Compiler projects using llvm
//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the ARM specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
#define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H

#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/RegisterBankInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <memory>
#include <string>

#define GET_SUBTARGETINFO_HEADER
#include "ARMGenSubtargetInfo.inc"

namespace llvm {

class ARMBaseTargetMachine;
class GlobalValue;
class StringRef;

class ARMSubtarget : public ARMGenSubtargetInfo {
protected:
  enum ARMProcFamilyEnum {
    Others,

    CortexA12,
    CortexA15,
    CortexA17,
    CortexA32,
    CortexA35,
    CortexA5,
    CortexA53,
    CortexA55,
    CortexA57,
    CortexA7,
    CortexA72,
    CortexA73,
    CortexA75,
    CortexA76,
    CortexA77,
    CortexA78,
    CortexA78C,
    CortexA710,
    CortexA8,
    CortexA9,
    CortexM3,
    CortexM7,
    CortexR4,
    CortexR4F,
    CortexR5,
    CortexR52,
    CortexR7,
    CortexX1,
    CortexX1C,
    Exynos,
    Krait,
    Kryo,
    NeoverseN1,
    NeoverseN2,
    NeoverseV1,
    Swift
  };
  enum ARMProcClassEnum {
    None,

    AClass,
    MClass,
    RClass
  };
  enum ARMArchEnum {
    ARMv2,
    ARMv2a,
    ARMv3,
    ARMv3m,
    ARMv4,
    ARMv4t,
    ARMv5,
    ARMv5t,
    ARMv5te,
    ARMv5tej,
    ARMv6,
    ARMv6k,
    ARMv6kz,
    ARMv6m,
    ARMv6sm,
    ARMv6t2,
    ARMv7a,
    ARMv7em,
    ARMv7m,
    ARMv7r,
    ARMv7ve,
    ARMv81a,
    ARMv82a,
    ARMv83a,
    ARMv84a,
    ARMv85a,
    ARMv86a,
    ARMv87a,
    ARMv88a,
    ARMv8a,
    ARMv8mBaseline,
    ARMv8mMainline,
    ARMv8r,
    ARMv81mMainline,
    ARMv9a,
    ARMv91a,
    ARMv92a,
    ARMv93a,
  };

public:
  /// What kind of timing do load multiple/store multiple instructions have.
  enum ARMLdStMultipleTiming {
    /// Can load/store 2 registers/cycle.
    DoubleIssue,
    /// Can load/store 2 registers/cycle, but needs an extra cycle if the access
    /// is not 64-bit aligned.
    DoubleIssueCheckUnalignedAccess,
    /// Can load/store 1 register/cycle.
    SingleIssue,
    /// Can load/store 1 register/cycle, but needs an extra cycle for address
    /// computation and potentially also for register writeback.
    SingleIssuePlusExtras,
  };

protected:
// Bool members corresponding to the SubtargetFeatures defined in tablegen
#define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER)                    \
  bool ATTRIBUTE = DEFAULT;
#include "ARMGenSubtargetInfo.inc"

  /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
  ARMProcFamilyEnum ARMProcFamily = Others;

  /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
  ARMProcClassEnum ARMProcClass = None;

  /// ARMArch - ARM architecture
  ARMArchEnum ARMArch = ARMv4t;

  /// UseMulOps - True if non-microcoded fused integer multiply-add and
  /// multiply-subtract instructions should be used.
  bool UseMulOps = false;

  /// SupportsTailCall - True if the OS supports tail call. The dynamic linker
  /// must be able to synthesize call stubs for interworking between ARM and
  /// Thumb.
  bool SupportsTailCall = false;

  /// RestrictIT - If true, the subtarget disallows generation of complex IT
  ///  blocks.
  bool RestrictIT = false;

  /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
  bool UseSjLjEH = false;

  /// stackAlignment - The minimum alignment known to hold of the stack frame on
  /// entry to the function and which must be maintained by every function.
  Align stackAlignment = Align(4);

  /// CPUString - String name of used CPU.
  std::string CPUString;

  unsigned MaxInterleaveFactor = 1;

  /// Clearance before partial register updates (in number of instructions)
  unsigned PartialUpdateClearance = 0;

