#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/AtomicExpandUtils.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/LowerAtomic.h"
#include <cassert>
#include <cstdint>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "atomic-expand"
namespace {
class AtomicExpand : public FunctionPass {
  const TargetLowering *TLI = nullptr;
public:
  static char ID; 
  AtomicExpand() : FunctionPass(ID) {
    initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
  }
  bool runOnFunction(Function &F) override;
private:
  bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
  IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
  LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
  bool tryExpandAtomicLoad(LoadInst *LI);
  bool expandAtomicLoadToLL(LoadInst *LI);
  bool expandAtomicLoadToCmpXchg(LoadInst *LI);
  StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
  bool tryExpandAtomicStore(StoreInst *SI);
  void expandAtomicStore(StoreInst *SI);
  bool tryExpandAtomicRMW(AtomicRMWInst *AI);
  AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
  Value *
  insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
                    Align AddrAlign, AtomicOrdering MemOpOrder,
                    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
  void
  expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr,
                       Align AddrAlign, AtomicOrdering MemOpOrder,
                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
  void expandPartwordAtomicRMW(
      AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
  AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
  bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
  void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
  void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
  AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
  static Value *
  insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr,
                       Align AddrAlign, AtomicOrdering MemOpOrder,
                       SyncScope::ID SSID,
                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
                       CreateCmpXchgInstFun CreateCmpXchg);
  bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
  bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
  bool isIdempotentRMW(AtomicRMWInst *RMWI);
  bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
  bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
                               Value *PointerOperand, Value *ValueOperand,
                               Value *CASExpected, AtomicOrdering Ordering,
                               AtomicOrdering Ordering2,
                               ArrayRef<RTLIB::Libcall> Libcalls);
  void expandAtomicLoadToLibcall(LoadInst *LI);
  void expandAtomicStoreToLibcall(StoreInst *LI);
  void expandAtomicRMWToLibcall(AtomicRMWInst *I);
  void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
  friend bool
  llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
                                 CreateCmpXchgInstFun CreateCmpXchg);
};
} 
char AtomicExpand::ID = 0;
char &llvm::AtomicExpandID = AtomicExpand::ID;
INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false,
                false)
FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
static unsigned getAtomicOpSize(LoadInst *LI) {
  const DataLayout &DL = LI->getModule()->getDataLayout();
  return DL.getTypeStoreSize(LI->getType());
}
static unsigned getAtomicOpSize(StoreInst *SI) {
  const DataLayout &DL = SI->getModule()->getDataLayout();
  return DL.getTypeStoreSize(SI->getValueOperand()->getType());
}
static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
  const DataLayout &DL = RMWI->getModule()->getDataLayout();
  return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
}
static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
  const DataLayout &DL = CASI->getModule()->getDataLayout();
  return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
}
template <typename Inst>
static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
  unsigned Size = getAtomicOpSize(I);
  Align Alignment = I->getAlign();
  return Alignment >= Size &&
         Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
}
bool AtomicExpand::runOnFunction(Function &F) {
  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC)
    return false;
  auto &TM = TPC->getTM<TargetMachine>();
  if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
    return false;
  TLI = TM.getSubtargetImpl(F)->getTargetLowering();
  SmallVector<Instruction *, 1> AtomicInsts;
      for (Instruction &I : instructions(F))
    if (I.isAtomic() && !isa<FenceInst>(&I))
      AtomicInsts.push_back(&I);
  bool MadeChange = false;
  for (auto *I : AtomicInsts) {
    auto LI = dyn_cast<LoadInst>(I);
    auto SI = dyn_cast<StoreInst>(I);
    auto RMWI = dyn_cast<AtomicRMWInst>(I);
    auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
    assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
        if (LI) {
      if (!atomicSizeSupported(TLI, LI)) {
        expandAtomicLoadToLibcall(LI);
        MadeChange = true;
        continue;
      }
    } else if (SI) {
      if (!atomicSizeSupported(TLI, SI)) {
        expandAtomicStoreToLibcall(SI);
        MadeChange = true;
        continue;
      }
    } else if (RMWI) {
      if (!atomicSizeSupported(TLI, RMWI)) {
        expandAtomicRMWToLibcall(RMWI);
        MadeChange = true;
        continue;
      }
    } else if (CASI) {
      if (!atomicSizeSupported(TLI, CASI)) {
        expandAtomicCASToLibcall(CASI);
        MadeChange = true;
        continue;
      }
    }
    if (TLI->shouldInsertFencesForAtomic(I)) {
      auto FenceOrdering = AtomicOrdering::Monotonic;
      if (LI && isAcquireOrStronger(LI->getOrdering())) {
        FenceOrdering = LI->getOrdering();
        LI->setOrdering(AtomicOrdering::Monotonic);
      } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
        FenceOrdering = SI->getOrdering();
        SI->setOrdering(AtomicOrdering::Monotonic);
      } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
                          isAcquireOrStronger(RMWI->getOrdering()))) {
        FenceOrdering = RMWI->getOrdering();
        RMWI->setOrdering(AtomicOrdering::Monotonic);
      } else if (CASI &&
                 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
                     TargetLoweringBase::AtomicExpansionKind::None &&
                 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
                  isAcquireOrStronger(CASI->getSuccessOrdering()) ||
