#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "dse"
STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther, "Number of other instrs removed");
STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
STATISTIC(NumModifiedStores, "Number of stores modified");
STATISTIC(NumCFGChecks, "Number of stores modified");
STATISTIC(NumCFGTries, "Number of stores modified");
STATISTIC(NumCFGSuccess, "Number of stores modified");
STATISTIC(NumGetDomMemoryDefPassed,
"Number of times a valid candidate is returned from getDomMemoryDef");
STATISTIC(NumDomMemDefChecks,
"Number iterations check for reads in getDomMemoryDef");
DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
"Controls which MemoryDefs are eliminated.");
static cl::opt<bool>
EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
cl::init(true), cl::Hidden,
cl::desc("Enable partial-overwrite tracking in DSE"));
static cl::opt<bool>
EnablePartialStoreMerging("enable-dse-partial-store-merging",
cl::init(true), cl::Hidden,
cl::desc("Enable partial store merging in DSE"));
static cl::opt<unsigned>
MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
cl::desc("The number of memory instructions to scan for "
"dead store elimination (default = 150)"));
static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
"dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
cl::desc("The maximum number of steps while walking upwards to find "
"MemoryDefs that may be killed (default = 90)"));
static cl::opt<unsigned> MemorySSAPartialStoreLimit(
"dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
cl::desc("The maximum number candidates that only partially overwrite the "
"killing MemoryDef to consider"
" (default = 5)"));
static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
"dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
"other stores per basic block (default = 5000)"));
static cl::opt<unsigned> MemorySSASameBBStepCost(
"dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
cl::desc(
"The cost of a step in the same basic block as the killing MemoryDef"
"(default = 1)"));
static cl::opt<unsigned>
MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
cl::Hidden,
cl::desc("The cost of a step in a different basic "
"block than the killing MemoryDef"
"(default = 5)"));
static cl::opt<unsigned> MemorySSAPathCheckLimit(
"dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
cl::desc("The maximum number of blocks to check when trying to prove that "
"all paths to an exit go through a killing block (default = 50)"));
static cl::opt<bool>
OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
cl::desc("Allow DSE to optimize memory accesses."));
using OverlapIntervalsTy = std::map<int64_t, int64_t>;
using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
static bool isShortenableAtTheEnd(Instruction *I) {
if (isa<StoreInst>(I))
return false;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::memset:
case Intrinsic::memcpy:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
return true;
}
}
return false;
}
static bool isShortenableAtTheBeginning(Instruction *I) {
return isa<AnyMemSetInst>(I);
}
static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
const TargetLibraryInfo &TLI,
const Function *F) {
uint64_t Size;
ObjectSizeOpts Opts;
Opts.NullIsUnknownSize = NullPointerIsDefined(F);
if (getObjectSize(V, Size, DL, &TLI, Opts))
return Size;
return MemoryLocation::UnknownSize;
}
namespace {
enum OverwriteResult {
OW_Begin,
OW_Complete,
OW_End,
OW_PartialEarlierWithFullLater,
OW_MaybePartial,
OW_None,
OW_Unknown
};
}
static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
const Instruction *DeadI,
BatchAAResults &AA) {
const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
if (KillingII == nullptr || DeadII == nullptr)
return OW_Unknown;
if (KillingII->getIntrinsicID() != Intrinsic::masked_store ||
DeadII->getIntrinsicID() != Intrinsic::masked_store)
return OW_Unknown;
Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
return OW_Unknown;
if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
return OW_Unknown;
return OW_Complete;
}
static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
const MemoryLocation &DeadLoc,
int64_t KillingOff, int64_t DeadOff,
Instruction *DeadI,
InstOverlapIntervalsTy &IOL) {
const uint64_t KillingSize = KillingLoc.Size.getValue();
const uint64_t DeadSize = DeadLoc.Size.getValue();
if (EnablePartialOverwriteTracking &&
KillingOff < int64_t(DeadOff + DeadSize) &&
int64_t(KillingOff + KillingSize) >= DeadOff) {
auto &IM = IOL[DeadI];
LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
<< int64_t(DeadOff + DeadSize) << ") KillingLoc ["
<< KillingOff << ", " << int64_t(KillingOff + KillingSize)
<< ")\n");
int64_t KillingIntStart = KillingOff;
int64_t KillingIntEnd = KillingOff + KillingSize;
auto ILI = IM.lower_bound(KillingIntStart);
if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
KillingIntStart = std::min(KillingIntStart, ILI->second);
KillingIntEnd = std::max(KillingIntEnd, ILI->first);
ILI = IM.erase(ILI);
while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
assert(ILI->second > KillingIntStart && "Unexpected interval");
KillingIntEnd = std::max(KillingIntEnd, ILI->first);
ILI = IM.erase(ILI);
}
}
IM[KillingIntEnd] = KillingIntStart;
ILI = IM.begin();
if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
<< DeadOff << ", " << int64_t(DeadOff + DeadSize)