  /// What kind of timing do load multiple/store multiple have (double issue,
  /// single issue etc).
  ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;

  /// The adjustment that we need to apply to get the operand latency from the
  /// operand cycle returned by the itinerary data for pre-ISel operands.
  int PreISelOperandLatencyAdjustment = 2;

  /// What alignment is preferred for loop bodies, in log2(bytes).
  unsigned PrefLoopLogAlignment = 0;

  /// The cost factor for MVE instructions, representing the multiple beats an
  // instruction can take. The default is 2, (set in initSubtargetFeatures so
  // that we can use subtarget features less than 2).
  unsigned MVEVectorCostFactor = 0;

  /// OptMinSize - True if we're optimising for minimum code size, equal to
  /// the function attribute.
  bool OptMinSize = false;

  /// IsLittle - The target is Little Endian
  bool IsLittle;

  /// TargetTriple - What processor and OS we're targeting.
  Triple TargetTriple;

  /// SchedModel - Processor specific instruction costs.
  MCSchedModel SchedModel;

  /// Selected instruction itineraries (one entry per itinerary class.)
  InstrItineraryData InstrItins;

  /// Options passed via command line that could influence the target
  const TargetOptions &Options;

  const ARMBaseTargetMachine &TM;

public:
  /// This constructor initializes the data members to match that
  /// of the specified triple.
  ///
  ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
               const ARMBaseTargetMachine &TM, bool IsLittle,
               bool MinSize = false);

  /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
  /// that still makes it profitable to inline the call.
  unsigned getMaxInlineSizeThreshold() const {
    return 64;
  }

  /// getMaxMemcpyTPInlineSizeThreshold - Returns the maximum size
  /// that still makes it profitable to inline a llvm.memcpy as a Tail
  /// Predicated loop.
  /// This threshold should only be used for constant size inputs.
  unsigned getMaxMemcpyTPInlineSizeThreshold() const { return 128; }

  /// ParseSubtargetFeatures - Parses features string setting specified
  /// subtarget options.  Definition of function is auto generated by tblgen.
  void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);

  /// initializeSubtargetDependencies - Initializes using a CPU and feature string
  /// so that we can use initializer lists for subtarget initialization.
  ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);

  const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
    return &TSInfo;
  }

  const ARMBaseInstrInfo *getInstrInfo() const override {
    return InstrInfo.get();
  }

  const ARMTargetLowering *getTargetLowering() const override {
    return &TLInfo;
  }

  const ARMFrameLowering *getFrameLowering() const override {
    return FrameLowering.get();
  }

  const ARMBaseRegisterInfo *getRegisterInfo() const override {
    return &InstrInfo->getRegisterInfo();
  }

  const CallLowering *getCallLowering() const override;
  InstructionSelector *getInstructionSelector() const override;
  const LegalizerInfo *getLegalizerInfo() const override;
  const RegisterBankInfo *getRegBankInfo() const override;

private:
  ARMSelectionDAGInfo TSInfo;
  // Either Thumb1FrameLowering or ARMFrameLowering.
  std::unique_ptr<ARMFrameLowering> FrameLowering;
  // Either Thumb1InstrInfo or Thumb2InstrInfo.
  std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
  ARMTargetLowering   TLInfo;

  /// GlobalISel related APIs.
  std::unique_ptr<CallLowering> CallLoweringInfo;
  std::unique_ptr<InstructionSelector> InstSelector;
  std::unique_ptr<LegalizerInfo> Legalizer;
  std::unique_ptr<RegisterBankInfo> RegBankInfo;

  void initializeEnvironment();
  void initSubtargetFeatures(StringRef CPU, StringRef FS);
  ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);

  std::bitset<8> CoprocCDE = {};
public:
// Getters for SubtargetFeatures defined in tablegen
#define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER)                    \
  bool GETTER() const { return ATTRIBUTE; }
#include "ARMGenSubtargetInfo.inc"

  void computeIssueWidth();

