// RUN: %clang_cc1 -std=c++20 -verify %s
// RUN: %clang_cc1 -std=c++17 -verify %s
// p0388 conversions to unbounded array
// dcl.init.list/3
namespace One {
int ga[1];
auto &frob1() {
int(&r1)[] = ga;
#if __cplusplus < 202002
// expected-error@-2{{cannot bind to a value of unrelated type}}
#endif
return r1;
}
auto &frob2(int (&arp)[1]) {
int(&r2)[] = arp;
#if __cplusplus < 202002
// expected-error@-2{{cannot bind to a value of unrelated type}}
#endif
return r2;
}
} // namespace One
namespace Two {
int ga[1];
auto *frob1() {
int(*r1)[] = &ga;
#if __cplusplus < 202002
// expected-error@-2{{with an rvalue of type}}
#endif
return r1;
}
auto *frob2(int (*arp)[1]) {
int(*r2)[] = arp;
#if __cplusplus < 202002
// expected-error@-2{{with an lvalue of type}}
#endif
return r2;
}
} // namespace Two
namespace Four {
using Inc = int[2];
using Mat = Inc[1];
Mat *ga[2];
auto *frob1() {
Inc(*const(*r1)[])[] = &ga;
#if __cplusplus < 202002
// expected-error@-2{{with an rvalue of type}}
#else
// missing a required 'const'
Inc(*(*r2)[])[] = &ga; // expected-error{{cannot initialize}}
#endif
return r1;
}
auto *frob2(Mat *(*arp)[1]) {
Inc(*const(*r2)[])[] = arp;
#if __cplusplus < 202002
// expected-error@-2{{with an lvalue of type}}
#else
Inc(*(*r3)[])[] = arp; // expected-error{{cannot initialize}}
#endif
return r2;
}
} // namespace Four
namespace Five {
// from the paper
char (&b(int(&&)[]))[1]; // #1
char (&b(long(&&)[]))[2]; // #2
char (&b(int(&&)[1]))[3]; // #3
char (&b(long(&&)[1]))[4]; // #4
char (&b(int(&&)[2]))[5]; // #5
#if __cplusplus < 202002
// expected-note@-6{{cannot convert initializer}}
// expected-note@-6{{cannot convert initializer}}
// expected-note@-6{{too many initializers}}
// expected-note@-6{{too many initializers}}
// expected-note@-6{{too many initializers}}
#endif
void f() {
static_assert(sizeof(b({1})) == 3);
static_assert(sizeof(b({1, 2})) == 5);
static_assert(sizeof(b({1, 2, 3})) == 1);
#if __cplusplus < 202002
// expected-error@-2{{no matching function}}
#endif
}
} // namespace Five
#if __cplusplus >= 202002
namespace Six {
// from over.ics.rank 3.1
char (&f(int(&&)[]))[1]; // #1
char (&f(double(&&)[]))[2]; // #2
char (&f(int(&&)[2]))[3]; // #3
void toto() {
// Calls #1: Better than #2 due to conversion, better than #3 due to bounds
static_assert(sizeof(f({1})) == 1);
// Calls #2: Identity conversion is better than floating-integral conversion
static_assert(sizeof(f({1.0})) == 2);
// Calls #2: Identity conversion is better than floating-integral conversion
static_assert(sizeof(f({1.0, 2.0})) == 2);
// Calls #3: Converting to array of known bound is better than to unknown
// bound, and an identity conversion is better than
// floating-integral conversion
static_assert(sizeof(f({1, 2})) == 3);
}
} // namespace Six
namespace Seven {
char (&f(int(&&)[]))[1]; // #1
char (&f(double(&&)[1]))[2]; // #2
void quux() {
// Calls #2, float-integral conversion rather than create zero-sized array
static_assert(sizeof(f({})) == 2);
}
} // namespace Seven
namespace Eight {
// brace-elision is not a thing here:
struct A {
int x, y;
};
char (&f1(int(&&)[]))[1]; // #1
char (&f1(A(&&)[]))[2]; // #2
void g1() {
// pick #1, even though that is more elements than #2
// 6 ints, as opposed to 3 As
static_assert(sizeof(f1({1, 2, 3, 4, 5, 6})) == 1);
}
void f2(A(&&)[]); // expected-note{{candidate function not viable}}
void g2() {
f2({1, 2, 3, 4, 5, 6}); // expected-error{{no matching function}}
}
void f3(A(&&)[]);
void g3() {
auto &f = f3;
f({1, 2, 3, 4, 5, 6}); // OK! We're coercing to an already-selected function
}
} // namespace Eight
#endif