; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc < %s -mtriple=aarch64-- | FileCheck %s declare i8 @llvm.fshl.i8(i8, i8, i8) declare i16 @llvm.fshl.i16(i16, i16, i16) declare i32 @llvm.fshl.i32(i32, i32, i32) declare i64 @llvm.fshl.i64(i64, i64, i64) declare i128 @llvm.fshl.i128(i128, i128, i128) declare <4 x i32> @llvm.fshl.v4i32(<4 x i32>, <4 x i32>, <4 x i32>) declare i8 @llvm.fshr.i8(i8, i8, i8) declare i16 @llvm.fshr.i16(i16, i16, i16) declare i32 @llvm.fshr.i32(i32, i32, i32) declare i64 @llvm.fshr.i64(i64, i64, i64) declare <4 x i32> @llvm.fshr.v4i32(<4 x i32>, <4 x i32>, <4 x i32>) ; General case - all operands can be variables. define i32 @fshl_i32(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: fshl_i32: ; CHECK: // %bb.0: ; CHECK-NEXT: // kill: def $w2 killed $w2 def $x2 ; CHECK-NEXT: mvn w8, w2 ; CHECK-NEXT: lsr w9, w1, #1 ; CHECK-NEXT: lsl w10, w0, w2 ; CHECK-NEXT: lsr w8, w9, w8 ; CHECK-NEXT: orr w0, w10, w8 ; CHECK-NEXT: ret %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 %z) ret i32 %f } define i64 @fshl_i64(i64 %x, i64 %y, i64 %z) { ; CHECK-LABEL: fshl_i64: ; CHECK: // %bb.0: ; CHECK-NEXT: mvn w8, w2 ; CHECK-NEXT: lsr x9, x1, #1 ; CHECK-NEXT: lsl x10, x0, x2 ; CHECK-NEXT: lsr x8, x9, x8 ; CHECK-NEXT: orr x0, x10, x8 ; CHECK-NEXT: ret %f = call i64 @llvm.fshl.i64(i64 %x, i64 %y, i64 %z) ret i64 %f } define i128 @fshl_i128(i128 %x, i128 %y, i128 %z) nounwind { ; CHECK-LABEL: fshl_i128: ; CHECK: // %bb.0: ; CHECK-NEXT: tst x4, #0x40 ; CHECK-NEXT: mvn w8, w4 ; CHECK-NEXT: csel x9, x2, x3, ne ; CHECK-NEXT: csel x10, x3, x0, ne ; CHECK-NEXT: lsr x9, x9, #1 ; CHECK-NEXT: lsl x11, x10, x4 ; CHECK-NEXT: csel x12, x0, x1, ne ; CHECK-NEXT: lsr x10, x10, #1 ; CHECK-NEXT: lsr x9, x9, x8 ; CHECK-NEXT: lsl x12, x12, x4 ; CHECK-NEXT: lsr x8, x10, x8 ; CHECK-NEXT: orr x0, x11, x9 ; CHECK-NEXT: orr x1, x12, x8 ; CHECK-NEXT: ret %f = call i128 @llvm.fshl.i128(i128 %x, i128 %y, i128 %z) ret i128 %f } ; Verify that weird types are minimally supported. declare i37 @llvm.fshl.i37(i37, i37, i37) define i37 @fshl_i37(i37 %x, i37 %y, i37 %z) { ; CHECK-LABEL: fshl_i37: ; CHECK: // %bb.0: ; CHECK-NEXT: mov x9, #31883 ; CHECK-NEXT: and x8, x2, #0x1fffffffff ; CHECK-NEXT: movk x9, #3542, lsl #16 ; CHECK-NEXT: ubfiz x10, x1, #26, #37 ; CHECK-NEXT: movk x9, #51366, lsl #32 ; CHECK-NEXT: movk x9, #56679, lsl #48 ; CHECK-NEXT: umulh x8, x8, x9 ; CHECK-NEXT: mov w9, #37 ; CHECK-NEXT: ubfx x8, x8, #5, #27 ; CHECK-NEXT: msub w8, w8, w9, w2 ; CHECK-NEXT: mvn w9, w8 ; CHECK-NEXT: lsl x8, x0, x8 ; CHECK-NEXT: lsr x9, x10, x9 ; CHECK-NEXT: orr x0, x8, x9 ; CHECK-NEXT: ret %f = call i37 @llvm.fshl.i37(i37 %x, i37 %y, i37 %z) ret i37 %f } ; extract(concat(0b1110000, 0b1111111) << 2) = 0b1000011 declare i7 @llvm.fshl.i7(i7, i7, i7) define i7 @fshl_i7_const_fold() { ; CHECK-LABEL: fshl_i7_const_fold: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #67 ; CHECK-NEXT: ret %f = call i7 @llvm.fshl.i7(i7 112, i7 127, i7 2) ret i7 %f } define i8 @fshl_i8_const_fold_overshift_1() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_1: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #128 ; CHECK-NEXT: ret %f = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ret i8 %f } define i8 @fshl_i8_const_fold_overshift_2() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_2: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #120 ; CHECK-NEXT: ret %f = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ret i8 %f } define