                  isAcquireOrStronger(CASI->getFailureOrdering()))) {
                                        FenceOrdering = CASI->getMergedOrdering();
        CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
        CASI->setFailureOrdering(AtomicOrdering::Monotonic);
      }
      if (FenceOrdering != AtomicOrdering::Monotonic) {
        MadeChange |= bracketInstWithFences(I, FenceOrdering);
      }
    }
    if (LI) {
      if (TLI->shouldCastAtomicLoadInIR(LI) ==
          TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
                        LI = convertAtomicLoadToIntegerType(LI);
        assert(LI->getType()->isIntegerTy() && "invariant broken");
        MadeChange = true;
      }
      MadeChange |= tryExpandAtomicLoad(LI);
    } else if (SI) {
      if (TLI->shouldCastAtomicStoreInIR(SI) ==
          TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
                        SI = convertAtomicStoreToIntegerType(SI);
        assert(SI->getValueOperand()->getType()->isIntegerTy() &&
               "invariant broken");
        MadeChange = true;
      }
      if (tryExpandAtomicStore(SI))
        MadeChange = true;
    } else if (RMWI) {
                        
      if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
        MadeChange = true;
      } else {
        AtomicRMWInst::BinOp Op = RMWI->getOperation();
        if (TLI->shouldCastAtomicRMWIInIR(RMWI) ==
            TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
                              RMWI = convertAtomicXchgToIntegerType(RMWI);
          assert(RMWI->getValOperand()->getType()->isIntegerTy() &&
                 "invariant broken");
          MadeChange = true;
        }
        unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
        unsigned ValueSize = getAtomicOpSize(RMWI);
        if (ValueSize < MinCASSize &&
            (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
             Op == AtomicRMWInst::And)) {
          RMWI = widenPartwordAtomicRMW(RMWI);
          MadeChange = true;
        }
        MadeChange |= tryExpandAtomicRMW(RMWI);
      }
    } else if (CASI) {
                  assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
             "unimplemented - floating point not legal at IR level");
      if (CASI->getCompareOperand()->getType()->isPointerTy()) {
                        CASI = convertCmpXchgToIntegerType(CASI);
        assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
               "invariant broken");
        MadeChange = true;
      }
      MadeChange |= tryExpandAtomicCmpXchg(CASI);
    }
  }
  return MadeChange;
}
bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
  IRBuilder<> Builder(I);
  auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
  auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
      if (TrailingFence)
    TrailingFence->moveAfter(I);
  return (LeadingFence || TrailingFence);
}
IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
                                                       const DataLayout &DL) {
  EVT VT = TLI->getMemValueType(DL, T);
  unsigned BitWidth = VT.getStoreSizeInBits();
  assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
  return IntegerType::get(T->getContext(), BitWidth);
}
LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
  auto *M = LI->getModule();
  Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
  IRBuilder<> Builder(LI);
  Value *Addr = LI->getPointerOperand();
  Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
  NewLI->setAlignment(LI->getAlign());
  NewLI->setVolatile(LI->isVolatile());
  NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
  LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
  Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
  LI->replaceAllUsesWith(NewVal);
  LI->eraseFromParent();
  return NewLI;
}
AtomicRMWInst *
AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
  auto *M = RMWI->getModule();
  Type *NewTy =
      getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
  IRBuilder<> Builder(RMWI);
  Value *Addr = RMWI->getPointerOperand();
  Value *Val = RMWI->getValOperand();
  Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  Value *NewVal = Val->getType()->isPointerTy()
                      ? Builder.CreatePtrToInt(Val, NewTy)
                      : Builder.CreateBitCast(Val, NewTy);
  auto *NewRMWI =
      Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
                              RMWI->getAlign(), RMWI->getOrdering());
  NewRMWI->setVolatile(RMWI->isVolatile());
  LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
  Value *NewRVal = RMWI->getType()->isPointerTy()
                       ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
                       : Builder.CreateBitCast(NewRMWI, RMWI->getType());
  RMWI->replaceAllUsesWith(NewRVal);
  RMWI->eraseFromParent();
  return NewRMWI;
}
bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
  switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
  case TargetLoweringBase::AtomicExpansionKind::None:
    return false;
  case TargetLoweringBase::AtomicExpansionKind::LLSC:
    expandAtomicOpToLLSC(
        LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
        LI->getOrdering(),
        [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
    return true;
  case TargetLoweringBase::AtomicExpansionKind::LLOnly:
    return expandAtomicLoadToLL(LI);
  case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
    return expandAtomicLoadToCmpXchg(LI);
  case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
    LI->setAtomic(AtomicOrdering::NotAtomic);
    return true;
  default:
    llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
  }
}
bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) {
  switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
  case TargetLoweringBase::AtomicExpansionKind::None:
    return false;
  case TargetLoweringBase::AtomicExpansionKind::Expand:
    expandAtomicStore(SI);
    return true;
  case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
    SI->setAtomic(AtomicOrdering::NotAtomic);
    return true;
  default:
    llvm_unreachable("Unhandled case in tryExpandAtomicStore");
  }
}
bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
  IRBuilder<> Builder(LI);
        Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
                                   LI->getPointerOperand(), LI->getOrdering());
  TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
  LI->replaceAllUsesWith(Val);
  LI->eraseFromParent();
  return true;
}
bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
