; RUN: opt < %s -loop-vectorize -scalable-vectorization=on \ ; RUN: -riscv-v-vector-bits-min=128 -riscv-v-vector-bits-max=128 \ ; RUN: -pass-remarks=loop-vectorize -pass-remarks-analysis=loop-vectorize \ ; RUN: -pass-remarks-missed=loop-vectorize -mtriple riscv64-linux-gnu \ ; RUN: -mattr=+v,+f -S 2>%t | FileCheck %s -check-prefix=CHECK ; RUN: cat %t | FileCheck %s -check-prefix=CHECK-REMARK ; Reduction can be vectorized ; ADD ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) define i32 @add(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @add ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32> ; CHECK: %[[ADD1:.*]] = add <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[ADD2:.*]] = add <vscale x 8 x i32> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[ADD:.*]] = add <vscale x 8 x i32> %[[ADD2]], %[[ADD1]] ; CHECK-NEXT: call i32 @llvm.vector.reduce.add.nxv8i32(<vscale x 8 x i32> %[[ADD]]) entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi i32 [ 2, %entry ], [ %add, %for.body ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv %0 = load i32, i32* %arrayidx, align 4 %add = add nsw i32 %0, %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ; preds = %for.body, %entry ret i32 %add } ; OR ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) define i32 @or(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @or ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32> ; CHECK: %[[OR1:.*]] = or <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[OR2:.*]] = or <vscale x 8 x i32> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[OR:.*]] = or <vscale x 8 x i32> %[[OR2]], %[[OR1]] ; CHECK-NEXT: call i32 @llvm.vector.reduce.or.nxv8i32(<vscale x 8 x i32> %[[OR]]) entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi i32 [ 2, %entry ], [ %or, %for.body ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv %0 = load i32, i32* %arrayidx, align 4 %or = or i32 %0, %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ; preds = %for.body, %entry ret i32 %or } ; AND ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) define i32 @and(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @and ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32> ; CHECK: %[[AND1:.*]] = and <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[AND2:.*]] = and <vscale x 8 x i32> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[ABD:.*]] = and <vscale x 8 x i32> %[[ADD2]], %[[AND1]] ; CHECK-NEXT: call i32 @llvm.vector.reduce.and.nxv8i32(<vscale x 8 x i32> %[[ADD]]) entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi i32 [ 2, %entry ], [ %and, %for.body ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv %0 = load i32, i32* %arrayidx, align 4 %and = and i32 %0, %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ; preds = %for.body, %entry ret i32 %and } ; XOR ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) define i32 @xor(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @xor ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32> ; CHECK: %[[XOR1:.*]] = xor <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[XOR2:.*]] = xor <vscale x 8 x i32> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[XOR:.*]] = xor <vscale x 8 x i32> %[[XOR2]], %[[XOR1]] ; CHECK-NEXT: call i32 @llvm.vector.reduce.xor.nxv8i32(<vscale x 8 x i32> %[[XOR]]) entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi i32 [ 2, %entry ], [ %xor, %for.body ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv %0 = load i32, i32* %arrayidx, align 4 %xor = xor i32 %0, %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ; preds = %for.body, %entry ret i32 %xor } ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) ; SMIN define i32 @smin(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @smin ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32> ; CHECK: %[[ICMP1:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[ICMP2:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD2]] ; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[ICMP:.