; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -passes=instcombine < %s | FileCheck %s declare double @llvm.sqrt.f64(double) nounwind readnone speculatable declare <2 x float> @llvm.sqrt.v2f32(<2 x float>) declare void @use(double) ; sqrt(a) * sqrt(b) no math flags define double @sqrt_a_sqrt_b(double %a, double %b) { ; CHECK-LABEL: @sqrt_a_sqrt_b( ; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]]) ; CHECK-NEXT: [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]] ; CHECK-NEXT: ret double [[MUL]] ; %1 = call double @llvm.sqrt.f64(double %a) %2 = call double @llvm.sqrt.f64(double %b) %mul = fmul double %1, %2 ret double %mul } ; sqrt(a) * sqrt(b) fast-math, multiple uses define double @sqrt_a_sqrt_b_multiple_uses(double %a, double %b) { ; CHECK-LABEL: @sqrt_a_sqrt_b_multiple_uses( ; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[A:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = call fast double @llvm.sqrt.f64(double [[B:%.*]]) ; CHECK-NEXT: [[MUL:%.*]] = fmul fast double [[TMP1]], [[TMP2]] ; CHECK-NEXT: call void @use(double [[TMP2]]) ; CHECK-NEXT: ret double [[MUL]] ; %1 = call fast double @llvm.sqrt.f64(double %a) %2 = call fast double @llvm.sqrt.f64(double %b) %mul = fmul fast double %1, %2 call void @use(double %2) ret double %mul } ; sqrt(a) * sqrt(b) => sqrt(a*b) with fast-math define double @sqrt_a_sqrt_b_reassoc_nnan(double %a, double %b) { ; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc_nnan( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan double [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = call reassoc nnan double @llvm.sqrt.f64(double [[TMP1]]) ; CHECK-NEXT: ret double [[TMP2]] ; %1 = call double @llvm.sqrt.f64(double %a) %2 = call double @llvm.sqrt.f64(double %b) %mul = fmul reassoc nnan double %1, %2 ret double %mul } ; nnan disallows the possibility that both operands are negative, ; so we won't return a number when the answer should be NaN. define double @sqrt_a_sqrt_b_reassoc(double %a, double %b) { ; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc( ; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]]) ; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc double [[TMP1]], [[TMP2]] ; CHECK-NEXT: ret double [[MUL]] ; %1 = call double @llvm.sqrt.f64(double %a) %2 = call double @llvm.sqrt.f64(double %b) %mul = fmul reassoc double %1, %2 ret double %mul } ; sqrt(a) * sqrt(b) * sqrt(c) * sqrt(d) => sqrt(a*b*c*d) with fast-math ; 'reassoc nnan' on the fmuls is all that is required, but check propagation of other FMF. define double @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(double %a, double %b, double %c, double %d) { ; CHECK-LABEL: @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan arcp double [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = fmul reassoc nnan double [[TMP1]], [[C:%.*]] ; CHECK-NEXT: [[TMP3:%.*]] = fmul reassoc nnan ninf double [[TMP2]], [[D:%.*]] ; CHECK-NEXT: [[TMP4:%.*]] = call reassoc nnan ninf double @llvm.sqrt.f64(double [[TMP3]]) ; CHECK-NEXT: ret double [[TMP4]] ; %1 = call double @llvm.sqrt.f64(double %a) %2 = call double @llvm.sqrt.f64(double %b) %3 = call double @llvm.sqrt.f64(double %c) %4 = call double @llvm.sqrt.f64(double %d) %mul = fmul reassoc nnan arcp double %1, %2 %mul1 = fmul reassoc nnan double %mul, %3 %mul2 = fmul reassoc nnan ninf double %mul1, %4 ret double %mul2 } define double @rsqrt_squared(double %x) { ; CHECK-LABEL: @rsqrt_squared( ; CHECK-NEXT: [[SQUARED:%.*]] = fdiv fast double 1.000000e+00, [[X:%.*]] ; CHECK-NEXT: ret double [[SQUARED]] ; %sqrt = call fast double @llvm.sqrt.f64(double %x) %rsqrt = fdiv fast double 1.0, %sqrt %squared = fmul fast double %rsqrt, %rsqrt ret double %squared } define double @rsqrt_x_reassociate_extra_use(double %x, double * %p) { ; CHECK-LABEL: @rsqrt_x_reassociate_extra_use( ; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: [[RSQRT:%.*]] = fdiv double 1.000000e+00, [[SQRT]] ; CHECK-NEXT: [[RES:%.*]] = fdiv reassoc nsz double [[X:%.*]], [[SQRT]] ; CHECK-NEXT: store double [[RSQRT]], double* [[P:%.*]], align 8 ; CHECK-NEXT: ret double [[RES]] ; %sqrt = call double @llvm.sqrt.f64(double %x) %rsqrt = fdiv double 1.0, %sqrt %res = fmul reassoc nsz double %rsqrt, %x store double %rsqrt, double* %p ret double %res } define <2 x float> @x_add_y_rsqrt_reassociate_extra_use(<2 x float> %x, <2 x float> %y, <2 x float>* %p) { ; CHECK-LABEL: @x_add_y_rsqrt_reassociate_extra_use( ; CHECK-NEXT: [[ADD:%.