  IRBuilder<> Builder(LI);
  AtomicOrdering Order = LI->getOrdering();
  if (Order == AtomicOrdering::Unordered)
    Order = AtomicOrdering::Monotonic;
  Value *Addr = LI->getPointerOperand();
  Type *Ty = LI->getType();
  Constant *DummyVal = Constant::getNullValue(Ty);
  Value *Pair = Builder.CreateAtomicCmpXchg(
      Addr, DummyVal, DummyVal, LI->getAlign(), Order,
      AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
  Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
  LI->replaceAllUsesWith(Loaded);
  LI->eraseFromParent();
  return true;
}
StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
  IRBuilder<> Builder(SI);
  auto *M = SI->getModule();
  Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
                                            M->getDataLayout());
  Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
  Value *Addr = SI->getPointerOperand();
  Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
  NewSI->setAlignment(SI->getAlign());
  NewSI->setVolatile(SI->isVolatile());
  NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
  LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
  SI->eraseFromParent();
  return NewSI;
}
void AtomicExpand::expandAtomicStore(StoreInst *SI) {
              IRBuilder<> Builder(SI);
  AtomicOrdering Ordering = SI->getOrdering();
  assert(Ordering != AtomicOrdering::NotAtomic);
  AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
                                   ? AtomicOrdering::Monotonic
                                   : Ordering;
  AtomicRMWInst *AI = Builder.CreateAtomicRMW(
      AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
      SI->getAlign(), RMWOrdering);
  SI->eraseFromParent();
    tryExpandAtomicRMW(AI);
}
static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
                                 Value *Loaded, Value *NewVal, Align AddrAlign,
                                 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
                                 Value *&Success, Value *&NewLoaded) {
  Type *OrigTy = NewVal->getType();
    assert(!OrigTy->isPointerTy());
  bool NeedBitcast = OrigTy->isFloatingPointTy();
  if (NeedBitcast) {
    IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
    unsigned AS = Addr->getType()->getPointerAddressSpace();
    Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
    NewVal = Builder.CreateBitCast(NewVal, IntTy);
    Loaded = Builder.CreateBitCast(Loaded, IntTy);
  }
  Value *Pair = Builder.CreateAtomicCmpXchg(
      Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
      AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
  Success = Builder.CreateExtractValue(Pair, 1, "success");
  NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
  if (NeedBitcast)
    NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
}
bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
  LLVMContext &Ctx = AI->getModule()->getContext();
  TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
  switch (Kind) {
  case TargetLoweringBase::AtomicExpansionKind::None:
    return false;
  case TargetLoweringBase::AtomicExpansionKind::LLSC: {
    unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
    unsigned ValueSize = getAtomicOpSize(AI);
    if (ValueSize < MinCASSize) {
      expandPartwordAtomicRMW(AI,
                              TargetLoweringBase::AtomicExpansionKind::LLSC);
    } else {
      auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
        return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
                                   AI->getValOperand());
      };
      expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
                           AI->getAlign(), AI->getOrdering(), PerformOp);
    }
    return true;
  }
  case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
    unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
    unsigned ValueSize = getAtomicOpSize(AI);
    if (ValueSize < MinCASSize) {
            if (AI->getType()->isFloatingPointTy())
        return false;
      expandPartwordAtomicRMW(AI,
                              TargetLoweringBase::AtomicExpansionKind::CmpXChg);
    } else {
      SmallVector<StringRef> SSNs;
      Ctx.getSyncScopeNames(SSNs);
      auto MemScope = SSNs[AI->getSyncScopeID()].empty()
                          ? "system"
                          : SSNs[AI->getSyncScopeID()];
      OptimizationRemarkEmitter ORE(AI->getFunction());
      ORE.emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
               << "A compare and swap loop was generated for an atomic "
               << AI->getOperationName(AI->getOperation()) << " operation at "
               << MemScope << " memory scope";
      });
      expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
    }
    return true;
  }
  case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
    expandAtomicRMWToMaskedIntrinsic(AI);
    return true;
  }
  case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
    TLI->emitBitTestAtomicRMWIntrinsic(AI);
    return true;
  }
  case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
    return lowerAtomicRMWInst(AI);
  default:
    llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
  }
}
namespace {
struct PartwordMaskValues {
    Type *WordType = nullptr;
  Type *ValueType = nullptr;
  Value *AlignedAddr = nullptr;
  Align AlignedAddrAlignment;
    Value *ShiftAmt = nullptr;
  Value *Mask = nullptr;
  Value *Inv_Mask = nullptr;
};
LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
  auto PrintObj = [&O](auto *V) {
    if (V)
      O << *V;
    else
      O << "nullptr";
    O << '\n';
  };
  O << "PartwordMaskValues {\n";
  O << "  WordType: ";
  PrintObj(PMV.WordType);
  O << "  ValueType: ";
  PrintObj(PMV.ValueType);
  O << "  AlignedAddr: ";
  PrintObj(PMV.AlignedAddr);
  O << "  AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
  O << "  ShiftAmt: ";
  PrintObj(PMV.ShiftAmt);
  O << "  Mask: ";
  PrintObj(PMV.Mask);
  O << "  Inv_Mask: ";
  PrintObj(PMV.Inv_Mask);
  O << "}\n";
  return O;
}
} 
static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
                                           Type *ValueType, Value *Addr,
                                           Align AddrAlign,
                                           unsigned MinWordSize) {
  PartwordMaskValues PMV;
  Module *M = I->getModule();
  LLVMContext &Ctx = M->getContext();
  const DataLayout &DL = M->getDataLayout();
  unsigned ValueSize = DL.getTypeStoreSize(ValueType);
  PMV.ValueType = ValueType;
  PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