*]] = icmp slt <vscale x 8 x i32> %[[SEL1]], %[[SEL2]] ; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[ICMP]], <vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]] ; CHECK-NEXT: call i32 @llvm.vector.reduce.smin.nxv8i32(<vscale x 8 x i32> %[[SEL]]) entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv %0 = load i32, i32* %arrayidx, align 4 %cmp.i = icmp slt i32 %0, %sum.010 %.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ret i32 %.sroa.speculated } ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) ; UMAX define i32 @umax(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @umax ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32> ; CHECK: %[[ICMP1:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[ICMP2:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD2]] ; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]] ; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[ICMP:.*]] = icmp ugt <vscale x 8 x i32> %[[SEL1]], %[[SEL2]] ; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[ICMP]], <vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]] ; CHECK-NEXT: call i32 @llvm.vector.reduce.umax.nxv8i32(<vscale x 8 x i32> %[[SEL]]) entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv %0 = load i32, i32* %arrayidx, align 4 %cmp.i = icmp ugt i32 %0, %sum.010 %.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ret i32 %.sroa.speculated } ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) ; FADD (FAST) define float @fadd_fast(float* noalias nocapture readonly %a, i64 %n) { ; CHECK-LABEL: @fadd_fast ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float> ; CHECK: %[[ADD1:.*]] = fadd fast <vscale x 8 x float> %[[LOAD1]] ; CHECK: %[[ADD2:.*]] = fadd fast <vscale x 8 x float> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[ADD:.*]] = fadd fast <vscale x 8 x float> %[[ADD2]], %[[ADD1]] ; CHECK-NEXT: call fast float @llvm.vector.reduce.fadd.nxv8f32(float -0.000000e+00, <vscale x 8 x float> %[[ADD]]) entry: br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi float [ 0.000000e+00, %entry ], [ %add, %for.body ] %arrayidx = getelementptr inbounds float, float* %a, i64 %iv %0 = load float, float* %arrayidx, align 4 %add = fadd fast float %0, %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ret float %add } ; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. ; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2) define bfloat @fadd_fast_bfloat(bfloat* noalias nocapture readonly %a, i64 %n) { ; CHECK-LABEL: @fadd_fast_bfloat ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <8 x bfloat> ; CHECK: %[[LOAD2:.*]] = load <8 x bfloat> ; CHECK: %[[FADD1:.*]] = fadd fast <8 x bfloat> %[[LOAD1]] ; CHECK: %[[FADD2:.*]] = fadd fast <8 x bfloat> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[RDX:.*]] = fadd fast <8 x bfloat> %[[FADD2]], %[[FADD1]] ; CHECK: call fast bfloat @llvm.vector.reduce.fadd.v8bf16(bfloat 0xR8000, <8 x bfloat> %[[RDX]]) entry: br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi bfloat [ 0.000000e+00, %entry ], [ %add, %for.body ] %arrayidx = getelementptr inbounds bfloat, bfloat* %a, i64 %iv %0 = load bfloat, bfloat* %arrayidx, align 4 %add = fadd fast bfloat %0, %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ret bfloat %add } ; FMIN (FAST) ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) define float @fmin_fast(float* noalias nocapture readonly %a, i64 %n) #0 { ; CHECK-LABEL: @fmin_fast ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float> ; CHECK: %[[FCMP1:.*]] = fcmp olt <vscale x 8 x float> %[[LOAD1]] ; CHECK: %[[FCMP2:.*]] = fcmp olt <vscale x 8 x float> %[[LOAD2]] ; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]] ; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[FCMP:.*]] = fcmp olt <vscale x 8 x float> %[[SEL1]], %[[SEL2]] ; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]] ; CHECK-NEXT: call float @llvm.vector.reduce.fmin.nxv8f32(<vscale x 8 x float> %[[SEL]]) entry: br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ] %arrayidx = getelementptr inbounds float, float* %a, i64 %iv %0 = load float, float* %arrayidx, align 4 %cmp.i = fcmp olt float %0, %sum.07 %.