *, 32> IndirectCalls;
          CVPLatticeVal computeConstant(Constant *C) {
    if (isa<ConstantPointerNull>(C))
      return CVPLatticeVal(CVPLatticeVal::FunctionSet);
    if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
      return CVPLatticeVal({F});
    return getOverdefinedVal();
  }
      void visitReturn(ReturnInst &I,
                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
    Function *F = I.getParent()->getParent();
    if (F->getReturnType()->isVoidTy())
      return;
    auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
    ChangedValues[RetF] =
        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
  }
          void visitCallBase(CallBase &CB,
                     DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
                     SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
    Function *F = CB.getCalledFunction();
    auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
            if (!F)
      IndirectCalls.insert(&CB);
        if (!F || !canTrackReturnsInterprocedurally(F)) {
                  if (CB.getType()->isVoidTy())
        return;
      ChangedValues[RegI] = getOverdefinedVal();
      return;
    }
            SS.MarkBlockExecutable(&F->front());
    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
    for (Argument &A : F->args()) {
      auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
      auto RegActual =
          CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
      ChangedValues[RegFormal] =
          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
    }
            if (CB.getType()->isVoidTy())
      return;
    ChangedValues[RegI] =
        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
  }
      void visitSelect(SelectInst &I,
                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
    auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
    auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
    ChangedValues[RegI] =
        MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
  }
        void visitLoad(LoadInst &I,
                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
    if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
      auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
      ChangedValues[RegI] =
          MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
    } else {
      ChangedValues[RegI] = getOverdefinedVal();
    }
  }
        void visitStore(StoreInst &I,
                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
    if (!GV)
      return;
    auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
    auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
    ChangedValues[MemGV] =
        MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
  }
      void visitInst(Instruction &I,
                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
        if (I.use_empty())
      return;
    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
    ChangedValues[RegI] = getOverdefinedVal();
  }
};
} 
namespace llvm {
template <> struct LatticeKeyInfo<CVPLatticeKey> {
  static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
    return Key.getPointer();
  }
  static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
    return CVPLatticeKey(V, IPOGrouping::Register);
  }
};
} 
static bool runCVP(Module &M) {
    CVPLatticeFunc Lattice;
  SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
      for (Function &F : M)
    if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
      Solver.MarkBlockExecutable(&F.front());
      Solver.Solve();
      bool Changed = false;
  MDBuilder MDB(M.getContext());
  for (CallBase *C : Lattice.getIndirectCalls()) {
    auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
    CVPLatticeVal LV = Solver.getExistingValueState(RegI);
    if (!LV.isFunctionSet() || LV.getFunctions().empty())
      continue;
    MDNode *Callees = MDB.createCallees(LV.getFunctions());
    C->setMetadata(LLVMContext::MD_callees, Callees);
    Changed = true;
  }
  return Changed;
}
PreservedAnalyses CalledValuePropagationPass::run(Module &M,
                                                  ModuleAnalysisManager &) {
  runCVP(M);
  return PreservedAnalyses::all();
}
namespace {
class CalledValuePropagationLegacyPass : public ModulePass {
public:
  static char ID;
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
  CalledValuePropagationLegacyPass() : ModulePass(ID) {
    initializeCalledValuePropagationLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }
  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;
    return runCVP(M);
  }
};
} 
char CalledValuePropagationLegacyPass::ID = 0;
INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
                "Called Value Propagation", false, false)
ModulePass *llvm::createCalledValuePropagationPass() {
  return new CalledValuePropagationLegacyPass();
}