//===- README_P9.txt - Notes for improving Power9 code gen ----------------===//
TODO: Instructions Need Implement Instrinstics or Map to LLVM IR
Altivec:
- Vector Compare Not Equal (Zero):
vcmpneb(.) vcmpneh(.) vcmpnew(.)
vcmpnezb(.) vcmpnezh(.) vcmpnezw(.)
. Same as other VCMP*, use VCMP/VCMPo form (support intrinsic)
- Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd
. Don't use llvm extractelement because they have different semantics
. Use instrinstics:
(set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM))
(set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM))
(set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM))
(set v2i64:$vD, (int_ppc_altivec_vextractd v2i64:$vA, imm:$UIMM))
- Vector Extract Unsigned Byte Left/Right-Indexed:
vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx
. Use instrinstics:
// Left-Indexed
(set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB))
(set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB))
(set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB))
// Right-Indexed
(set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB))
(set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB))
(set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB))
- Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw
(set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM))
(set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM))
(set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM))
(set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM))
- Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]:
vclzlsbb vctzlsbb
. Use intrinsic:
(set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))
(set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))
- Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd
. Map to llvm cttz
(set v16i8:$vD, (cttz v16i8:$vB)) // vctzb
(set v8i16:$vD, (cttz v8i16:$vB)) // vctzh
(set v4i32:$vD, (cttz v4i32:$vB)) // vctzw
(set v2i64:$vD, (cttz v2i64:$vB)) // vctzd
- Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d
. vextsb2w:
(set v4i32:$vD, (sext v4i8:$vB))
// PowerISA_V3.0:
do i = 0 to 3
VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].byte[3])
end
. vextsh2w:
(set v4i32:$vD, (sext v4i16:$vB))
// PowerISA_V3.0:
do i = 0 to 3
VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].hword[1])
end
. vextsb2d
(set v2i64:$vD, (sext v2i8:$vB))
// PowerISA_V3.0:
do i = 0 to 1
VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].byte[7])
end
. vextsh2d
(set v2i64:$vD, (sext v2i16:$vB))
// PowerISA_V3.0:
do i = 0 to 1
VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].hword[3])
end
. vextsw2d
(set v2i64:$vD, (sext v2i32:$vB))
// PowerISA_V3.0:
do i = 0 to 1
VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].word[1])
end
- Vector Integer Negate: vnegw vnegd
. Map to llvm ineg
(set v4i32:$rT, (ineg v4i32:$rA)) // vnegw
(set v2i64:$rT, (ineg v2i64:$rA)) // vnegd
- Vector Parity Byte: vprtybw vprtybd vprtybq
. Use intrinsic:
(set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB))
(set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB))
(set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB))
- Vector (Bit) Permute (Right-indexed):
. vbpermd: Same as "vbpermq", use VX1_Int_Ty2:
VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>;
. vpermr: use VA1a_Int_Ty3
VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>;
- Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi
. Use intrinsic:
VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>;
VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>;
VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>;
VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>;
- Vector Shift Left/Right: vslv vsrv
. Use intrinsic, don't map to llvm shl and lshr, because they have different
semantics, e.g. vslv:
do i = 0 to 15
sh ← VR[VRB].byte[i].bit[5:7]
VR[VRT].byte[i] ← src.byte[i:i+1].bit[sh:sh+7]
end
VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1]
. VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>;
VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>;
- Vector Multiply-by-10 (& Write Carry) Unsigned Quadword:
vmul10uq vmul10cuq
. Use intrinsic:
VX1_Int_Ty<513, "vmul10uq", int_ppc_altivec_vmul10uq, v1i128>;
VX1_Int_Ty< 1, "vmul10cuq", int_ppc_altivec_vmul10cuq, v1i128>;
- Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword:
vmul10euq vmul10ecuq
. Use intrinsic:
VX1_Int_Ty<577, "vmul10euq", int_ppc_altivec_vmul10euq, v1i128>;
VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>;
- Decimal Convert From/to National/Zoned/Signed-QWord:
bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq.
. Use instrinstics:
(set v1i128:$vD, (int_ppc_altivec_bcdcfno v1i128:$vB, i1:$PS))
(set v1i128:$vD, (int_ppc_altivec_bcdcfzo v1i128:$vB, i1:$PS))
(set v1i128:$vD, (int_ppc_altivec_bcdctno v1i128:$vB))
(set v1i128:$vD, (int_ppc_altivec_bcdctzo v1i128:$vB, i1:$PS))
(set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS))
(set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB))
- Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn.