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ret float %.sroa.speculated } ; FMAX (FAST) ; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2) define float @fmax_fast(float* noalias nocapture readonly %a, i64 %n) #0 { ; CHECK-LABEL: @fmax_fast ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float> ; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float> ; CHECK: %[[FCMP1:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD1]] ; CHECK: %[[FCMP2:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD2]] ; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]] ; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[FCMP:.*]] = fcmp fast ogt <vscale x 8 x float> %[[SEL1]], %[[SEL2]] ; CHECK-NEXT: %[[SEL:.*]] = select fast <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]] ; CHECK-NEXT: call fast float @llvm.vector.reduce.fmax.nxv8f32(<vscale x 8 x float> %[[SEL]]) entry: br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ] %arrayidx = getelementptr inbounds float, float* %a, i64 %iv %0 = load float, float* %arrayidx, align 4 %cmp.i = fcmp fast ogt float %0, %sum.07 %.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ret float %.sroa.speculated } ; Reduction cannot be vectorized ; MUL ; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. ; CHECK-REMARK: vectorized loop (vectorization width: 4, interleaved count: 2) define i32 @mul(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @mul ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <4 x i32> ; CHECK: %[[LOAD2:.*]] = load <4 x i32> ; CHECK: %[[MUL1:.*]] = mul <4 x i32> %[[LOAD1]] ; CHECK: %[[MUL2:.*]] = mul <4 x i32> %[[LOAD2]] ; CHECK: middle.block: ; CHECK: %[[RDX:.*]] = mul <4 x i32> %[[MUL2]], %[[MUL1]] ; CHECK: call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> %[[RDX]]) entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum.07 = phi i32 [ 2, %entry ], [ %mul, %for.body ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv %0 = load i32, i32* %arrayidx, align 4 %mul = mul nsw i32 %0, %sum.07 %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ; preds = %for.body, %entry ret i32 %mul } ; Note: This test was added to ensure we always check the legality of reductions (and emit a warning if necessary) before checking for memory dependencies ; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. ; CHECK-REMARK: vectorized loop (vectorization width: 4, interleaved count: 2) define i32 @memory_dependence(i32* noalias nocapture %a, i32* noalias nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @memory_dependence ; CHECK: vector.body: ; CHECK: %[[LOAD1:.*]] = load <4 x i32> ; CHECK: %[[LOAD2:.*]] = load <4 x i32> ; CHECK: %[[LOAD3:.*]] = load <4 x i32> ; CHECK: %[[LOAD4:.*]] = load <4 x i32> ; CHECK: %[[ADD1:.*]] = add nsw <4 x i32> %[[LOAD3]], %[[LOAD1]] ; CHECK: %[[ADD2:.*]] = add nsw <4 x i32> %[[LOAD4]], %[[LOAD2]] ; CHECK: %[[MUL1:.*]] = mul <4 x i32> %[[LOAD3]] ; CHECK: %[[MUL2:.*]] = mul <4 x i32> %[[LOAD4]] ; CHECK: middle.block: ; CHECK: %[[RDX:.*]] = mul <4 x i32> %[[MUL2]], %[[MUL1]] ; CHECK: call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> %[[RDX]]) entry: br label %for.body for.body: %i = phi i64 [ %inc, %for.body ], [ 0, %entry ] %sum = phi i32 [ %mul, %for.body ], [ 2, %entry ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %i %0 = load i32, i32* %arrayidx, align 4 %arrayidx1 = getelementptr inbounds i32, i32* %b, i64 %i %1 = load i32, i32* %arrayidx1, align 4 %add = add nsw i32 %1, %0 %add2 = add nuw nsw i64 %i, 32 %arrayidx3 = getelementptr inbounds i32, i32* %a, i64 %add2 store i32 %add, i32* %arrayidx3, align 4 %mul = mul nsw i32 %1, %sum %inc = add nuw nsw i64 %i, 1 %exitcond.not = icmp eq i64 %inc, %n br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0 for.end: ret i32 %mul } attributes #0 = { "no-nans-fp-math"="true" "no-signed-zeros-fp-math"="true" } !0 = distinct !{!0, !1, !2, !3, !4} !1 = !{!"llvm.loop.vectorize.width", i32 8} !2 = !{!"llvm.loop.vectorize.scalable.enable", i1 true} !3 = !{!"llvm.loop.interleave.count", i32 2} !4 = !{!"llvm.loop.vectorize.enable", i1 true}