  /// @{
  /// These functions are obsolete, please consider adding subtarget features
  /// or properties instead of calling them.
  bool isCortexA5() const { return ARMProcFamily == CortexA5; }
  bool isCortexA7() const { return ARMProcFamily == CortexA7; }
  bool isCortexA8() const { return ARMProcFamily == CortexA8; }
  bool isCortexA9() const { return ARMProcFamily == CortexA9; }
  bool isCortexA15() const { return ARMProcFamily == CortexA15; }
  bool isSwift()    const { return ARMProcFamily == Swift; }
  bool isCortexM3() const { return ARMProcFamily == CortexM3; }
  bool isCortexM7() const { return ARMProcFamily == CortexM7; }
  bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
  bool isCortexR5() const { return ARMProcFamily == CortexR5; }
  bool isKrait() const { return ARMProcFamily == Krait; }
  /// @}

  bool hasARMOps() const { return !NoARM; }

  bool useNEONForSinglePrecisionFP() const {
    return hasNEON() && hasNEONForFP();
  }

  bool hasVFP2Base() const { return hasVFPv2SP(); }
  bool hasVFP3Base() const { return hasVFPv3D16SP(); }
  bool hasVFP4Base() const { return hasVFPv4D16SP(); }
  bool hasFPARMv8Base() const { return hasFPARMv8D16SP(); }

  bool hasAnyDataBarrier() const {
    return HasDataBarrier || (hasV6Ops() && !isThumb());
  }

  bool useMulOps() const { return UseMulOps; }
  bool useFPVMLx() const { return !SlowFPVMLx; }
  bool useFPVFMx() const {
    return !isTargetDarwin() && hasVFP4Base() && !SlowFPVFMx;
  }
  bool useFPVFMx16() const { return useFPVFMx() && hasFullFP16(); }
  bool useFPVFMx64() const { return useFPVFMx() && hasFP64(); }
  bool useSjLjEH() const { return UseSjLjEH; }
  bool hasBaseDSP() const {
    if (isThumb())
      return hasDSP();
    else
      return hasV5TEOps();
  }

  /// Return true if the CPU supports any kind of instruction fusion.
  bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }

  const Triple &getTargetTriple() const { return TargetTriple; }

  bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
  bool isTargetIOS() const { return TargetTriple.isiOS(); }
  bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
  bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
  bool isTargetDriverKit() const { return TargetTriple.isDriverKit(); }
  bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
  bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
  bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
  bool isTargetWindows() const { return TargetTriple.isOSWindows(); }

  bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
  bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
  bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }

  // ARM EABI is the bare-metal EABI described in ARM ABI documents and
  // can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
  // FIXME: Add a flag for bare-metal for that target and set Triple::EABI
  // even for GNUEABI, so we can make a distinction here and still conform to
  // the EABI on GNU (and Android) mode. This requires change in Clang, too.
  // FIXME: The Darwin exception is temporary, while we move users to
  // "*-*-*-macho" triples as quickly as possible.
  bool isTargetAEABI() const {
    return (TargetTriple.getEnvironment() == Triple::EABI ||
            TargetTriple.getEnvironment() == Triple::EABIHF) &&
           !isTargetDarwin() && !isTargetWindows();
  }
  bool isTargetGNUAEABI() const {
    return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
            TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
           !isTargetDarwin() && !isTargetWindows();
  }
  bool isTargetMuslAEABI() const {
    return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
            TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
           !isTargetDarwin() && !isTargetWindows();
  }

  // ARM Targets that support EHABI exception handling standard
  // Darwin uses SjLj. Other targets might need more checks.
  bool isTargetEHABICompatible() const {
    return TargetTriple.isTargetEHABICompatible();
  }

  bool isTargetHardFloat() const;

  bool isTargetAndroid() const { return TargetTriple.isAndroid(); }

  bool isXRaySupported() const override;

  bool isAPCS_ABI() const;
  bool isAAPCS_ABI() const;
  bool isAAPCS16_ABI() const;

  bool isROPI() const;
  bool isRWPI() const;

  bool useMachineScheduler() const { return UseMISched; }
  bool useMachinePipeliner() const { return UseMIPipeliner; }
  bool hasMinSize() const { return OptMinSize; }
  bool isThumb1Only() const { return isThumb() && !hasThumb2(); }
  bool isThumb2() const { return isThumb() && hasThumb2(); }
  bool isMClass() const { return ARMProcClass == MClass; }
  bool isRClass() const { return ARMProcClass == RClass; }
  bool isAClass() const { return ARMProcClass == AClass; }

  bool isR9Reserved() const {
    return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
  }