. Use instrinstics:
(set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB))
(set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS))
- Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr.
. Use instrinstics:
(set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS))
(set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
(set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS))
. Note! Their VA is accessed only 1 byte, i.e. VA.byte[7]
- Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc.
. Use instrinstics:
(set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS))
(set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
. Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63])
VSX:
- QP Copy Sign: xscpsgnqp
. Similar to xscpsgndp
. (set f128:$vT, (fcopysign f128:$vB, f128:$vA)
- QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp
. Similar to xsabsdp/xsnabsdp/xsnegdp
. (set f128:$vT, (fabs f128:$vB)) // xsabsqp
(set f128:$vT, (fneg (fabs f128:$vB))) // xsnabsqp
(set f128:$vT, (fneg f128:$vB)) // xsnegqp
- QP Add/Divide/Multiply/Subtract/Square-Root:
xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp
. Similar to xsadddp
. isCommutable = 1
(set f128:$vT, (fadd f128:$vA, f128:$vB)) // xsaddqp
(set f128:$vT, (fmul f128:$vA, f128:$vB)) // xsmulqp
. isCommutable = 0
(set f128:$vT, (fdiv f128:$vA, f128:$vB)) // xsdivqp
(set f128:$vT, (fsub f128:$vA, f128:$vB)) // xssubqp
(set f128:$vT, (fsqrt f128:$vB))) // xssqrtqp
- Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root:
xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo
. Similar to xsrsqrtedp??
def XSRSQRTEDP : XX2Form<60, 74,
(outs vsfrc:$XT), (ins vsfrc:$XB),
"xsrsqrtedp $XT, $XB", IIC_VecFP,
[(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
. Define DAG Node in PPCInstrInfo.td:
def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>;
def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>;
def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>;
def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>;
def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>;
DAG patterns of each instruction (PPCInstrVSX.td):
. isCommutable = 1
(set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB)) // xsaddqpo
(set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB)) // xsmulqpo
. isCommutable = 0
(set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB)) // xsdivqpo
(set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB)) // xssubqpo
(set f128:$vT, (PPCfsqrtrto f128:$vB)) // xssqrtqpo
- QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp
. Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp
. isCommutable = 1
// xsmaddqp
[(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
// xsmsubqp
[(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
// xsnmaddqp
[(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
// xsnmsubqp
[(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
- Round to Odd of QP (Negative) Multiply-{Add/Subtract}:
xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo
. Similar to xsrsqrtedp??
. Define DAG Node in PPCInstrInfo.td:
def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>;
It looks like we only need to define "PPCfmarto" for these instructions,
because according to PowerISA_V3.0, these instructions perform RTO on
fma's result:
xsmaddqp(o)
v ← bfp_MULTIPLY_ADD(src1, src3, src2)
rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
result ← bfp_CONVERT_TO_BFP128(rnd)
xsmsubqp(o)
v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
result ← bfp_CONVERT_TO_BFP128(rnd)
xsnmaddqp(o)
v ← bfp_MULTIPLY_ADD(src1,src3,src2)
rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
result ← bfp_CONVERT_TO_BFP128(rnd)
xsnmsubqp(o)
v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
result ← bfp_CONVERT_TO_BFP128(rnd)
DAG patterns of each instruction (PPCInstrVSX.td):
. isCommutable = 1
// xsmaddqpo
[(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
// xsmsubqpo
[(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
// xsnmaddqpo
[(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
// xsnmsubqpo
[(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
AltVSXFMARel;
- QP Compare Ordered/Unordered: xscmpoqp xscmpuqp
. ref: XSCMPUDP
def XSCMPUDP : XX3Form_1<60, 35,
(outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
"xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
. No SDAG, intrinsic, builtin are required??
Or llvm fcmp order/unorder compare??
- DP/QP Compare Exponents: xscmpexpdp xscmpexpqp
. No SDAG, intrinsic, builtin are required?
- DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp
. I checked existing instruction "XSCMPUDP". They are different in target
register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register
. Use intrinsic:
(set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB))
(set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB))
(set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB))
(set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB))
- Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp.
