Compiler projects using llvm
//===- Stmt.cpp - Statement AST Node Implementation -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt class and statement subclasses.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Stmt.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Token.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <string>
#include <type_traits>
#include <utility>

using namespace clang;

static struct StmtClassNameTable {
  const char *Name;
  unsigned Counter;
  unsigned Size;
} StmtClassInfo[Stmt::lastStmtConstant+1];

static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) {
  static bool Initialized = false;
  if (Initialized)
    return StmtClassInfo[E];

  // Initialize the table on the first use.
  Initialized = true;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
  StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS;    \
  StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS);
#include "clang/AST/StmtNodes.inc"

  return StmtClassInfo[E];
}

void *Stmt::operator new(size_t bytes, const ASTContext& C,
                         unsigned alignment) {
  return ::operator new(bytes, C, alignment);
}

const char *Stmt::getStmtClassName() const {
  return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name;
}

// Check that no statement / expression class is polymorphic. LLVM style RTTI
// should be used instead. If absolutely needed an exception can still be added
// here by defining the appropriate macro (but please don't do this).
#define STMT(CLASS, PARENT) \
  static_assert(!std::is_polymorphic<CLASS>::value, \
                #CLASS " should not be polymorphic!");
#include "clang/AST/StmtNodes.inc"

// Check that no statement / expression class has a non-trival destructor.
// Statements and expressions are allocated with the BumpPtrAllocator from
// ASTContext and therefore their destructor is not executed.
#define STMT(CLASS, PARENT)                                                    \
  static_assert(std::is_trivially_destructible<CLASS>::value,                  \
                #CLASS " should be trivially destructible!");
// FIXME: InitListExpr is not trivially destructible due to its ASTVector.
#define INITLISTEXPR(CLASS, PARENT)
#include "clang/AST/StmtNodes.inc"

void Stmt::PrintStats() {
  // Ensure the table is primed.
  getStmtInfoTableEntry(Stmt::NullStmtClass);

  unsigned sum = 0;
  llvm::errs() << "\n*** Stmt/Expr Stats:\n";
  for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
    if (StmtClassInfo[i].Name == nullptr) continue;
    sum += StmtClassInfo[i].Counter;
  }
  llvm::errs() << "  " << sum << " stmts/exprs total.\n";
  sum = 0;
  for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
    if (StmtClassInfo[i].Name == nullptr) continue;
    if (StmtClassInfo[i].Counter == 0) continue;
    llvm::errs() << "    " << StmtClassInfo[i].Counter << " "
                 << StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size
                 << " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size
                 << " bytes)\n";
    sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size;
  }

  llvm::errs() << "Total bytes = " << sum << "\n";
}

void Stmt::addStmtClass(StmtClass s) {
  ++getStmtInfoTableEntry(s).Counter;
}

bool Stmt::StatisticsEnabled = false;
void Stmt::EnableStatistics() {
  StatisticsEnabled = true;
}

static std::pair<Stmt::Likelihood, const Attr *>
getLikelihood(ArrayRef<const Attr *> Attrs) {
  for (const auto *A : Attrs) {
    if (isa<LikelyAttr>(A))
      return std::make_pair(Stmt::LH_Likely, A);

    if (isa<UnlikelyAttr>(A))
      return std::make_pair(Stmt::LH_Unlikely, A);
  }

  return std::make_pair(Stmt::LH_None, nullptr);
}

static std::pair<Stmt::Likelihood, const Attr *> getLikelihood(const Stmt *S) {
  if (const auto *AS = dyn_cast_or_null<AttributedStmt>(S))
    return getLikelihood(AS->getAttrs());

  return std::make_pair(Stmt::LH_None, nullptr);
}

Stmt::Likelihood Stmt::getLikelihood(ArrayRef<const Attr *> Attrs) {
  return ::getLikelihood(Attrs).first;
}

Stmt::Likelihood Stmt::getLikelihood(const Stmt *S) {
  return ::getLikelihood(S).first;
}

const Attr *Stmt::getLikelihoodAttr(const Stmt *S) {
  return ::getLikelihood(S).second;
}

Stmt::Likelihood Stmt::getLikelihood(const Stmt *Then, const Stmt *Else) {
  Likelihood LHT = ::getLikelihood(Then).first;
  Likelihood LHE = ::getLikelihood(Else).first;
  if (LHE == LH_None)
    return LHT;

