#ifndef LLVM_ADT_BITVECTOR_H
#define LLVM_ADT_BITVECTOR_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <utility>
namespace llvm {
template <typename BitVectorT> class const_set_bits_iterator_impl {
const BitVectorT &Parent;
int Current = 0;
void advance() {
assert(Current != -1 && "Trying to advance past end.");
Current = Parent.find_next(Current);
}
public:
const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
: Parent(Parent), Current(Current) {}
explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
: const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
const_set_bits_iterator_impl operator++(int) {
auto Prev = *this;
advance();
return Prev;
}
const_set_bits_iterator_impl &operator++() {
advance();
return *this;
}
unsigned operator*() const { return Current; }
bool operator==(const const_set_bits_iterator_impl &Other) const {
assert(&Parent == &Other.Parent &&
"Comparing iterators from different BitVectors");
return Current == Other.Current;
}
bool operator!=(const const_set_bits_iterator_impl &Other) const {
assert(&Parent == &Other.Parent &&
"Comparing iterators from different BitVectors");
return Current != Other.Current;
}
};
class BitVector {
typedef uintptr_t BitWord;
enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
"Unsupported word size");
using Storage = SmallVector<BitWord>;
Storage Bits; unsigned Size = 0;
public:
using size_type = unsigned;
class reference {
BitWord *WordRef;
unsigned BitPos;
public:
reference(BitVector &b, unsigned Idx) {
WordRef = &b.Bits[Idx / BITWORD_SIZE];
BitPos = Idx % BITWORD_SIZE;
}
reference() = delete;
reference(const reference&) = default;
reference &operator=(reference t) {
*this = bool(t);
return *this;
}
reference& operator=(bool t) {
if (t)
*WordRef |= BitWord(1) << BitPos;
else
*WordRef &= ~(BitWord(1) << BitPos);
return *this;
}
operator bool() const {
return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
}
};
typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
typedef const_set_bits_iterator set_iterator;
const_set_bits_iterator set_bits_begin() const {
return const_set_bits_iterator(*this);
}
const_set_bits_iterator set_bits_end() const {
return const_set_bits_iterator(*this, -1);
}
iterator_range<const_set_bits_iterator> set_bits() const {
return make_range(set_bits_begin(), set_bits_end());
}
BitVector() = default;
explicit BitVector(unsigned s, bool t = false)
: Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) {
if (t)
clear_unused_bits();
}
bool empty() const { return Size == 0; }
size_type size() const { return Size; }
size_type count() const {
unsigned NumBits = 0;
for (auto Bit : Bits)
NumBits += countPopulation(Bit);
return NumBits;
}
bool any() const {
return any_of(Bits, [](BitWord Bit) { return Bit != 0; });
}
bool all() const {
for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
if (Bits[i] != ~BitWord(0))
return false;
if (unsigned Remainder = Size % BITWORD_SIZE)
return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;
return true;
}
bool none() const {
return !any();
}
int find_first_in(unsigned Begin, unsigned End, bool Set = true) const {
assert(Begin <= End && End <= Size);
if (Begin == End)
return -1;
unsigned FirstWord = Begin / BITWORD_SIZE;
unsigned LastWord = (End - 1) / BITWORD_SIZE;
for (unsigned i = FirstWord; i <= LastWord; ++i) {
BitWord Copy = Bits[i];
if (!Set)
Copy = ~Copy;
if (i == FirstWord) {
unsigned FirstBit = Begin % BITWORD_SIZE;
Copy &= maskTrailingZeros<BitWord>(FirstBit);
}
if (i == LastWord) {
unsigned LastBit = (End - 1) % BITWORD_SIZE;
Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
}
if (Copy != 0)
return i * BITWORD_SIZE + countTrailingZeros(Copy);
}
return -1;
}
int find_last_in(unsigned Begin, unsigned End) const {
assert(Begin <= End && End <= Size);
if (Begin == End)
return -1;
unsigned LastWord = (End - 1) / BITWORD_SIZE;
unsigned FirstWord = Begin / BITWORD_SIZE;
for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
unsigned CurrentWord = i - 1;
BitWord Copy = Bits[CurrentWord];
if (CurrentWord == LastWord) {
unsigned LastBit = (End - 1) % BITWORD_SIZE;
Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
}
if (CurrentWord == FirstWord) {
unsigned FirstBit = Begin % BITWORD_SIZE;
Copy &= maskTrailingZeros<BitWord>(FirstBit);
}
if (Copy != 0)
return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
}
return -1;
}
int find_first_unset_in(unsigned Begin, unsigned End) const {
return find_first_in(Begin, End, false);
}
int find_last_unset_in(unsigned Begin, unsigned End) const {
assert(Begin <= End && End <= Size);
if (Begin == End)
return -1;
unsigned LastWord = (End - 1) / BITWORD_SIZE;
unsigned FirstWord = Begin / BITWORD_SIZE;
for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
unsigned CurrentWord = i - 1;
BitWord Copy = Bits[CurrentWord];