. Similar to xvcmpeqdp:
defm XVCMPEQDP : XX3Form_Rcr<60, 99,
"xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;
. So we should use "XX3Form_Rcr" to implement intrinsic
- Convert DP -> QP: xscvdpqp
. Similar to XSCVDPSP:
def XSCVDPSP : XX2Form<60, 265,
(outs vsfrc:$XT), (ins vsfrc:$XB),
"xscvdpsp $XT, $XB", IIC_VecFP, []>;
. So, No SDAG, intrinsic, builtin are required??
- Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo
. Similar to XSCVDPSP
. No SDAG, intrinsic, builtin are required??
- Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero):
xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz
. According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS",
"XSCVDPUXDS", "XSCVDPUXWS"
. DAG patterns:
(set f128:$XT, (PPCfctidz f128:$XB)) // xscvqpsdz
(set f128:$XT, (PPCfctiwz f128:$XB)) // xscvqpswz
(set f128:$XT, (PPCfctiduz f128:$XB)) // xscvqpudz
(set f128:$XT, (PPCfctiwuz f128:$XB)) // xscvqpuwz
- Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp
. Similar to XSCVSXDSP
. (set f128:$XT, (PPCfcfids f64:$XB)) // xscvsdqp
(set f128:$XT, (PPCfcfidus f64:$XB)) // xscvudqp
- (Round &) Convert DP <-> HP: xscvdphp xscvhpdp
. Similar to XSCVDPSP
. No SDAG, intrinsic, builtin are required??
- Vector HP -> SP: xvcvhpsp xvcvsphp
. Similar to XVCVDPSP:
def XVCVDPSP : XX2Form<60, 393,
(outs vsrc:$XT), (ins vsrc:$XB),
"xvcvdpsp $XT, $XB", IIC_VecFP, []>;
. No SDAG, intrinsic, builtin are required??
- Round to Quad-Precision Integer: xsrqpi xsrqpix
. These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you
need to assign rounding mode in instruction
. Provide builtin?
(set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB))
(set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB))
- Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp
. Provide builtin?
(set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB))
Fixed Point Facility:
- Exploit cmprb and cmpeqb (perhaps for something like
isalpha/isdigit/isupper/islower and isspace respectivelly). This can
perhaps be done through a builtin.
- Provide testing for cnttz[dw]
- Insert Exponent DP/QP: xsiexpdp xsiexpqp
. Use intrinsic?
. xsiexpdp:
// Note: rA and rB are the unsigned integer value.
(set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB))
. xsiexpqp:
(set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB))
- Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp
. Use intrinsic?
. (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB)) // xsxexpdp
(set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB)) // xsxsigdp
(set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB)) // xsxexpqp
(set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB)) // xsxsigqp
- Vector Insert Word: xxinsertw
- Useful for inserting f32/i32 elements into vectors (the element to be
inserted needs to be prepared)
. Note: llvm has insertelem in "Vector Operations"
; yields <n x <ty>>
<result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>
But how to map to it??
[(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>,
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
. Or use intrinsic?
(set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM))
- Vector Extract Unsigned Word: xxextractuw
- Not useful for extraction of f32 from v4f32 (the current pattern is better -
shift->convert)
- It is useful for (uint_to_fp (vector_extract v4i32, N))
- Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N))
. Note: llvm has extractelement in "Vector Operations"
; yields <ty>
<result> = extractelement <n x <ty>> <val>, <ty2> <idx>
How to map to it??
[(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))]
. Or use intrinsic?
(set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM))
- Vector Insert Exponent DP/SP: xviexpdp xviexpsp
. Use intrinsic
(set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB))
(set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB))
- Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp
. Use intrinsic
(set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB))
(set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB))
(set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB))
(set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB))
- Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp
. No SDAG, intrinsic, builtin are required?
Because it seems that we have no way to map BF field?
Instruction Form: [PO T XO B XO BX TX]
Asm: xststd* BF,XB,DCMX
BF is an index to CR register field.
- Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp
. Use intrinsic
(set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX))
(set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX))
- Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp
. PowerISA_V3.0:
"xsmaxcdp can be used to implement the C/C++/Java conditional operation
(x>y)?x:y for single-precision and double-precision arguments."