<< ") Composite KillingLoc [" << ILI->second << ", "
<< ILI->first << ")\n");
++NumCompletePartials;
return OW_Complete;
}
}
if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
int64_t(DeadOff + DeadSize) > KillingOff &&
uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
<< ", " << int64_t(DeadOff + DeadSize)
<< ") by a killing store [" << KillingOff << ", "
<< int64_t(KillingOff + KillingSize) << ")\n");
return OW_PartialEarlierWithFullLater;
}
if (!EnablePartialOverwriteTracking &&
(KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
return OW_End;
if (!EnablePartialOverwriteTracking &&
(KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
"Expect to be handled as OW_Complete");
return OW_Begin;
}
return OW_Unknown;
}
static bool
memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
BatchAAResults &AA, const DataLayout &DL,
DominatorTree *DT) {
using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
SmallVector<BlockAddressPair, 16> WorkList;
DenseMap<BasicBlock *, Value *> Visited;
BasicBlock::iterator FirstBBI(FirstI);
++FirstBBI;
BasicBlock::iterator SecondBBI(SecondI);
BasicBlock *FirstBB = FirstI->getParent();
BasicBlock *SecondBB = SecondI->getParent();
MemoryLocation MemLoc;
if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
MemLoc = MemoryLocation::getForDest(MemSet);
else
MemLoc = MemoryLocation::get(SecondI);
auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
WorkList.push_back(
std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
bool isFirstBlock = true;
while (!WorkList.empty()) {
BlockAddressPair Current = WorkList.pop_back_val();
BasicBlock *B = Current.first;
PHITransAddr &Addr = Current.second;
Value *Ptr = Addr.getAddr();
BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
BasicBlock::iterator EI;
if (isFirstBlock) {
assert(B == SecondBB && "first block is not the store block");
EI = SecondBBI;
isFirstBlock = false;
} else {
EI = B->end();
}
for (; BI != EI; ++BI) {
Instruction *I = &*BI;
if (I->mayWriteToMemory() && I != SecondI)
if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
return false;
}
if (B != FirstBB) {
assert(B != &FirstBB->getParent()->getEntryBlock() &&
"Should not hit the entry block because SI must be dominated by LI");
for (BasicBlock *Pred : predecessors(B)) {
PHITransAddr PredAddr = Addr;
if (PredAddr.NeedsPHITranslationFromBlock(B)) {
if (!PredAddr.IsPotentiallyPHITranslatable())
return false;
if (PredAddr.PHITranslateValue(B, Pred, DT, false))
return false;
}
Value *TranslatedPtr = PredAddr.getAddr();
auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
if (!Inserted.second) {
if (TranslatedPtr != Inserted.first->second)
return false;
continue;
}
WorkList.push_back(std::make_pair(Pred, PredAddr));
}
}
}
return true;
}
static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
uint64_t &DeadSize, int64_t KillingStart,
uint64_t KillingSize, bool IsOverwriteEnd) {
auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
int64_t ToRemoveStart = 0;
uint64_t ToRemoveSize = 0;
if (IsOverwriteEnd) {
uint64_t Off =
offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
ToRemoveStart = KillingStart + Off;
if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
return false;
ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
} else {
ToRemoveStart = DeadStart;
assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
"Not overlapping accesses?");
ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
if (Off != 0) {
if (ToRemoveSize <= (PrefAlign.value() - Off))
return false;
ToRemoveSize -= PrefAlign.value() - Off;
}
assert(isAligned(PrefAlign, ToRemoveSize) &&
"Should preserve selected alignment");
}
assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
uint64_t NewSize = DeadSize - ToRemoveSize;
if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
const uint32_t ElementSize = AMI->getElementSizeInBytes();
if (0 != NewSize % ElementSize)
return false;
}
LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
<< (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
<< "\n KILLER [" << ToRemoveStart << ", "
<< int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
Value *DeadWriteLength = DeadIntrinsic->getLength();
Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
DeadIntrinsic->setLength(TrimmedLength);
DeadIntrinsic->setDestAlignment(PrefAlign);
if (!IsOverwriteEnd) {
Value *OrigDest = DeadIntrinsic->getRawDest();
Type *Int8PtrTy =
Type::getInt8PtrTy(DeadIntrinsic->getContext(),
OrigDest->getType()->getPointerAddressSpace());
Value *Dest = OrigDest;
if (OrigDest->getType() != Int8PtrTy)
Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI);
Value *Indices[1] = {
ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI);
NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
if (NewDestGEP->getType() != OrigDest->getType())
NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(),
"", DeadI);
DeadIntrinsic->setDest(NewDestGEP);
}
if (!IsOverwriteEnd)
DeadStart += ToRemoveSize;
DeadSize = NewSize;
return true;
}
static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
int64_t &DeadStart, uint64_t &DeadSize) {
if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
return false;
OverlapIntervalsTy::iterator OII = --IntervalMap.end();
int64_t KillingStart = OII->second;
uint64_t KillingSize = OII->first - KillingStart;
assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