if (CurrentWord == LastWord) {
unsigned LastBit = (End - 1) % BITWORD_SIZE;
Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
}
if (CurrentWord == FirstWord) {
unsigned FirstBit = Begin % BITWORD_SIZE;
Copy |= maskTrailingOnes<BitWord>(FirstBit);
}
if (Copy != ~BitWord(0)) {
unsigned Result =
(CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
return Result < Size ? Result : -1;
}
}
return -1;
}
int find_first() const { return find_first_in(0, Size); }
int find_last() const { return find_last_in(0, Size); }
int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
int find_first_unset() const { return find_first_unset_in(0, Size); }
int find_next_unset(unsigned Prev) const {
return find_first_unset_in(Prev + 1, Size);
}
int find_last_unset() const { return find_last_unset_in(0, Size); }
int find_prev_unset(unsigned PriorTo) {
return find_last_unset_in(0, PriorTo);
}
void clear() {
Size = 0;
Bits.clear();
}
void resize(unsigned N, bool t = false) {
set_unused_bits(t);
Size = N;
Bits.resize(NumBitWords(N), 0 - BitWord(t));
clear_unused_bits();
}
void reserve(unsigned N) { Bits.reserve(NumBitWords(N)); }
BitVector &set() {
init_words(true);
clear_unused_bits();
return *this;
}
BitVector &set(unsigned Idx) {
assert(Idx < Size && "access in bound");
Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
return *this;
}
BitVector &set(unsigned I, unsigned E) {
assert(I <= E && "Attempted to set backwards range!");
assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] |= Mask;
return *this;
}
BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] |= PrefixMask;
I = alignTo(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = ~BitWord(0);
BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
if (I < E)
Bits[I / BITWORD_SIZE] |= PostfixMask;
return *this;
}
BitVector &reset() {
init_words(false);
return *this;
}
BitVector &reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
return *this;
}
BitVector &reset(unsigned I, unsigned E) {
assert(I <= E && "Attempted to reset backwards range!");
assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] &= ~Mask;
return *this;
}
BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] &= ~PrefixMask;
I = alignTo(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = BitWord(0);
BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
if (I < E)
Bits[I / BITWORD_SIZE] &= ~PostfixMask;
return *this;
}
BitVector &flip() {
for (auto &Bit : Bits)
Bit = ~Bit;
clear_unused_bits();
return *this;
}
BitVector &flip(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
return *this;
}
reference operator[](unsigned Idx) {
assert (Idx < Size && "Out-of-bounds Bit access.");
return reference(*this, Idx);
}
bool operator[](unsigned Idx) const {
assert (Idx < Size && "Out-of-bounds Bit access.");
BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
}
bool back() const {
assert(!empty() && "Getting last element of empty vector.");
return (*this)[size() - 1];
}
bool test(unsigned Idx) const {
return (*this)[Idx];
}
void push_back(bool Val) {
unsigned OldSize = Size;
unsigned NewSize = Size + 1;
if (NewSize > getBitCapacity())
resize(NewSize, false);
else
Size = NewSize;
if (Val)
set(OldSize);
}
void pop_back() {
assert(!empty() && "Empty vector has no element to pop.");
resize(size() - 1);
}
bool anyCommon(const BitVector &RHS) const {
unsigned ThisWords = Bits.size();
unsigned RHSWords = RHS.Bits.size();
for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
if (Bits[i] & RHS.Bits[i])
return true;
return false;
}
bool operator==(const BitVector &RHS) const {
if (size() != RHS.size())
return false;
unsigned NumWords = Bits.size();
return std::equal(Bits.begin(), Bits.begin() + NumWords, RHS.Bits.begin());
}
bool operator!=(const BitVector &RHS) const { return !(*this == RHS); }
BitVector &operator&=(const BitVector &RHS) {
unsigned ThisWords = Bits.size();
unsigned RHSWords = RHS.Bits.size();
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= RHS.Bits[i];
for (; i != ThisWords; ++i)
Bits[i] = 0;
return *this;
}
BitVector &reset(const BitVector &RHS) {
unsigned ThisWords = Bits.size();
unsigned RHSWords = RHS.Bits.size();
for (unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= ~RHS.Bits[i];
return *this;
}
bool test(const BitVector &RHS) const {
unsigned ThisWords = Bits.size();
unsigned RHSWords = RHS.Bits.size();
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
if ((Bits[i] & ~RHS.Bits[i]) != 0)
return true;
for (; i != ThisWords ; ++i)
if (Bits[i] != 0)
return true;
return false;
}
template <class F, class... ArgTys>
static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg,
ArgTys const &...Args) {
assert(llvm::all_of(
std::initializer_list<unsigned>{Args.size()...},
[&Arg](auto const &BV) { return Arg.size() == BV; }) &&