                                         : ValueType;
  if (PMV.ValueType == PMV.WordType) {
    PMV.AlignedAddr = Addr;
    PMV.AlignedAddrAlignment = AddrAlign;
    PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
    PMV.Mask = ConstantInt::get(PMV.ValueType, ~0,  true);
    return PMV;
  }
  assert(ValueSize < MinWordSize);
  Type *WordPtrType =
      PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
    Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
  PMV.AlignedAddr = Builder.CreateIntToPtr(
      Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
      "AlignedAddr");
  PMV.AlignedAddrAlignment = Align(MinWordSize);
  Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
  if (DL.isLittleEndian()) {
        PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
  } else {
        PMV.ShiftAmt = Builder.CreateShl(
        Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
  }
  PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
  PMV.Mask = Builder.CreateShl(
      ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
      "Mask");
  PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
  return PMV;
}
static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
                                 const PartwordMaskValues &PMV) {
  assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
  if (PMV.WordType == PMV.ValueType)
    return WideWord;
  Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
  Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
  return Trunc;
}
static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
                                Value *Updated, const PartwordMaskValues &PMV) {
  assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
  assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
  if (PMV.WordType == PMV.ValueType)
    return Updated;
  Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
  Value *Shift =
      Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted",  true);
  Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
  Value *Or = Builder.CreateOr(And, Shift, "inserted");
  return Or;
}
static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
                                    IRBuilder<> &Builder, Value *Loaded,
                                    Value *Shifted_Inc, Value *Inc,
                                    const PartwordMaskValues &PMV) {
        switch (Op) {
  case AtomicRMWInst::Xchg: {
    Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
    Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
    return FinalVal;
  }
  case AtomicRMWInst::Or:
  case AtomicRMWInst::Xor:
  case AtomicRMWInst::And:
    llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
  case AtomicRMWInst::Add:
  case AtomicRMWInst::Sub:
  case AtomicRMWInst::Nand: {
        Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
    Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
    Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
    Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
    return FinalVal;
  }
  case AtomicRMWInst::Max:
  case AtomicRMWInst::Min:
  case AtomicRMWInst::UMax:
  case AtomicRMWInst::UMin: {
                Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
    Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
    Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
    return FinalVal;
  }
  default:
    llvm_unreachable("Unknown atomic op");
  }
}
void AtomicExpand::expandPartwordAtomicRMW(
    AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
  AtomicOrdering MemOpOrder = AI->getOrdering();
  SyncScope::ID SSID = AI->getSyncScopeID();
  IRBuilder<> Builder(AI);
  PartwordMaskValues PMV =
      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
                       AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  Value *ValOperand_Shifted =
      Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
                        PMV.ShiftAmt, "ValOperand_Shifted");
  auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
    return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
                                 ValOperand_Shifted, AI->getValOperand(), PMV);
  };
  Value *OldResult;
  if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
    OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
                                     PMV.AlignedAddrAlignment, MemOpOrder, SSID,
                                     PerformPartwordOp, createCmpXchgInstFun);
  } else {
    assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
    OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
                                  PMV.AlignedAddrAlignment, MemOpOrder,
                                  PerformPartwordOp);
  }
  Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
  AI->replaceAllUsesWith(FinalOldResult);
  AI->eraseFromParent();
}
AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
  IRBuilder<> Builder(AI);
  AtomicRMWInst::BinOp Op = AI->getOperation();
  assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
          Op == AtomicRMWInst::And) &&
         "Unable to widen operation");
  PartwordMaskValues PMV =
      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
                       AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  Value *ValOperand_Shifted =
      Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
                        PMV.ShiftAmt, "ValOperand_Shifted");
  Value *NewOperand;
  if (Op == AtomicRMWInst::And)
    NewOperand =
        Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
  else
    NewOperand = ValOperand_Shifted;
  AtomicRMWInst *NewAI =
      Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
                              PMV.AlignedAddrAlignment, AI->getOrdering());
  Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
  AI->replaceAllUsesWith(FinalOldResult);
  AI->eraseFromParent();
  return NewAI;
}
bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
          
                                                        
  Value *Addr = CI->getPointerOperand();
  Value *Cmp = CI->getCompareOperand();
  Value *NewVal = CI->getNewValOperand();
  BasicBlock *BB = CI->getParent();
  Function *F = BB->getParent();
  IRBuilder<> Builder(CI);
  LLVMContext &Ctx = Builder.getContext();
  BasicBlock *EndBB =
      BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
  auto FailureBB =
      BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
  auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
      std::prev(BB->end())->eraseFromParent();
  Builder.SetInsertPoint(BB);
  PartwordMaskValues PMV =
      createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
                       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
    Value *NewVal_Shifted =
      Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
  Value *Cmp_Shifted =
      Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
      LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
  InitLoaded->setVolatile(CI->isVolatile());
  Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
  Builder.CreateBr(LoopBB);
    Builder.SetInsertPoint(LoopBB);
  PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
  Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
    Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
  Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
  AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
      PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
      CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
  NewCI->setVolatile(CI->isVolatile());
            NewCI->setWeak(CI->isWeak());
  Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
  Value *Success = Builder.CreateExtractValue(NewCI, 1);
  if (CI->isWeak())
    Builder.CreateBr(EndBB);
  else
    Builder.CreateCondBr(Success, EndBB, FailureBB);
    Builder.SetInsertPoint(FailureBB);
        Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
  Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
  Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
    Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
    Builder.SetInsertPoint(CI);
  Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
  Value *Res = UndefValue::get(CI->getType());
  Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
  Res = Builder.CreateInsertValue(Res, Success, 1);
  CI->replaceAllUsesWith(Res);
  CI->eraseFromParent();
  return true;
}
void AtomicExpand::expandAtomicOpToLLSC(
    Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
    AtomicOrdering MemOpOrder,
    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
  IRBuilder<> Builder(I);
  Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
                                    MemOpOrder, PerformOp);
  I->replaceAllUsesWith(Loaded);
  I->eraseFromParent();
}
void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
  IRBuilder<> Builder(AI);
  PartwordMaskValues PMV =
      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
                       AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
        Instruction::CastOps CastOp = Instruction::ZExt;
  AtomicRMWInst::BinOp RMWOp = AI->getOperation();
  if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
    CastOp = Instruction::SExt;
  Value *ValOperand_Shifted = Builder.CreateShl(
      Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
      PMV.ShiftAmt, "ValOperand_Shifted");
  Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
      Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
      AI->getOrdering());
  Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
  AI->replaceAllUsesWith(FinalOldResult);
  AI->eraseFromParent();
}
void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
  IRBuilder<> Builder(CI);
  PartwordMaskValues PMV = createMaskInstrs(
      Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
      CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  Value *CmpVal_Shifted = Builder.CreateShl(
      Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
      "CmpVal_Shifted");
  Value *NewVal_Shifted = Builder.CreateShl(
      Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
      "NewVal_Shifted");
  Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
      Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
      CI->getMergedOrdering());
  Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
  Value *Res = UndefValue::get(CI->getType());
  Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
  Value *Success = Builder.CreateICmpEQ(
      CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
  Res = Builder.CreateInsertValue(Res, Success, 1);
  CI->replaceAllUsesWith(Res);
  CI->eraseFromParent();
}
Value *AtomicExpand::insertRMWLLSCLoop(
    IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
    AtomicOrdering MemOpOrder,
    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
  LLVMContext &Ctx = Builder.getContext();
  BasicBlock *BB = Builder.GetInsertBlock();
  Function *F = BB->getParent();
  assert(AddrAlign >=
             F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
         "Expected at least natural alignment at this point.");
                          BasicBlock *ExitBB =
      BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
  BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
      std::prev(BB->end())->eraseFromParent();
  Builder.SetInsertPoint(BB);
  Builder.CreateBr(LoopBB);
    Builder.SetInsertPoint(LoopBB);
  Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
  Value *NewVal = PerformOp(Builder, Loaded);
  Value *StoreSuccess =
      TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
  Value *TryAgain = Builder.CreateICmpNE(
      StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
  Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
  return Loaded;
}
AtomicCmpXchgInst *
AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
  auto *M = CI->getModule();
  Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
                                            M->getDataLayout());
  IRBuilder<> Builder(CI);
  Value *Addr = CI->getPointerOperand();
  Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
  Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
  auto *NewCI = Builder.CreateAtomicCmpXchg(
      NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
      CI->getFailureOrdering(), CI->getSyncScopeID());
  NewCI->setVolatile(CI->isVolatile());
  NewCI->setWeak(CI->isWeak());
  LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
  Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
  Value *Succ = Builder.CreateExtractValue(NewCI, 1);
  OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
  Value *Res = UndefValue::get(CI->getType());
  Res = Builder.CreateInsertValue(Res, OldVal, 0);
  Res = Builder.CreateInsertValue(Res, Succ, 1);
  CI->replaceAllUsesWith(Res);
  CI->eraseFromParent();
  return NewCI;
}
bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
  AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
  AtomicOrdering FailureOrder = CI->getFailureOrdering();
  Value *Addr = CI->getPointerOperand();
  BasicBlock *BB = CI->getParent();
  Function *F = BB->getParent();