if (KillingStart > DeadStart &&
(uint64_t)(KillingStart - DeadStart) < DeadSize &&
KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
true)) {
IntervalMap.erase(OII);
return true;
}
}
return false;
}
static bool tryToShortenBegin(Instruction *DeadI,
OverlapIntervalsTy &IntervalMap,
int64_t &DeadStart, uint64_t &DeadSize) {
if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
return false;
OverlapIntervalsTy::iterator OII = IntervalMap.begin();
int64_t KillingStart = OII->second;
uint64_t KillingSize = OII->first - KillingStart;
assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
if (KillingStart <= DeadStart &&
KillingSize > (uint64_t)(DeadStart - KillingStart)) {
assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
"Should have been handled as OW_Complete");
if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
false)) {
IntervalMap.erase(OII);
return true;
}
}
return false;
}
static Constant *
tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
int64_t KillingOffset, int64_t DeadOffset,
const DataLayout &DL, BatchAAResults &AA,
DominatorTree *DT) {
if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
APInt KillingValue =
cast<ConstantInt>(KillingI->getValueOperand())->getValue();
unsigned KillingBits = KillingValue.getBitWidth();
assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
KillingValue = KillingValue.zext(DeadValue.getBitWidth());
unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
unsigned LShiftAmount =
DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
: BitOffsetDiff;
APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
LShiftAmount + KillingBits);
APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI
<< "\n Killing: " << *KillingI
<< "\n Merged Value: " << Merged << '\n');
return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
}
return nullptr;
}
namespace {
bool isNoopIntrinsic(Instruction *I) {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::assume:
return true;
case Intrinsic::dbg_addr:
case Intrinsic::dbg_declare:
case Intrinsic::dbg_label:
case Intrinsic::dbg_value:
llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
default:
return false;
}
}
return false;
}
bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
Instruction *DI = D->getMemoryInst();
if (auto *CB = dyn_cast<CallBase>(DI))
if (CB->onlyAccessesInaccessibleMemory())
return true;
if (DI->mayThrow() && !DefVisibleToCaller)
return true;
if (isa<FenceInst>(DI))
return true;
if (isNoopIntrinsic(DI))
return true;
return false;
}
struct DSEState {
Function &F;
AliasAnalysis &AA;
EarliestEscapeInfo EI;
BatchAAResults BatchAA;
MemorySSA &MSSA;
DominatorTree &DT;
PostDominatorTree &PDT;
const TargetLibraryInfo &TLI;
const DataLayout &DL;
const LoopInfo &LI;
bool ContainsIrreducibleLoops;
SmallVector<MemoryDef *, 64> MemDefs;
SmallPtrSet<MemoryAccess *, 4> SkipStores;
DenseMap<const Value *, bool> CapturedBeforeReturn;
DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
SmallPtrSet<const Value *, 32> EphValues;
MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
bool AnyUnreachableExit;
bool ShouldIterateEndOfFunctionDSE;
DSEState(const DSEState &) = delete;
DSEState &operator=(const DSEState &) = delete;
DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
PostDominatorTree &PDT, AssumptionCache &AC,
const TargetLibraryInfo &TLI, const LoopInfo &LI)
: F(F), AA(AA), EI(DT, LI, EphValues), BatchAA(AA, &EI), MSSA(MSSA),
DT(DT), PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
unsigned PO = 0;
for (BasicBlock *BB : post_order(&F)) {
PostOrderNumbers[BB] = PO++;
for (Instruction &I : *BB) {
MemoryAccess *MA = MSSA.getMemoryAccess(&I);
if (I.mayThrow() && !MA)
ThrowingBlocks.insert(I.getParent());
auto *MD = dyn_cast_or_null<MemoryDef>(MA);
if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
(getLocForWrite(&I) || isMemTerminatorInst(&I)))
MemDefs.push_back(MD);
}
}
for (Argument &AI : F.args())
if (AI.hasPassPointeeByValueCopyAttr())
InvisibleToCallerAfterRet.insert({&AI, true});
ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
return isa<UnreachableInst>(E->getTerminator());
});
CodeMetrics::collectEphemeralValues(&F, &AC, EphValues);
}
OverwriteResult isOverwrite(const Instruction *KillingI,
const Instruction *DeadI,
const MemoryLocation &KillingLoc,
const MemoryLocation &DeadLoc,
int64_t &KillingOff, int64_t &DeadOff) {
if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
return OW_Unknown;
const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
if (DeadUndObj == KillingUndObj && KillingLoc.Size.isPrecise()) {
uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F);
if (KillingUndObjSize != MemoryLocation::UnknownSize &&
KillingUndObjSize == KillingLoc.Size.getValue())
return OW_Complete;
}
if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) {
const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
if (KillingMemI && DeadMemI) {
const Value *KillingV = KillingMemI->getLength();
const Value *DeadV = DeadMemI->getLength();
if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
return OW_Complete;
}
return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
}
const uint64_t KillingSize = KillingLoc.Size.getValue();
const uint64_t DeadSize = DeadLoc.Size.getValue();
AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
if (AAR == AliasResult::MustAlias) {
if (KillingSize >= DeadSize)
return OW_Complete;