*]] = fadd fast <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[SQRT:%.*]] = call fast <2 x float> @llvm.sqrt.v2f32(<2 x float> [[ADD]]) ; CHECK-NEXT: [[RSQRT:%.*]] = fdiv fast <2 x float> <float 1.000000e+00, float 1.000000e+00>, [[SQRT]] ; CHECK-NEXT: [[RES:%.*]] = fdiv fast <2 x float> [[ADD]], [[SQRT]] ; CHECK-NEXT: store <2 x float> [[RSQRT]], <2 x float>* [[P:%.*]], align 8 ; CHECK-NEXT: ret <2 x float> [[RES]] ; %add = fadd fast <2 x float> %x, %y ; thwart complexity-based canonicalization %sqrt = call fast <2 x float> @llvm.sqrt.v2f32(<2 x float> %add) %rsqrt = fdiv fast <2 x float> <float 1.0, float 1.0>, %sqrt %res = fmul fast <2 x float> %add, %rsqrt store <2 x float> %rsqrt, <2 x float>* %p ret <2 x float> %res } define double @sqrt_divisor_squared(double %x, double %y) { ; CHECK-LABEL: @sqrt_divisor_squared( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan nsz double [[Y:%.*]], [[Y]] ; CHECK-NEXT: [[SQUARED:%.*]] = fdiv reassoc nnan nsz double [[TMP1]], [[X:%.*]] ; CHECK-NEXT: ret double [[SQUARED]] ; %sqrt = call double @llvm.sqrt.f64(double %x) %div = fdiv double %y, %sqrt %squared = fmul reassoc nnan nsz double %div, %div ret double %squared } define <2 x float> @sqrt_dividend_squared(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @sqrt_dividend_squared( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast <2 x float> [[Y:%.*]], [[Y]] ; CHECK-NEXT: [[SQUARED:%.*]] = fdiv fast <2 x float> [[X:%.*]], [[TMP1]] ; CHECK-NEXT: ret <2 x float> [[SQUARED]] ; %sqrt = call <2 x float> @llvm.sqrt.v2f32(<2 x float> %x) %div = fdiv fast <2 x float> %sqrt, %y %squared = fmul fast <2 x float> %div, %div ret <2 x float> %squared } ; We do not transform this because it would result in an extra instruction. ; This might still be a good optimization for the backend. define double @sqrt_divisor_squared_extra_use(double %x, double %y) { ; CHECK-LABEL: @sqrt_divisor_squared_extra_use( ; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: [[DIV:%.*]] = fdiv double [[Y:%.*]], [[SQRT]] ; CHECK-NEXT: call void @use(double [[DIV]]) ; CHECK-NEXT: [[SQUARED:%.*]] = fmul reassoc nnan nsz double [[DIV]], [[DIV]] ; CHECK-NEXT: ret double [[SQUARED]] ; %sqrt = call double @llvm.sqrt.f64(double %x) %div = fdiv double %y, %sqrt call void @use(double %div) %squared = fmul reassoc nnan nsz double %div, %div ret double %squared } define double @sqrt_dividend_squared_extra_use(double %x, double %y) { ; CHECK-LABEL: @sqrt_dividend_squared_extra_use( ; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: call void @use(double [[SQRT]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[Y:%.*]], [[Y]] ; CHECK-NEXT: [[SQUARED:%.*]] = fdiv fast double [[X]], [[TMP1]] ; CHECK-NEXT: ret double [[SQUARED]] ; %sqrt = call double @llvm.sqrt.f64(double %x) call void @use(double %sqrt) %div = fdiv fast double %sqrt, %y %squared = fmul fast double %div, %div ret double %squared } ; Negative test - require 'nsz'. define double @sqrt_divisor_not_enough_FMF(double %x, double %y) { ; CHECK-LABEL: @sqrt_divisor_not_enough_FMF( ; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: [[DIV:%.*]] = fdiv double [[Y:%.*]], [[SQRT]] ; CHECK-NEXT: [[SQUARED:%.*]] = fmul reassoc nnan double [[DIV]], [[DIV]] ; CHECK-NEXT: ret double [[SQUARED]] ; %sqrt = call double @llvm.sqrt.f64(double %x) %div = fdiv double %y, %sqrt %squared = fmul reassoc nnan double %div, %div ret double %squared } ; TODO: This is a special-case of the general pattern. If we have a constant ; operand, the extra use limitation could be eased because this does not ; result in an extra instruction (1.0 * 1.0 is constant folded). define double @rsqrt_squared_extra_use(double %x) { ; CHECK-LABEL: @rsqrt_squared_extra_use( ; CHECK-NEXT: [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: [[RSQRT:%.*]] = fdiv fast double 1.000000e+00, [[SQRT]] ; CHECK-NEXT: call void @use(double [[RSQRT]]) ; CHECK-NEXT: [[SQUARED:%.*]] = fmul fast double [[RSQRT]], [[RSQRT]] ; CHECK-NEXT: ret double [[SQUARED]] ; %sqrt = call fast double @llvm.sqrt.f64(double %x) %rsqrt = fdiv fast double 1.0, %sqrt call void @use(double %rsqrt) %squared = fmul fast double %rsqrt, %rsqrt ret double %squared }