  LLVMContext &Ctx = F->getContext();
          bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
  AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
                                  ? AtomicOrdering::Monotonic
                                  : CI->getMergedOrdering();
                    bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
                           SuccessOrder != AtomicOrdering::Monotonic &&
                           SuccessOrder != AtomicOrdering::Acquire &&
                           !F->hasMinSize();
      bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
                                                                                                  BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
  auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
  auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
  auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
  auto ReleasedLoadBB =
      BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
  auto TryStoreBB =
      BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
  auto ReleasingStoreBB =
      BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
  auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
    IRBuilder<> Builder(CI);
        std::prev(BB->end())->eraseFromParent();
  Builder.SetInsertPoint(BB);
  if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
    TLI->emitLeadingFence(Builder, CI, SuccessOrder);
  PartwordMaskValues PMV =
      createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
                       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  Builder.CreateBr(StartBB);
    Builder.SetInsertPoint(StartBB);
  Value *UnreleasedLoad =
      TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
  Value *UnreleasedLoadExtract =
      extractMaskedValue(Builder, UnreleasedLoad, PMV);
  Value *ShouldStore = Builder.CreateICmpEQ(
      UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
      Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
  Builder.SetInsertPoint(ReleasingStoreBB);
  if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
    TLI->emitLeadingFence(Builder, CI, SuccessOrder);
  Builder.CreateBr(TryStoreBB);
  Builder.SetInsertPoint(TryStoreBB);
  PHINode *LoadedTryStore =
      Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
  LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
  Value *NewValueInsert =
      insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
  Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
                                                  PMV.AlignedAddr, MemOpOrder);
  StoreSuccess = Builder.CreateICmpEQ(
      StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
  BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
  Builder.CreateCondBr(StoreSuccess, SuccessBB,
                       CI->isWeak() ? FailureBB : RetryBB);
  Builder.SetInsertPoint(ReleasedLoadBB);
  Value *SecondLoad;
  if (HasReleasedLoadBB) {
    SecondLoad =
        TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
    Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
    ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
                                       CI->getCompareOperand(), "should_store");
            Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
        LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
  } else
    Builder.CreateUnreachable();
      Builder.SetInsertPoint(SuccessBB);
  if (ShouldInsertFencesForAtomic)
    TLI->emitTrailingFence(Builder, CI, SuccessOrder);
  Builder.CreateBr(ExitBB);
  Builder.SetInsertPoint(NoStoreBB);
  PHINode *LoadedNoStore =
      Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
  LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
  if (HasReleasedLoadBB)
    LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
        TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
  Builder.CreateBr(FailureBB);
  Builder.SetInsertPoint(FailureBB);
  PHINode *LoadedFailure =
      Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
  LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
  if (CI->isWeak())
    LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
  if (ShouldInsertFencesForAtomic)
    TLI->emitTrailingFence(Builder, CI, FailureOrder);
  Builder.CreateBr(ExitBB);
          Builder.SetInsertPoint(ExitBB, ExitBB->begin());
  PHINode *LoadedExit =
      Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
  LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
  LoadedExit->addIncoming(LoadedFailure, FailureBB);
  PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
  Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
  Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
      Value *LoadedFull = LoadedExit;
  Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
  Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
      SmallVector<ExtractValueInst *, 2> PrunedInsts;
  for (auto *User : CI->users()) {
    ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
    if (!EV)
      continue;
    assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
           "weird extraction from { iN, i1 }");
    if (EV->getIndices()[0] == 0)
      EV->replaceAllUsesWith(Loaded);
    else
      EV->replaceAllUsesWith(Success);
    PrunedInsts.push_back(EV);
  }
    for (auto *EV : PrunedInsts)
    EV->eraseFromParent();
  if (!CI->use_empty()) {
            Value *Res;
    Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
    Res = Builder.CreateInsertValue(Res, Success, 1);
    CI->replaceAllUsesWith(Res);
  }
  CI->eraseFromParent();
  return true;
}
bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) {
  auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
  if (!C)
    return false;
  AtomicRMWInst::BinOp Op = RMWI->getOperation();
  switch (Op) {
  case AtomicRMWInst::Add:
  case AtomicRMWInst::Sub:
  case AtomicRMWInst::Or:
  case AtomicRMWInst::Xor:
    return C->isZero();
  case AtomicRMWInst::And:
    return C->isMinusOne();
    default:
    return false;
  }
}
bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
  if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
    tryExpandAtomicLoad(ResultingLoad);
    return true;
  }
  return false;
}
Value *AtomicExpand::insertRMWCmpXchgLoop(
    IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
    AtomicOrdering MemOpOrder, SyncScope::ID SSID,
    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
    CreateCmpXchgInstFun CreateCmpXchg) {
  LLVMContext &Ctx = Builder.getContext();
  BasicBlock *BB = Builder.GetInsertBlock();