}
if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
int32_t Off = AAR.getOffset();
if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
return OW_Complete;
}
if (DeadUndObj != KillingUndObj) {
if (AAR == AliasResult::NoAlias)
return OW_None;
return OW_Unknown;
}
DeadOff = 0;
KillingOff = 0;
const Value *DeadBasePtr =
GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
const Value *KillingBasePtr =
GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
if (DeadBasePtr != KillingBasePtr)
return OW_Unknown;
if (DeadOff >= KillingOff) {
if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
return OW_Complete;
else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
return OW_MaybePartial;
}
else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
return OW_MaybePartial;
}
return OW_None;
}
bool isInvisibleToCallerAfterRet(const Value *V) {
if (isa<AllocaInst>(V))
return true;
auto I = InvisibleToCallerAfterRet.insert({V, false});
if (I.second) {
if (!isInvisibleToCallerOnUnwind(V)) {
I.first->second = false;
} else if (isNoAliasCall(V)) {
I.first->second = !PointerMayBeCaptured(V, true, false, EphValues);
}
}
return I.first->second;
}
bool isInvisibleToCallerOnUnwind(const Value *V) {
bool RequiresNoCaptureBeforeUnwind;
if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind))
return false;
if (!RequiresNoCaptureBeforeUnwind)
return true;
auto I = CapturedBeforeReturn.insert({V, true});
if (I.second)
I.first->second = PointerMayBeCaptured(V, false, true, EphValues);
return !I.first->second;
}
Optional<MemoryLocation> getLocForWrite(Instruction *I) const {
if (!I->mayWriteToMemory())
return None;
if (auto *CB = dyn_cast<CallBase>(I))
return MemoryLocation::getForDest(CB, TLI);
return MemoryLocation::getOrNone(I);
}
bool isRemovable(Instruction *I) {
assert(getLocForWrite(I) && "Must have analyzable write");
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isUnordered();
if (auto *CB = dyn_cast<CallBase>(I)) {
if (auto *MI = dyn_cast<MemIntrinsic>(CB))
return !MI->isVolatile();
if (CB->isLifetimeStartOrEnd())
return false;
return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
!CB->isTerminator();
}
return false;
}
bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
Instruction *UseInst) {
if (!UseInst->mayWriteToMemory())
return false;
if (auto *CB = dyn_cast<CallBase>(UseInst))
if (CB->onlyAccessesInaccessibleMemory())
return false;
int64_t InstWriteOffset, DepWriteOffset;
if (auto CC = getLocForWrite(UseInst))
return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
DepWriteOffset) == OW_Complete;
return false;
}
bool isWriteAtEndOfFunction(MemoryDef *Def) {
LLVM_DEBUG(dbgs() << " Check if def " << *Def << " ("
<< *Def->getMemoryInst()
<< ") is at the end the function \n");
auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
if (!MaybeLoc) {
LLVM_DEBUG(dbgs() << " ... could not get location for write.\n");
return false;
}
SmallVector<MemoryAccess *, 4> WorkList;
SmallPtrSet<MemoryAccess *, 8> Visited;
auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
if (!Visited.insert(Acc).second)
return;
for (Use &U : Acc->uses())
WorkList.push_back(cast<MemoryAccess>(U.getUser()));
};
PushMemUses(Def);
for (unsigned I = 0; I < WorkList.size(); I++) {
if (WorkList.size() >= MemorySSAScanLimit) {
LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n");
return false;
}
MemoryAccess *UseAccess = WorkList[I];
if (isa<MemoryPhi>(UseAccess))
return false;
Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
if (isReadClobber(*MaybeLoc, UseInst)) {
LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n");
return false;
}
if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
PushMemUses(UseDef);
}
return true;
}
Optional<std::pair<MemoryLocation, bool>>
getLocForTerminator(Instruction *I) const {
uint64_t Len;
Value *Ptr;
if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
m_Value(Ptr))))
return {std::make_pair(MemoryLocation(Ptr, Len), false)};
if (auto *CB = dyn_cast<CallBase>(I)) {
if (Value *FreedOp = getFreedOperand(CB, &TLI))
return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)};
}
return None;
}
bool isMemTerminatorInst(Instruction *I) const {
auto *CB = dyn_cast<CallBase>(I);
return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
getFreedOperand(CB, &TLI) != nullptr);
}
bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
Instruction *MaybeTerm) {
Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
getLocForTerminator(MaybeTerm);
if (!MaybeTermLoc)
return false;
if (getUnderlyingObject(Loc.Ptr) !=
getUnderlyingObject(MaybeTermLoc->first.Ptr))
return false;
auto TermLoc = MaybeTermLoc->first;
if (MaybeTermLoc->second) {
const Value *LocUO = getUnderlyingObject(Loc.Ptr);
return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
}
int64_t InstWriteOffset = 0;
int64_t DepWriteOffset = 0;
return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
DepWriteOffset) == OW_Complete;
}
bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
if (isNoopIntrinsic(UseInst))
return false;
if (auto SI = dyn_cast<StoreInst>(UseInst))
return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
if (!UseInst->mayReadFromMemory())
return false;
if (auto *CB = dyn_cast<CallBase>(UseInst))
if (CB->onlyAccessesInaccessibleMemory())
return false;
return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
}
bool isGuaranteedLoopIndependent(const Instruction *Current,