"consistent sizes");
Out.resize(Arg.size());
for (size_type I = 0, E = Arg.Bits.size(); I != E; ++I)
Out.Bits[I] = f(Arg.Bits[I], Args.Bits[I]...);
Out.clear_unused_bits();
return Out;
}
BitVector &operator|=(const BitVector &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I)
Bits[I] |= RHS.Bits[I];
return *this;
}
BitVector &operator^=(const BitVector &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I)
Bits[I] ^= RHS.Bits[I];
return *this;
}
BitVector &operator>>=(unsigned N) {
assert(N <= Size);
if (LLVM_UNLIKELY(empty() || N == 0))
return *this;
unsigned NumWords = Bits.size();
assert(NumWords >= 1);
wordShr(N / BITWORD_SIZE);
unsigned BitDistance = N % BITWORD_SIZE;
if (BitDistance == 0)
return *this;
const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
const unsigned LSH = BITWORD_SIZE - BitDistance;
for (unsigned I = 0; I < NumWords - 1; ++I) {
Bits[I] >>= BitDistance;
Bits[I] |= (Bits[I + 1] & Mask) << LSH;
}
Bits[NumWords - 1] >>= BitDistance;
return *this;
}
BitVector &operator<<=(unsigned N) {
assert(N <= Size);
if (LLVM_UNLIKELY(empty() || N == 0))
return *this;
unsigned NumWords = Bits.size();
assert(NumWords >= 1);
wordShl(N / BITWORD_SIZE);
unsigned BitDistance = N % BITWORD_SIZE;
if (BitDistance == 0)
return *this;
const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
const unsigned RSH = BITWORD_SIZE - BitDistance;
for (int I = NumWords - 1; I > 0; --I) {
Bits[I] <<= BitDistance;
Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
}
Bits[0] <<= BitDistance;
clear_unused_bits();
return *this;
}
void swap(BitVector &RHS) {
std::swap(Bits, RHS.Bits);
std::swap(Size, RHS.Size);
}
void invalid() {
assert(!Size && Bits.empty());
Size = (unsigned)-1;
}
bool isInvalid() const { return Size == (unsigned)-1; }
ArrayRef<BitWord> getData() const { return {&Bits[0], Bits.size()}; }
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, false>(Mask, MaskWords);
}
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, false>(Mask, MaskWords);
}
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, true>(Mask, MaskWords);
}
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, true>(Mask, MaskWords);
}
private:
void wordShl(uint32_t Count) {
if (Count == 0)
return;
uint32_t NumWords = Bits.size();
std::copy(Bits.begin(), Bits.begin() + NumWords - Count,
Bits.begin() + Count);
std::fill(Bits.begin(), Bits.begin() + Count, 0);
clear_unused_bits();
}
void wordShr(uint32_t Count) {
if (Count == 0)
return;
uint32_t NumWords = Bits.size();
std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin());
std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0);
}
int next_unset_in_word(int WordIndex, BitWord Word) const {
unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
return Result < size() ? Result : -1;
}
unsigned NumBitWords(unsigned S) const {
return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
}
void set_unused_bits(bool t = true) {
if (unsigned ExtraBits = Size % BITWORD_SIZE) {
BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
if (t)
Bits.back() |= ExtraBitMask;
else
Bits.back() &= ~ExtraBitMask;
}
}
void clear_unused_bits() {
set_unused_bits(false);
}
void init_words(bool t) {
std::fill(Bits.begin(), Bits.end(), 0 - (BitWord)t);
}
template<bool AddBits, bool InvertMask>
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
MaskWords = std::min(MaskWords, (size() + 31) / 32);
const unsigned Scale = BITWORD_SIZE / 32;
unsigned i;
for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
BitWord BW = Bits[i];
for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
uint32_t M = *Mask++;
if (InvertMask) M = ~M;
if (AddBits) BW |= BitWord(M) << b;
else BW &= ~(BitWord(M) << b);
}
Bits[i] = BW;
}
for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
uint32_t M = *Mask++;
if (InvertMask) M = ~M;
if (AddBits) Bits[i] |= BitWord(M) << b;
else Bits[i] &= ~(BitWord(M) << b);
}
if (AddBits)
clear_unused_bits();
}
public:
size_type getMemorySize() const { return Bits.size() * sizeof(BitWord); }
size_type getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
};
inline BitVector::size_type capacity_in_bytes(const BitVector &X) {
return X.getMemorySize();
}
template <> struct DenseMapInfo<BitVector> {
static inline BitVector getEmptyKey() { return {}; }
static inline BitVector getTombstoneKey() {
BitVector V;
V.invalid();
return V;
}
static unsigned getHashValue(const BitVector &V) {
return DenseMapInfo<std::pair<BitVector::size_type, ArrayRef<uintptr_t>>>::
getHashValue(std::make_pair(V.size(), V.getData()));
}
static bool isEqual(const BitVector &LHS, const BitVector &RHS) {
if (LHS.isInvalid() || RHS.isInvalid())
return LHS.isInvalid() == RHS.isInvalid();
return LHS == RHS;
}
};
}
namespace std {
inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); }
}
#endif