i8 @fshl_i8_const_fold_overshift_3() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_3: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, wzr ; CHECK-NEXT: ret %f = call i8 @llvm.fshl.i8(i8 0, i8 225, i8 8) ret i8 %f } ; With constant shift amount, this is 'extr'. define i32 @fshl_i32_const_shift(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_const_shift: ; CHECK: // %bb.0: ; CHECK-NEXT: extr w0, w0, w1, #23 ; CHECK-NEXT: ret %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 9) ret i32 %f } ; Check modulo math on shift amount. define i32 @fshl_i32_const_overshift(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_const_overshift: ; CHECK: // %bb.0: ; CHECK-NEXT: extr w0, w0, w1, #23 ; CHECK-NEXT: ret %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 41) ret i32 %f } ; 64-bit should also work. define i64 @fshl_i64_const_overshift(i64 %x, i64 %y) { ; CHECK-LABEL: fshl_i64_const_overshift: ; CHECK: // %bb.0: ; CHECK-NEXT: extr x0, x0, x1, #23 ; CHECK-NEXT: ret %f = call i64 @llvm.fshl.i64(i64 %x, i64 %y, i64 105) ret i64 %f } ; This should work without any node-specific logic. define i8 @fshl_i8_const_fold() { ; CHECK-LABEL: fshl_i8_const_fold: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #128 ; CHECK-NEXT: ret %f = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 7) ret i8 %f } ; Repeat everything for funnel shift right. ; General case - all operands can be variables. define i32 @fshr_i32(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: fshr_i32: ; CHECK: // %bb.0: ; CHECK-NEXT: // kill: def $w2 killed $w2 def $x2 ; CHECK-NEXT: mvn w8, w2 ; CHECK-NEXT: lsl w9, w0, #1 ; CHECK-NEXT: lsr w10, w1, w2 ; CHECK-NEXT: lsl w8, w9, w8 ; CHECK-NEXT: orr w0, w8, w10 ; CHECK-NEXT: ret %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 %z) ret i32 %f } define i64 @fshr_i64(i64 %x, i64 %y, i64 %z) { ; CHECK-LABEL: fshr_i64: ; CHECK: // %bb.0: ; CHECK-NEXT: mvn w8, w2 ; CHECK-NEXT: lsl x9, x0, #1 ; CHECK-NEXT: lsr x10, x1, x2 ; CHECK-NEXT: lsl x8, x9, x8 ; CHECK-NEXT: orr x0, x8, x10 ; CHECK-NEXT: ret %f = call i64 @llvm.fshr.i64(i64 %x, i64 %y, i64 %z) ret i64 %f } ; Verify that weird types are minimally supported. declare i37 @llvm.fshr.i37(i37, i37, i37) define i37 @fshr_i37(i37 %x, i37 %y, i37 %z) { ; CHECK-LABEL: fshr_i37: ; CHECK: // %bb.0: ; CHECK-NEXT: mov x9, #31883 ; CHECK-NEXT: and x8, x2, #0x1fffffffff ; CHECK-NEXT: movk x9, #3542, lsl #16 ; CHECK-NEXT: lsl x10, x1, #27 ; CHECK-NEXT: movk x9, #51366, lsl #32 ; CHECK-NEXT: lsl x11, x0, #1 ; CHECK-NEXT: movk x9, #56679, lsl #48 ; CHECK-NEXT: umulh x8, x8, x9 ; CHECK-NEXT: mov w9, #37 ; CHECK-NEXT: lsr x8, x8, #5 ; CHECK-NEXT: msub w8, w8, w9, w2 ; CHECK-NEXT: add w8, w8, #27 ; CHECK-NEXT: mvn w9, w8 ; CHECK-NEXT: lsr x8, x10, x8 ; CHECK-NEXT: lsl x9, x11, x9 ; CHECK-NEXT: orr x0, x9, x8 ; CHECK-NEXT: ret %f = call i37 @llvm.fshr.i37(i37 %x, i37 %y, i37 %z) ret i37 %f } ; extract(concat(0b1110000, 0b1111111) >> 2) = 0b0011111 declare i7 @llvm.fshr.i7(i7, i7, i7) define i7 @fshr_i7_const_fold() { ; CHECK-LABEL: fshr_i7_const_fold: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #31 ; CHECK-NEXT: ret %f = call i7 @llvm.fshr.i7(i7 112, i7 127, i7 2) ret i7 %f } define i8 @fshr_i8_const_fold_overshift_1() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_1: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #254 ; CHECK-NEXT: ret %f = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ret i8 %f } define i8 @fshr_i8_const_fold_overshift_2() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_2: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #225 ; CHECK-NEXT: ret %f = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ret i8 %f } define i8 @fshr_i8_const_fold_overshift_3() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_3: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #255 ; CHECK-NEXT: ret %f = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ret i8 %f } ; With constant shift amount, this is 'extr'. define i32 @fshr_i32_const_shift(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_const_shift: ; CHECK: // %bb.0: ; CHECK-NEXT: extr w0, w0, w1, #9 ; CHECK-NEXT: ret %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 9) ret i32 %f } ; Check modulo math on shift amount. 41-32=9. define i32 @fshr_i32_const_overshift(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_const_overshift: ; CHECK: // %bb.0: ; CHECK-NEXT: extr w0, w0, w1, #9 ; CHECK-NEXT: ret %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 41) ret i32 %f } ; 64-bit should also work. 105-64 = 41. define i64 @fshr_i64_const_overshift(i64 %x, i64 %y) { ; CHECK-LABEL: fshr_i64_const_overshift: ; CHECK: // %bb.0: ; CHECK-NEXT: extr x0, x0, x1, #41 ; CHECK-NEXT: ret %f = call i64 @llvm.fshr.i64(i64 %x, i64 %y, i64 105) ret i64 %f } ; This should work without any node-specific logic. define i8 @fshr_i8_const_fold() { ; CHECK-LABEL: fshr_i8_const_fold: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, #254 ; CHECK-NEXT: ret %f = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 7) ret i8 %f } define i32 @fshl_i32_shift_by_bitwidth(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_shift_by_bitwidth: ; CHECK: // %bb.0: ; CHECK-NEXT: ret %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 32) ret i32 %f } define i32 @fshr_i32_shift_by_bitwidth(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_shift_by_bitwidth: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w0, w1 ; CHECK-NEXT: ret %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 32) ret i32 %f } define <4 x i32> @fshl_v4i32_shift_by_bitwidth(<4 x i32> %x, <4 x i32> %y) { ; CHECK-LABEL: fshl_v4i32_shift_by_bitwidth: ; CHECK: // %bb.0: ; CHECK-NEXT: ret %f = call <4 x i32> @llvm.fshl.v4i32(<4 x i32> %x, <4 x i32> %y, <4 x i32> <i32 32, i32 32, i32 32, i32 32>) ret <4 x i32> %f } define <4 x i32> @fshr_v4i32_shift_by_bitwidth(<4 x i32> %x, <4 x i32> %y) { ; CHECK-LABEL: fshr_v4i32_shift_by_bitwidth: ; CHECK: // %bb.0: ; CHECK-NEXT: mov v0.16b, v1.16b ; CHECK-NEXT: ret %f = call <4 x i32> @llvm.fshr.v4i32(<4 x i32> %x, <4 x i32> %y, <4 x i32> <i32 32, i32 32, i32 32, i32 32>) ret <4 x i32> %f } define i32 @or_shl_fshl(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_shl_fshl: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, w2 ; CHECK-NEXT: mvn w9, w2 ; CHECK-NEXT: lsr w10, w1, #1 ; CHECK-NEXT: lsr w9, w10, w9 ; CHECK-NEXT: lsl w8, w0, w8 ; CHECK-NEXT: lsl w10, w1, w2 ; CHECK-NEXT: orr w8, w8, w9 ; CHECK-NEXT: orr w0, w8, w10 ; CHECK-NEXT: ret %shy = shl i32 %y, %s %fun = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 %s) %or = or i32 %fun, %shy ret i32 %or } define i32 @or_shl_rotl(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_shl_rotl: ; CHECK: // %bb.0: ; CHECK-NEXT: neg w8, w2 ; CHECK-NEXT: lsl w9, w0, w2 ; CHECK-NEXT: ror w8, w1, w8 ; CHECK-NEXT: orr w0, w8, w9 ; CHECK-NEXT: ret %shx = shl i32 %x, %s %rot = call i32 @llvm.fshl.i32(i32 %y, i32 %y, i32 %s) %or = or i32 %rot, %shx ret i32 %or } define i32 @or_shl_fshl_commute(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_shl_fshl_commute: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, w2 ; CHECK-NEXT: mvn w9, w2 ; CHECK-NEXT: lsr w10, w1, #1 ; CHECK-NEXT: lsr w9, w10, w9 ; CHECK-NEXT: lsl w8, w0, w8 ; CHECK-NEXT: lsl w10, w1, w2 ; CHECK-NEXT: orr w8, w8, w9 ; CHECK-NEXT: orr w0, w10, w8 ; CHECK-NEXT: ret %shy = shl i32 %y, %s %fun = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 %s) %or = or i32 %shy, %fun ret i32 %or } define i32 @or_shl_rotl_commute(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_shl_rotl_commute: ; CHECK: // %bb.0: ; CHECK-NEXT: neg w8, w2 ; CHECK-NEXT: lsl w9, w0, w2 ; CHECK-NEXT: ror w8, w1, w8 ; CHECK-NEXT: orr w0, w9, w8 ; CHECK-NEXT: ret %shx = shl i32 %x, %s %rot = call i32 @llvm.fshl.i32(i32 %y, i32 %y, i32 %s) %or = or i32 %shx, %rot ret i32 %or } define i32 @or_lshr_fshr(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_lshr_fshr: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, w2 ; CHECK-NEXT: mvn w9, w2 ; CHECK-NEXT: lsl w10, w1, #1 ; CHECK-NEXT: lsr w8, w0, w8 ; CHECK-NEXT: lsl w9, w10, w9 ; CHECK-NEXT: lsr w10, w1, w2 ; CHECK-NEXT: orr w8, w9, w8 ; CHECK-NEXT: orr w0, w8, w10 ; CHECK-NEXT: ret %shy = lshr i32 %y, %s %fun = call i32 @llvm.fshr.i32(i32 %y, i32 %x, i32 %s) %or = or i32 %fun, %shy ret i32 %or } define i32 @or_lshr_rotr(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_lshr_rotr: ; CHECK: // %bb.0: ; CHECK-NEXT: lsr w8, w0, w2 ; CHECK-NEXT: ror w9, w1, w2 ; CHECK-NEXT: orr w0, w9, w8 ; CHECK-NEXT: ret %shx = lshr i32 %x, %s %rot = call i32 @llvm.fshr.i32(i32 %y, i32 %y, i32 %s) %or = or i32 %rot, %shx ret i32 %or } define i32 @or_lshr_fshr_commute(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_lshr_fshr_commute: ; CHECK: // %bb.0: ; CHECK-NEXT: mov w8, w2 ; CHECK-NEXT: mvn w9, w2 ; CHECK-NEXT: lsl w10, w1, #1 ; CHECK-NEXT: lsr w8, w0, w8 ; CHECK-NEXT: lsl w9, w10, w9 ; CHECK-NEXT: lsr w10, w1, w2 ; CHECK-NEXT: orr w8, w9, w8 ; CHECK-NEXT: orr w0, w10, w8 ; CHECK-NEXT: ret %shy = lshr i32 %y, %s %fun = call i32 @llvm.fshr.i32(i32 %y, i32 %x, i32 %s) %or = or i32 %shy, %fun ret i32 %or } define i32 @or_lshr_rotr_commute(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_lshr_rotr_commute: ; CHECK: // %bb.0: ; CHECK-NEXT: lsr w8, w0, w2 ; CHECK-NEXT: ror w9, w1, w2 ; CHECK-NEXT: orr w0, w8, w9 ; CHECK-NEXT: ret %shx = lshr i32 %x, %s %rot = call i32 @llvm.fshr.i32(i32 %y, i32 %y, i32 %s) %or = or i32 %shx, %rot ret i32 %or } define i32 @or_shl_fshl_simplify(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_shl_fshl_simplify: ; CHECK: // %bb.0: ; CHECK-NEXT: // kill: def $w2 killed $w2 def $x2 ; CHECK-NEXT: mvn w8, w2 ; CHECK-NEXT: lsr w9, w0, #1 ; CHECK-NEXT: lsl w10, w1, w2 ; CHECK-NEXT: lsr w8, w9, w8 ; CHECK-NEXT: orr w0, w10, w8 ; CHECK-NEXT: ret %shy = shl i32 %y, %s %fun = call i32 @llvm.fshl.i32(i32 %y, i32 %x, i32 %s) %or = or i32 %fun, %shy ret i32 %or } define i32 @or_lshr_fshr_simplify(i32 %x, i32 %y, i32 %s) { ; CHECK-LABEL: or_lshr_fshr_simplify: ; CHECK: // %bb.0: ; CHECK-NEXT: // kill: def $w2 killed $w2 def $x2 ; CHECK-NEXT: mvn w8, w2 ; CHECK-NEXT: lsl w9, w0, #1 ; CHECK-NEXT: lsr w10, w1, w2 ; CHECK-NEXT: lsl w8, w9, w8 ; CHECK-NEXT: orr w0, w8, w10 ; CHECK-NEXT: ret %shy = lshr i32 %y, %s %fun = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 %s) %or = or i32 %shy, %fun ret i32 %or }