const Instruction *KillingDef,
const MemoryLocation &CurrentLoc) {
if (Current->getParent() == KillingDef->getParent())
return true;
const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
if (!ContainsIrreducibleLoops && CurrentLI &&
CurrentLI == LI.getLoopFor(KillingDef->getParent()))
return true;
return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
}
bool isGuaranteedLoopInvariant(const Value *Ptr) {
Ptr = Ptr->stripPointerCasts();
if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
if (GEP->hasAllConstantIndices())
Ptr = GEP->getPointerOperand()->stripPointerCasts();
if (auto *I = dyn_cast<Instruction>(Ptr))
return I->getParent()->isEntryBlock();
return true;
}
Optional<MemoryAccess *>
getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
const MemoryLocation &KillingLoc, const Value *KillingUndObj,
unsigned &ScanLimit, unsigned &WalkerStepLimit,
bool IsMemTerm, unsigned &PartialLimit) {
if (ScanLimit == 0 || WalkerStepLimit == 0) {
LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
return None;
}
MemoryAccess *Current = StartAccess;
Instruction *KillingI = KillingDef->getMemoryInst();
LLVM_DEBUG(dbgs() << " trying to get dominating access\n");
bool CanOptimize = OptimizeMemorySSA &&
KillingDef->getDefiningAccess() == StartAccess &&
!KillingI->mayReadFromMemory();
Optional<MemoryLocation> CurrentLoc;
for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
LLVM_DEBUG({
dbgs() << " visiting " << *Current;
if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
<< ")";
dbgs() << "\n";
});
if (MSSA.isLiveOnEntryDef(Current)) {
LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n");
if (CanOptimize && Current != KillingDef->getDefiningAccess())
KillingDef->setOptimized(Current);
return None;
}
unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
? MemorySSASameBBStepCost
: MemorySSAOtherBBStepCost;
if (WalkerStepLimit <= StepCost) {
LLVM_DEBUG(dbgs() << " ... hit walker step limit\n");
return None;
}
WalkerStepLimit -= StepCost;
if (isa<MemoryPhi>(Current)) {
LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n");
return Current;
}
MemoryDef *CurrentDef = cast<MemoryDef>(Current);
Instruction *CurrentI = CurrentDef->getMemoryInst();
if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
CanOptimize = false;
continue;
}
if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
LLVM_DEBUG(dbgs() << " ... skip, may throw!\n");
return None;
}
if (isDSEBarrier(KillingUndObj, CurrentI)) {
LLVM_DEBUG(dbgs() << " ... skip, barrier\n");
return None;
}
if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
return None;
if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
return !MSSA.dominates(StartAccess, UseOrDef) &&
isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
return false;
})) {
LLVM_DEBUG(dbgs() << " ... found a read clobber\n");
return None;
}
CurrentLoc = getLocForWrite(CurrentI);
if (!CurrentLoc || !isRemovable(CurrentI)) {
CanOptimize = false;
continue;
}
if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n");
CanOptimize = false;
continue;
}
if (IsMemTerm) {
if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
CanOptimize = false;
continue;
}
} else {
int64_t KillingOffset = 0;
int64_t DeadOffset = 0;
auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
KillingOffset, DeadOffset);
if (CanOptimize) {
if (CurrentDef != KillingDef->getDefiningAccess() &&
(OR == OW_Complete || OR == OW_MaybePartial))
KillingDef->setOptimized(CurrentDef);
if (OR != OW_None)
CanOptimize = false;
}
if (OR == OW_Unknown || OR == OW_None)
continue;
else if (OR == OW_MaybePartial) {
if (PartialLimit <= 1) {
WalkerStepLimit -= 1;
LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n");
continue;
}
PartialLimit -= 1;
}
}
break;
};
SmallPtrSet<Instruction *, 16> KillingDefs;
KillingDefs.insert(KillingDef->getMemoryInst());
MemoryAccess *MaybeDeadAccess = Current;
MemoryLocation MaybeDeadLoc = *CurrentLoc;
Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " ("
<< *MaybeDeadI << ")\n");
SmallSetVector<MemoryAccess *, 32> WorkList;
auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
for (Use &U : Acc->uses())
WorkList.insert(cast<MemoryAccess>(U.getUser()));
};
PushMemUses(MaybeDeadAccess);
for (unsigned I = 0; I < WorkList.size(); I++) {
MemoryAccess *UseAccess = WorkList[I];
LLVM_DEBUG(dbgs() << " " << *UseAccess);
if (ScanLimit < (WorkList.size() - I)) {
LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
return None;
}
--ScanLimit;
NumDomMemDefChecks++;
if (isa<MemoryPhi>(UseAccess)) {
if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
return DT.properlyDominates(KI->getParent(),
UseAccess->getBlock());
})) {
LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
continue;
}
LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n");
PushMemUses(UseAccess);
continue;
}
Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
return DT.dominates(KI, UseInst);
})) {
LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
continue;
}
if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
LLVM_DEBUG(
dbgs()
<< " ... skipping, memterminator invalidates following accesses\n");
continue;
}
if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n");
PushMemUses(UseAccess);
continue;
}
if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
LLVM_DEBUG(dbgs() << " ... found throwing instruction\n");
return None;
}