Note! c type and j type have different behavior when:
1. Either input is NaN
2. Both input are +-Infinity, +-Zero
. dtype map to llvm fmaxnum/fminnum
jtype use intrinsic
. xsmaxcdp xsmincdp
(set f64:$XT, (fmaxnum f64:$XA, f64:$XB))
(set f64:$XT, (fminnum f64:$XA, f64:$XB))
. xsmaxjdp xsminjdp
(set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB))
(set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB))
- Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq
. Use intrinsic
(set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB))
(set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB))
(set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB))
(set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB))
- Vector Permute: xxperm xxpermr
. I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different
. Use intrinsic
(set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB))
(set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB))
- Vector Splat Immediate Byte: xxspltib
. Similar to XXSPLTW:
def XXSPLTW : XX2Form_2<60, 164,
(outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
"xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
. No SDAG, intrinsic, builtin are required?
- Load/Store Vector: lxv stxv
. Has likely SDAG match:
(set v?:$XT, (load ix16addr:$src))
(set v?:$XT, (store ix16addr:$dst))
. Need define ix16addr in PPCInstrInfo.td
ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td
- Load/Store Vector Indexed: lxvx stxvx
. Has likely SDAG match:
(set v?:$XT, (load xoaddr:$src))
(set v?:$XT, (store xoaddr:$dst))
- Load/Store DWord: lxsd stxsd
. Similar to lxsdx/stxsdx:
def LXSDX : XX1Form<31, 588,
(outs vsfrc:$XT), (ins memrr:$src),
"lxsdx $XT, $src", IIC_LdStLFD,
[(set f64:$XT, (load xoaddr:$src))]>;
. (set f64:$XT, (load iaddrX4:$src))
(set f64:$XT, (store iaddrX4:$dst))
- Load/Store SP, with conversion from/to DP: lxssp stxssp
. Similar to lxsspx/stxsspx:
def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
"lxsspx $XT, $src", IIC_LdStLFD,
[(set f32:$XT, (load xoaddr:$src))]>;
. (set f32:$XT, (load iaddrX4:$src))
(set f32:$XT, (store iaddrX4:$dst))
- Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx
. Similar to lxsiwzx:
def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
"lxsiwzx $XT, $src", IIC_LdStLFD,
[(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;
. (set f64:$XT, (PPClfiwzx xoaddr:$src))
- Store as Integer Byte/Halfword Indexed: stxsibx stxsihx
. Similar to stxsiwx:
def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
"stxsiwx $XT, $dst", IIC_LdStSTFD,
[(PPCstfiwx f64:$XT, xoaddr:$dst)]>;
. (PPCstfiwx f64:$XT, xoaddr:$dst)
- Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x
. Similar to lxvd2x/lxvw4x:
def LXVD2X : XX1Form<31, 844,
(outs vsrc:$XT), (ins memrr:$src),
"lxvd2x $XT, $src", IIC_LdStLFD,
[(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
. (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src))
(set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src))
- Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x
. Similar to stxvd2x/stxvw4x:
def STXVD2X : XX1Form<31, 972,
(outs), (ins vsrc:$XT, memrr:$dst),
"stxvd2x $XT, $dst", IIC_LdStSTFD,
[(store v2f64:$XT, xoaddr:$dst)]>;
. (store v8i16:$XT, xoaddr:$dst)
(store v16i8:$XT, xoaddr:$dst)
- Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll
. Likely needs an intrinsic
. (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src))
(set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src))
. (int_ppc_vsx_stxvl xoaddr:$dst))
(int_ppc_vsx_stxvll xoaddr:$dst))
- Load Vector Word & Splat Indexed: lxvwsx
. Likely needs an intrinsic
. (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src))
Atomic operations (l[dw]at, st[dw]at):
- Provide custom lowering for common atomic operations to use these
instructions with the correct Function Code
- Ensure the operands are in the correct register (i.e. RT+1, RT+2)
- Provide builtins since not all FC's necessarily have an existing LLVM
atomic operation
Move to CR from XER Extended (mcrxrx):
- Is there a use for this in LLVM?
Fixed Point Facility:
- Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last
. Use instrinstics:
(int_ppc_copy_first i32:$rA, i32:$rB)
(int_ppc_copy i32:$rA, i32:$rB)
(int_ppc_paste i32:$rA, i32:$rB)
(int_ppc_paste_last i32:$rA, i32:$rB)
(int_cp_abort)
- Message Synchronize: msgsync
- SLB*: slbieg slbsync
- stop
. No instrinstics