  MCPhysReg getFramePointerReg() const {
    if (isTargetDarwin() ||
        (!isTargetWindows() && isThumb() && !createAAPCSFrameChain()))
      return ARM::R7;
    return ARM::R11;
  }

  /// Returns true if the frame setup is split into two separate pushes (first
  /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
  /// to lr. This is always required on Thumb1-only targets, as the push and
  /// pop instructions can't access the high registers.
  bool splitFramePushPop(const MachineFunction &MF) const {
    if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress())
      return true;
    return (getFramePointerReg() == ARM::R7 &&
            MF.getTarget().Options.DisableFramePointerElim(MF)) ||
           isThumb1Only();
  }

  bool splitFramePointerPush(const MachineFunction &MF) const;

  bool useStride4VFPs() const;

  bool useMovt() const;

  bool supportsTailCall() const { return SupportsTailCall; }

  bool allowsUnalignedMem() const { return !StrictAlign; }

  bool restrictIT() const { return RestrictIT; }

  const std::string & getCPUString() const { return CPUString; }

  bool isLittle() const { return IsLittle; }

  unsigned getMispredictionPenalty() const;

  /// Returns true if machine scheduler should be enabled.
  bool enableMachineScheduler() const override;

  /// Returns true if machine pipeliner should be enabled.
  bool enableMachinePipeliner() const override;
  bool useDFAforSMS() const override;

  /// True for some subtargets at > -O0.
  bool enablePostRAScheduler() const override;

  /// True for some subtargets at > -O0.
  bool enablePostRAMachineScheduler() const override;

  /// Check whether this subtarget wants to use subregister liveness.
  bool enableSubRegLiveness() const override;

  /// Enable use of alias analysis during code generation (during MI
  /// scheduling, DAGCombine, etc.).
  bool useAA() const override { return true; }

  /// getInstrItins - Return the instruction itineraries based on subtarget
  /// selection.
  const InstrItineraryData *getInstrItineraryData() const override {
    return &InstrItins;
  }

  /// getStackAlignment - Returns the minimum alignment known to hold of the
  /// stack frame on entry to the function and which must be maintained by every
  /// function for this subtarget.
  Align getStackAlignment() const { return stackAlignment; }

  unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }

  unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }

  ARMLdStMultipleTiming getLdStMultipleTiming() const {
    return LdStMultipleTiming;
  }

  int getPreISelOperandLatencyAdjustment() const {
    return PreISelOperandLatencyAdjustment;
  }

  /// True if the GV will be accessed via an indirect symbol.
  bool isGVIndirectSymbol(const GlobalValue *GV) const;

  /// Returns the constant pool modifier needed to access the GV.
  bool isGVInGOT(const GlobalValue *GV) const;

  /// True if fast-isel is used.
  bool useFastISel() const;

  /// Returns the correct return opcode for the current feature set.
  /// Use BX if available to allow mixing thumb/arm code, but fall back
  /// to plain mov pc,lr on ARMv4.
  unsigned getReturnOpcode() const {
    if (isThumb())
      return ARM::tBX_RET;
    if (hasV4TOps())
      return ARM::BX_RET;
    return ARM::MOVPCLR;
  }

  /// Allow movt+movw for PIC global address calculation.
  /// ELF does not have GOT relocations for movt+movw.
  /// ROPI does not use GOT.
  bool allowPositionIndependentMovt() const {
    return isROPI() || !isTargetELF();
  }

  unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; }

  unsigned
  getMVEVectorCostFactor(TargetTransformInfo::TargetCostKind CostKind) const {
    if (CostKind == TargetTransformInfo::TCK_CodeSize)
      return 1;
    return MVEVectorCostFactor;
  }

  bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
                                   unsigned PhysReg) const override;
  unsigned getGPRAllocationOrder(const MachineFunction &MF) const;
};

} // end namespace llvm

#endif  // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H