if (isReadClobber(MaybeDeadLoc, UseInst)) {
LLVM_DEBUG(dbgs() << " ... found read clobber\n");
return None;
}
if (MaybeDeadAccess == UseAccess &&
!isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n");
return None;
}
if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n");
continue;
}
if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
BasicBlock *MaybeKillingBlock = UseInst->getParent();
if (PostOrderNumbers.find(MaybeKillingBlock)->second <
PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
LLVM_DEBUG(dbgs()
<< " ... found killing def " << *UseInst << "\n");
KillingDefs.insert(UseInst);
}
} else {
LLVM_DEBUG(dbgs()
<< " ... found preceeding def " << *UseInst << "\n");
return None;
}
} else
PushMemUses(UseDef);
}
}
if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
SmallPtrSet<BasicBlock *, 16> KillingBlocks;
for (Instruction *KD : KillingDefs)
KillingBlocks.insert(KD->getParent());
assert(!KillingBlocks.empty() &&
"Expected at least a single killing block");
BasicBlock *CommonPred = *KillingBlocks.begin();
for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
if (!CommonPred)
break;
CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
}
if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
if (!AnyUnreachableExit)
return None;
CommonPred = nullptr;
}
if (KillingBlocks.count(CommonPred))
return {MaybeDeadAccess};
SetVector<BasicBlock *> WorkList;
if (CommonPred)
WorkList.insert(CommonPred);
else
for (BasicBlock *R : PDT.roots()) {
if (!isa<UnreachableInst>(R->getTerminator()))
WorkList.insert(R);
}
NumCFGTries++;
for (unsigned I = 0; I < WorkList.size(); I++) {
NumCFGChecks++;
BasicBlock *Current = WorkList[I];
if (KillingBlocks.count(Current))
continue;
if (Current == MaybeDeadAccess->getBlock())
return None;
if (!DT.isReachableFromEntry(Current))
continue;
for (BasicBlock *Pred : predecessors(Current))
WorkList.insert(Pred);
if (WorkList.size() >= MemorySSAPathCheckLimit)
return None;
}
NumCFGSuccess++;
}
return {MaybeDeadAccess};
}
void deleteDeadInstruction(Instruction *SI) {
MemorySSAUpdater Updater(&MSSA);
SmallVector<Instruction *, 32> NowDeadInsts;
NowDeadInsts.push_back(SI);
--NumFastOther;
while (!NowDeadInsts.empty()) {
Instruction *DeadInst = NowDeadInsts.pop_back_val();
++NumFastOther;
salvageDebugInfo(*DeadInst);
salvageKnowledge(DeadInst);
if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
SkipStores.insert(MD);
if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) {
if (SI->getValueOperand()->getType()->isPointerTy()) {
const Value *UO = getUnderlyingObject(SI->getValueOperand());
if (CapturedBeforeReturn.erase(UO))
ShouldIterateEndOfFunctionDSE = true;
InvisibleToCallerAfterRet.erase(UO);
}
}
}
Updater.removeMemoryAccess(MA);
}
auto I = IOLs.find(DeadInst->getParent());
if (I != IOLs.end())
I->second.erase(DeadInst);
for (Use &O : DeadInst->operands())
if (Instruction *OpI = dyn_cast<Instruction>(O)) {
O = nullptr;
if (isInstructionTriviallyDead(OpI, &TLI))
NowDeadInsts.push_back(OpI);
}
EI.removeInstruction(DeadInst);
DeadInst->eraseFromParent();
}
}
bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
const Value *KillingUndObj) {
if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
return false;
if (KillingI->getParent() == DeadI->getParent())
return ThrowingBlocks.count(KillingI->getParent());
return !ThrowingBlocks.empty();
}
bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
return true;
if (DeadI->isAtomic()) {
if (auto *LI = dyn_cast<LoadInst>(DeadI))
return isStrongerThanMonotonic(LI->getOrdering());
if (auto *SI = dyn_cast<StoreInst>(DeadI))
return isStrongerThanMonotonic(SI->getOrdering());
if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
return isStrongerThanMonotonic(ARMW->getOrdering());
if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
llvm_unreachable("other instructions should be skipped in MemorySSA");
}
return false;
}
bool eliminateDeadWritesAtEndOfFunction() {
bool MadeChange = false;
LLVM_DEBUG(
dbgs()
<< "Trying to eliminate MemoryDefs at the end of the function\n");
do {
ShouldIterateEndOfFunctionDSE = false;
for (MemoryDef *Def : llvm::reverse(MemDefs)) {
if (SkipStores.contains(Def))
continue;
Instruction *DefI = Def->getMemoryInst();
auto DefLoc = getLocForWrite(DefI);
if (!DefLoc || !isRemovable(DefI))
continue;
const Value *UO = getUnderlyingObject(DefLoc->Ptr);
if (!isInvisibleToCallerAfterRet(UO))
continue;
if (isWriteAtEndOfFunction(Def)) {
LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end "
"of the function\n");
deleteDeadInstruction(DefI);
++NumFastStores;
MadeChange = true;
}
}
} while (ShouldIterateEndOfFunctionDSE);
return MadeChange;
}
bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
Instruction *DefI = Def->getMemoryInst();
MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
if (!MemSet)
return false;
Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
if (!StoredConstant || !StoredConstant->isNullValue())
return false;
if (!isRemovable(DefI))
return false;
if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
F.hasFnAttribute(Attribute::SanitizeAddress) ||
F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
F.getName() == "calloc")
return false;
auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
if (!Malloc)
return false;
auto *InnerCallee = Malloc->getCalledFunction();
if (!InnerCallee)
return false;
LibFunc Func;