  Function *F = BB->getParent();
                                BasicBlock *ExitBB =
      BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
  BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
        std::prev(BB->end())->eraseFromParent();
  Builder.SetInsertPoint(BB);
  LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
  Builder.CreateBr(LoopBB);
    Builder.SetInsertPoint(LoopBB);
  PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
  Loaded->addIncoming(InitLoaded, BB);
  Value *NewVal = PerformOp(Builder, Loaded);
  Value *NewLoaded = nullptr;
  Value *Success = nullptr;
  CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
                MemOpOrder == AtomicOrdering::Unordered
                    ? AtomicOrdering::Monotonic
                    : MemOpOrder,
                SSID, Success, NewLoaded);
  assert(Success && NewLoaded);
  Loaded->addIncoming(NewLoaded, LoopBB);
  Builder.CreateCondBr(Success, ExitBB, LoopBB);
  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
  return NewLoaded;
}
bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
  unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
  unsigned ValueSize = getAtomicOpSize(CI);
  switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
  default:
    llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
  case TargetLoweringBase::AtomicExpansionKind::None:
    if (ValueSize < MinCASSize)
      return expandPartwordCmpXchg(CI);
    return false;
  case TargetLoweringBase::AtomicExpansionKind::LLSC: {
    return expandAtomicCmpXchg(CI);
  }
  case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
    expandAtomicCmpXchgToMaskedIntrinsic(CI);
    return true;
  case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
    return lowerAtomicCmpXchgInst(CI);
  }
}
bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
                                    CreateCmpXchgInstFun CreateCmpXchg) {
  IRBuilder<> Builder(AI);
  Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
      Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
      AI->getOrdering(), AI->getSyncScopeID(),
      [&](IRBuilder<> &Builder, Value *Loaded) {
        return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
                                   AI->getValOperand());
      },
      CreateCmpXchg);
  AI->replaceAllUsesWith(Loaded);
  AI->eraseFromParent();
  return true;
}
static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
                                  const DataLayout &DL) {
                unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
  return Alignment >= Size &&
         (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
         Size <= LargestSize;
}
void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
  static const RTLIB::Libcall Libcalls[6] = {
      RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
      RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
  unsigned Size = getAtomicOpSize(I);
  bool expanded = expandAtomicOpToLibcall(
      I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
      I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
  if (!expanded)
    report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
}
void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
  static const RTLIB::Libcall Libcalls[6] = {
      RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
      RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
  unsigned Size = getAtomicOpSize(I);
  bool expanded = expandAtomicOpToLibcall(
      I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
      nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
  if (!expanded)
    report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
}
void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
  static const RTLIB::Libcall Libcalls[6] = {
      RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
      RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
      RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
  unsigned Size = getAtomicOpSize(I);
  bool expanded = expandAtomicOpToLibcall(
      I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
      I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
      Libcalls);
  if (!expanded)
    report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
}
static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
  static const RTLIB::Libcall LibcallsXchg[6] = {
      RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
      RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
      RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
  static const RTLIB::Libcall LibcallsAdd[6] = {
      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
      RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
      RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
  static const RTLIB::Libcall LibcallsSub[6] = {
      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
      RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
      RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
  static const RTLIB::Libcall LibcallsAnd[6] = {
      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
      RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
      RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
  static const RTLIB::Libcall LibcallsOr[6] = {
      RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
      RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
      RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
  static const RTLIB::Libcall LibcallsXor[6] = {
      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
      RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
      RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
  static const RTLIB::Libcall LibcallsNand[6] = {
      RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
      RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
      RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
  switch (Op) {
  case AtomicRMWInst::BAD_BINOP:
    llvm_unreachable("Should not have BAD_BINOP.");
  case AtomicRMWInst::Xchg:
    return makeArrayRef(LibcallsXchg);
  case AtomicRMWInst::Add:
    return makeArrayRef(LibcallsAdd);
  case AtomicRMWInst::Sub:
    return makeArrayRef(LibcallsSub);
  case AtomicRMWInst::And:
    return makeArrayRef(LibcallsAnd);
  case AtomicRMWInst::Or:
    return makeArrayRef(LibcallsOr);
  case AtomicRMWInst::Xor:
    return makeArrayRef(LibcallsXor);
  case AtomicRMWInst::Nand:
    return makeArrayRef(LibcallsNand);
  case AtomicRMWInst::Max:
  case AtomicRMWInst::Min:
  case AtomicRMWInst::UMax:
  case AtomicRMWInst::UMin:
  case AtomicRMWInst::FMax:
  case AtomicRMWInst::FMin:
  case AtomicRMWInst::FAdd:
  case AtomicRMWInst::FSub:
        return {};
  }
  llvm_unreachable("Unexpected AtomicRMW operation.");
}
void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
  ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
  unsigned Size = getAtomicOpSize(I);
  bool Success = false;
  if (!Libcalls.empty())
    Success = expandAtomicOpToLibcall(
        I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
        nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
          if (!Success) {
    expandAtomicRMWToCmpXchg(
        I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
                  Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
                  SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
                    AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
              Addr, Loaded, NewVal, Alignment, MemOpOrder,
              AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
          Success = Builder.CreateExtractValue(Pair, 1, "success");
          NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
                    expandAtomicCASToLibcall(Pair);
        });
  }
}
bool AtomicExpand::expandAtomicOpToLibcall(
    Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
    Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
    AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
  assert(Libcalls.size() == 6);
  LLVMContext &Ctx = I->getContext();
  Module *M = I->getModule();
  const DataLayout &DL = M->getDataLayout();
  IRBuilder<> Builder(I);
  IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
  bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
  Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
  const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
      ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
  assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
  Constant *OrderingVal =
      ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
  Constant *Ordering2Val = nullptr;
  if (CASExpected) {
    assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
    Ordering2Val =
        ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
  }
  bool HasResult = I->getType() != Type::getVoidTy(Ctx);
  RTLIB::Libcall RTLibType;
  if (UseSizedLibcall) {
    switch (Size) {
    case 1:
      RTLibType = Libcalls[1];
      break;
    case 2:
      RTLibType = Libcalls[2];
      break;
    case 4:
      RTLibType = Libcalls[3];
      break;
    case 8:
      RTLibType = Libcalls[4];
      break;
    case 16:
      RTLibType = Libcalls[5];
      break;
    }
  } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
    RTLibType = Libcalls[0];
  } else {
            return false;
  }
  if (!TLI->getLibcallName(RTLibType)) {
        return false;
  }
                                                  
  AllocaInst *AllocaCASExpected = nullptr;
  Value *AllocaCASExpected_i8 = nullptr;
  AllocaInst *AllocaValue = nullptr;
  Value *AllocaValue_i8 = nullptr;
  AllocaInst *AllocaResult = nullptr;
  Value *AllocaResult_i8 = nullptr;
  Type *ResultTy;
  SmallVector<Value *, 6> Args;
  AttributeList Attr;
    if (!UseSizedLibcall) {
        Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
  }
            auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
  Value *PtrVal =
      Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS));
  PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
  Args.push_back(PtrVal);
    if (CASExpected) {
    AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
    AllocaCASExpected->setAlignment(AllocaAlignment);
    unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
    AllocaCASExpected_i8 = Builder.CreateBitCast(
        AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS));
    Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
    Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
    Args.push_back(AllocaCASExpected_i8);
  }
    if (ValueOperand) {
    if (UseSizedLibcall) {
      Value *IntValue =
          Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
      Args.push_back(IntValue);
    } else {
      AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
      AllocaValue->setAlignment(AllocaAlignment);
      AllocaValue_i8 =
          Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
      Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
      Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
      Args.push_back(AllocaValue_i8);
    }
  }
    if (!CASExpected && HasResult && !UseSizedLibcall) {
    AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
    AllocaResult->setAlignment(AllocaAlignment);
    unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
    AllocaResult_i8 =
        Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
    Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
    Args.push_back(AllocaResult_i8);
  }
    Args.push_back(OrderingVal);
    if (Ordering2Val)
    Args.push_back(Ordering2Val);
    if (CASExpected) {
    ResultTy = Type::getInt1Ty(Ctx);
    Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
  } else if (HasResult && UseSizedLibcall)
    ResultTy = SizedIntTy;
  else
    ResultTy = Type::getVoidTy(Ctx);
    SmallVector<Type *, 6> ArgTys;
  for (Value *Arg : Args)
    ArgTys.push_back(Arg->getType());
  FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
  FunctionCallee LibcallFn =
      M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
  CallInst *Call = Builder.CreateCall(LibcallFn, Args);
  Call->setAttributes(Attr);
  Value *Result = Call;
    if (ValueOperand && !UseSizedLibcall)
    Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
  if (CASExpected) {
            Type *FinalResultTy = I->getType();
    Value *V = UndefValue::get(FinalResultTy);
    Value *ExpectedOut = Builder.CreateAlignedLoad(
        CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
    Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
    V = Builder.CreateInsertValue(V, ExpectedOut, 0);
    V = Builder.CreateInsertValue(V, Result, 1);
    I->replaceAllUsesWith(V);
  } else if (HasResult) {
    Value *V;
    if (UseSizedLibcall)
      V = Builder.CreateBitOrPointerCast(Result, I->getType());
    else {
      V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
                                    AllocaAlignment);
      Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
    }
    I->replaceAllUsesWith(V);
  }
  I->eraseFromParent();
  return true;
}