if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
Func != LibFunc_malloc)
return false;
auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
auto *MallocBB = Malloc->getParent(),
*MemsetBB = Memset->getParent();
if (MallocBB == MemsetBB)
return true;
auto *Ptr = Memset->getArgOperand(0);
auto *TI = MallocBB->getTerminator();
ICmpInst::Predicate Pred;
BasicBlock *TrueBB, *FalseBB;
if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
FalseBB)))
return false;
if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
return false;
return true;
};
if (Malloc->getOperand(0) != MemSet->getLength())
return false;
if (!shouldCreateCalloc(Malloc, MemSet) ||
!DT.dominates(Malloc, MemSet) ||
!memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
return false;
IRBuilder<> IRB(Malloc);
const auto &DL = Malloc->getModule()->getDataLayout();
auto *Calloc =
emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1),
Malloc->getArgOperand(0), IRB, TLI);
if (!Calloc)
return false;
MemorySSAUpdater Updater(&MSSA);
auto *LastDef =
cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc));
auto *NewAccess =
Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef,
LastDef);
auto *NewAccessMD = cast<MemoryDef>(NewAccess);
Updater.insertDef(NewAccessMD, true);
Updater.removeMemoryAccess(Malloc);
Malloc->replaceAllUsesWith(Calloc);
Malloc->eraseFromParent();
return true;
}
bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
Instruction *DefI = Def->getMemoryInst();
StoreInst *Store = dyn_cast<StoreInst>(DefI);
MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
Constant *StoredConstant = nullptr;
if (Store)
StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
else if (MemSet)
StoredConstant = dyn_cast<Constant>(MemSet->getValue());
else
return false;
if (!isRemovable(DefI))
return false;
if (StoredConstant) {
Constant *InitC =
getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType());
if (InitC && InitC == StoredConstant)
return MSSA.isLiveOnEntryDef(
MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def));
}
if (!Store)
return false;
if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
if (LoadI->getPointerOperand() == Store->getOperand(1)) {
auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
if (LoadAccess == Def->getDefiningAccess())
return true;
SetVector<MemoryAccess *> ToCheck;
MemoryAccess *Current =
MSSA.getWalker()->getClobberingMemoryAccess(Def);
ToCheck.insert(Def);
ToCheck.insert(Current);
for (unsigned I = 1; I < ToCheck.size(); ++I) {
Current = ToCheck[I];
if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
for (auto &Use : PhiAccess->incoming_values())
ToCheck.insert(cast<MemoryAccess>(&Use));
continue;
}
assert(isa<MemoryDef>(Current) &&
"Only MemoryDefs should reach here.");
if (LoadAccess != Current)
return false;
}
return true;
}
}
return false;
}
bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
bool Changed = false;
for (auto OI : IOL) {
Instruction *DeadI = OI.first;
MemoryLocation Loc = *getLocForWrite(DeadI);
assert(isRemovable(DeadI) && "Expect only removable instruction");
const Value *Ptr = Loc.Ptr->stripPointerCasts();
int64_t DeadStart = 0;
uint64_t DeadSize = Loc.Size.getValue();
GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
OverlapIntervalsTy &IntervalMap = OI.second;
Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
if (IntervalMap.empty())
continue;
Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
}
return Changed;
}
bool eliminateRedundantStoresOfExistingValues() {
bool MadeChange = false;
LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
"already existing value\n");
for (auto *Def : MemDefs) {
if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
continue;
Instruction *DefInst = Def->getMemoryInst();
auto MaybeDefLoc = getLocForWrite(DefInst);
if (!MaybeDefLoc || !isRemovable(DefInst))
continue;
MemoryDef *UpperDef;
if (Def->isOptimized())
UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
else
UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
continue;
Instruction *UpperInst = UpperDef->getMemoryInst();
auto IsRedundantStore = [&]() {
if (DefInst->isIdenticalTo(UpperInst))
return true;
if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
int64_t InstWriteOffset = 0;
int64_t DepWriteOffset = 0;
auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
InstWriteOffset, DepWriteOffset);
Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
return StoredByte && StoredByte == MemSetI->getOperand(1) &&
OR == OW_Complete;
}
}
return false;
};
if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
continue;
LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst
<< '\n');
deleteDeadInstruction(DefInst);
NumRedundantStores++;
MadeChange = true;
}
return MadeChange;
}
};
static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
DominatorTree &DT, PostDominatorTree &PDT,
AssumptionCache &AC,
const TargetLibraryInfo &TLI,
const LoopInfo &LI) {
bool MadeChange = false;
MSSA.ensureOptimizedUses();
DSEState State(F, AA, MSSA, DT, PDT, AC, TLI, LI);
for (unsigned I = 0; I < State.MemDefs.size(); I++) {
MemoryDef *KillingDef = State.MemDefs[I];
if (State.SkipStores.count(KillingDef))
continue;
Instruction *KillingI = KillingDef->getMemoryInst();
Optional<MemoryLocation> MaybeKillingLoc;
if (State.isMemTerminatorInst(KillingI))
MaybeKillingLoc = State.getLocForTerminator(KillingI).map(
[](const std::pair<MemoryLocation, bool> &P) { return P.first; });
else
MaybeKillingLoc = State.getLocForWrite(KillingI);
if (!MaybeKillingLoc) {
LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
<< *KillingI << "\n");
continue;
}
MemoryLocation KillingLoc = *MaybeKillingLoc;
assert(KillingLoc.Ptr && "KillingLoc should not be null");
const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
<< *KillingDef << " (" << *KillingI << ")\n");
unsigned ScanLimit = MemorySSAScanLimit;
unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
unsigned PartialLimit = MemorySSAPartialStoreLimit;
SetVector<MemoryAccess *> ToCheck;
ToCheck.insert(KillingDef->getDefiningAccess());
bool Shortend = false;
bool IsMemTerm = State.isMemTerminatorInst(KillingI);
for (unsigned I = 0; I < ToCheck.size(); I++) {
MemoryAccess *Current = ToCheck[I];
if (State.SkipStores.count(Current))
continue;
Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
WalkerStepLimit, IsMemTerm, PartialLimit);
if (!MaybeDeadAccess) {
LLVM_DEBUG(dbgs() << " finished walk\n");
continue;
}
MemoryAccess *DeadAccess = *MaybeDeadAccess;
LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
if (isa<MemoryPhi>(DeadAccess)) {
LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n");
for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
BasicBlock *IncomingBlock = IncomingAccess->getBlock();
BasicBlock *PhiBlock = DeadAccess->getBlock();
if (State.PostOrderNumbers[IncomingBlock] >
State.PostOrderNumbers[PhiBlock])
ToCheck.insert(IncomingAccess);
}
continue;
}
auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
Instruction *DeadI = DeadDefAccess->getMemoryInst();
LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
ToCheck.insert(DeadDefAccess->getDefiningAccess());
NumGetDomMemoryDefPassed++;
if (!DebugCounter::shouldExecute(MemorySSACounter))
continue;
MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
if (IsMemTerm) {
const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
if (KillingUndObj != DeadUndObj)
continue;
LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
<< "\n KILLER: " << *KillingI << '\n');
State.deleteDeadInstruction(DeadI);
++NumFastStores;
MadeChange = true;
} else {
int64_t KillingOffset = 0;
int64_t DeadOffset = 0;
OverwriteResult OR = State.isOverwrite(
KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
if (OR == OW_MaybePartial) {
auto Iter = State.IOLs.insert(
std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
DeadI->getParent(), InstOverlapIntervalsTy()));
auto &IOL = Iter.first->second;
OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
DeadOffset, DeadI, IOL);
}
if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
auto *DeadSI = dyn_cast<StoreInst>(DeadI);
auto *KillingSI = dyn_cast<StoreInst>(KillingI);
if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
if (Constant *Merged = tryToMergePartialOverlappingStores(
KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
State.BatchAA, &DT)) {
DeadSI->setOperand(0, Merged);
++NumModifiedStores;
MadeChange = true;
Shortend = true;
State.deleteDeadInstruction(KillingSI);
auto I = State.IOLs.find(DeadSI->getParent());
if (I != State.IOLs.end())
I->second.erase(DeadSI);
break;
}
}
}
if (OR == OW_Complete) {
LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
<< "\n KILLER: " << *KillingI << '\n');
State.deleteDeadInstruction(DeadI);
++NumFastStores;
MadeChange = true;
}
}
}
if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI
<< '\n');
State.deleteDeadInstruction(KillingI);
NumRedundantStores++;
MadeChange = true;
continue;
}
if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
<< " DEAD: " << *KillingI << '\n');
State.deleteDeadInstruction(KillingI);
MadeChange = true;
continue;
}
}
if (EnablePartialOverwriteTracking)
for (auto &KV : State.IOLs)
MadeChange |= State.removePartiallyOverlappedStores(KV.second);
MadeChange |= State.eliminateRedundantStoresOfExistingValues();
MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
return MadeChange;
}
}
PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
AliasAnalysis &AA = AM.getResult<AAManager>(F);
const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
#ifdef LLVM_ENABLE_STATS
if (AreStatisticsEnabled())
for (auto &I : instructions(F))
NumRemainingStores += isa<StoreInst>(&I);
#endif
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<MemorySSAAnalysis>();
PA.preserve<LoopAnalysis>();
return PA;
}
namespace {
class DSELegacyPass : public FunctionPass {
public:
static char ID;
DSELegacyPass() : FunctionPass(ID) {
initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
const TargetLibraryInfo &TLI =
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
PostDominatorTree &PDT =
getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
AssumptionCache &AC =
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
#ifdef LLVM_ENABLE_STATS
if (AreStatisticsEnabled())
for (auto &I : instructions(F))
NumRemainingStores += isa<StoreInst>(&I);
#endif
return Changed;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<PostDominatorTreeWrapperPass>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addPreserved<PostDominatorTreeWrapperPass>();
AU.addPreserved<MemorySSAWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
}
};
}
char DSELegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
false)
FunctionPass *llvm::createDeadStoreEliminationPass() {
return new DSELegacyPass();
}