  // If the same attribute is used on both branches there's a conflict.
  if (LHT == LHE)
    return LH_None;

  if (LHT != LH_None)
    return LHT;

  // Invert the value of Else to get the value for Then.
  return LHE == LH_Likely ? LH_Unlikely : LH_Likely;
}

std::tuple<bool, const Attr *, const Attr *>
Stmt::determineLikelihoodConflict(const Stmt *Then, const Stmt *Else) {
  std::pair<Likelihood, const Attr *> LHT = ::getLikelihood(Then);
  std::pair<Likelihood, const Attr *> LHE = ::getLikelihood(Else);
  // If the same attribute is used on both branches there's a conflict.
  if (LHT.first != LH_None && LHT.first == LHE.first)
    return std::make_tuple(true, LHT.second, LHE.second);

  return std::make_tuple(false, nullptr, nullptr);
}

/// Skip no-op (attributed, compound) container stmts and skip captured
/// stmt at the top, if \a IgnoreCaptured is true.
Stmt *Stmt::IgnoreContainers(bool IgnoreCaptured) {
  Stmt *S = this;
  if (IgnoreCaptured)
    if (auto CapS = dyn_cast_or_null<CapturedStmt>(S))
      S = CapS->getCapturedStmt();
  while (true) {
    if (auto AS = dyn_cast_or_null<AttributedStmt>(S))
      S = AS->getSubStmt();
    else if (auto CS = dyn_cast_or_null<CompoundStmt>(S)) {
      if (CS->size() != 1)
        break;
      S = CS->body_back();
    } else
      break;
  }
  return S;
}

/// Strip off all label-like statements.
///
/// This will strip off label statements, case statements, attributed
/// statements and default statements recursively.
const Stmt *Stmt::stripLabelLikeStatements() const {
  const Stmt *S = this;
  while (true) {
    if (const auto *LS = dyn_cast<LabelStmt>(S))
      S = LS->getSubStmt();
    else if (const auto *SC = dyn_cast<SwitchCase>(S))
      S = SC->getSubStmt();
    else if (const auto *AS = dyn_cast<AttributedStmt>(S))
      S = AS->getSubStmt();
    else
      return S;
  }
}

namespace {

  struct good {};
  struct bad {};

  // These silly little functions have to be static inline to suppress
  // unused warnings, and they have to be defined to suppress other
  // warnings.
  static good is_good(good) { return good(); }

  typedef Stmt::child_range children_t();
  template <class T> good implements_children(children_t T::*) {
    return good();
  }
  LLVM_ATTRIBUTE_UNUSED
  static bad implements_children(children_t Stmt::*) {
    return bad();
  }

  typedef SourceLocation getBeginLoc_t() const;
  template <class T> good implements_getBeginLoc(getBeginLoc_t T::*) {
    return good();
  }
  LLVM_ATTRIBUTE_UNUSED
  static bad implements_getBeginLoc(getBeginLoc_t Stmt::*) { return bad(); }

  typedef SourceLocation getLocEnd_t() const;
  template <class T> good implements_getEndLoc(getLocEnd_t T::*) {
    return good();
  }
  LLVM_ATTRIBUTE_UNUSED
  static bad implements_getEndLoc(getLocEnd_t Stmt::*) { return bad(); }

#define ASSERT_IMPLEMENTS_children(type) \
  (void) is_good(implements_children(&type::children))
#define ASSERT_IMPLEMENTS_getBeginLoc(type)                                    \
  (void)is_good(implements_getBeginLoc(&type::getBeginLoc))
#define ASSERT_IMPLEMENTS_getEndLoc(type)                                      \
  (void)is_good(implements_getEndLoc(&type::getEndLoc))

} // namespace

/// Check whether the various Stmt classes implement their member
/// functions.
LLVM_ATTRIBUTE_UNUSED
static inline void check_implementations() {
#define ABSTRACT_STMT(type)
#define STMT(type, base)                                                       \
  ASSERT_IMPLEMENTS_children(type);                                            \
  ASSERT_IMPLEMENTS_getBeginLoc(type);                                         \
  ASSERT_IMPLEMENTS_getEndLoc(type);
#include "clang/AST/StmtNodes.inc"
}

Stmt::child_range Stmt::children() {
  switch (getStmtClass()) {
  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
  case Stmt::type##Class: \
    return static_cast<type*>(this)->children();
#include "clang/AST/StmtNodes.inc"
  }
  llvm_unreachable("unknown statement kind!");
}

// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getSourceRange.
//
// See also Expr.cpp:getExprLoc().
namespace {

  /// This implementation is used when a class provides a custom
  /// implementation of getSourceRange.
  template <class S, class T>
  SourceRange getSourceRangeImpl(const Stmt *stmt,
                                 SourceRange (T::*v)() const) {
    return static_cast<const S*>(stmt)->getSourceRange();
  }

  /// This implementation is used when a class doesn't provide a custom
  /// implementation of getSourceRange.  Overload resolution should pick it over
  /// the implementation above because it's more specialized according to
  /// function template partial ordering.
  template <class S>
  SourceRange getSourceRangeImpl(const Stmt *stmt,
                                 SourceRange (Stmt::*v)() const) {
    return SourceRange(static_cast<const S *>(stmt)->getBeginLoc(),
                       static_cast<const S *>(stmt)->getEndLoc());
  }

} // namespace

SourceRange Stmt::getSourceRange() const {
  switch (getStmtClass()) {
  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
  case Stmt::type##Class: \
    return getSourceRangeImpl<type>(this, &type::getSourceRange);
#include "clang/AST/StmtNodes.inc"
  }
  llvm_unreachable("unknown statement kind!");
}

SourceLocation Stmt::getBeginLoc() const {
  switch (getStmtClass()) {
  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base)                                                       \
  case Stmt::type##Class:                                                      \
    return static_cast<const type *>(this)->getBeginLoc();
#include "clang/AST/StmtNodes.inc"
  }
  llvm_unreachable("unknown statement kind");
}

SourceLocation Stmt::getEndLoc() const {
  switch (getStmtClass()) {
  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base)                                                       \
  case Stmt::type##Class:                                                      \
    return static_cast<const type *>(this)->getEndLoc();
#include "clang/AST/StmtNodes.inc"
  }
  llvm_unreachable("unknown statement kind");
}

int64_t Stmt::getID(const ASTContext &Context) const {
  return Context.getAllocator().identifyKnownAlignedObject<Stmt>(this);
}

CompoundStmt::CompoundStmt(ArrayRef<Stmt *> Stmts, FPOptionsOverride FPFeatures,
                           SourceLocation LB, SourceLocation RB)
    : Stmt(CompoundStmtClass), LBraceLoc(LB), RBraceLoc(RB) {
  CompoundStmtBits.NumStmts = Stmts.size();
  CompoundStmtBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
  setStmts(Stmts);
  if (hasStoredFPFeatures())
    setStoredFPFeatures(FPFeatures);
}

void CompoundStmt::setStmts(ArrayRef<Stmt *> Stmts) {
  assert(CompoundStmtBits.NumStmts == Stmts.size() &&
         "NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!");

  std::copy(Stmts.begin(), Stmts.end(), body_begin());
}

CompoundStmt *CompoundStmt::Create(const ASTContext &C, ArrayRef<Stmt *> Stmts,
                                   FPOptionsOverride FPFeatures,
                                   SourceLocation LB, SourceLocation RB) {
  void *Mem =
      C.Allocate(totalSizeToAlloc<Stmt *, FPOptionsOverride>(
                     Stmts.size(), FPFeatures.requiresTrailingStorage()),
                 alignof(CompoundStmt));
  return new (Mem) CompoundStmt(Stmts, FPFeatures, LB, RB);
}

CompoundStmt *CompoundStmt::CreateEmpty(const ASTContext &C, unsigned NumStmts,
                                        bool HasFPFeatures) {
  void *Mem = C.Allocate(
      totalSizeToAlloc<Stmt *, FPOptionsOverride>(NumStmts, HasFPFeatures),
      alignof(CompoundStmt));
  CompoundStmt *New = new (Mem) CompoundStmt(EmptyShell());
  New->CompoundStmtBits.NumStmts = NumStmts;
  New->CompoundStmtBits.HasFPFeatures = HasFPFeatures;
  return New;
}

const Expr *ValueStmt::getExprStmt() const {
  const Stmt *S = this;
  do {
    if (const auto *E = dyn_cast<Expr>(S))
      return E;

    if (const auto *LS = dyn_cast<LabelStmt>(S))
      S = LS->getSubStmt();
    else if (const auto *AS = dyn_cast<AttributedStmt>(S))
      S = AS->getSubStmt();
    else
      llvm_unreachable("unknown kind of ValueStmt");
  } while (isa<ValueStmt>(S));

  return nullptr;
}

const char *LabelStmt::getName() const {
  return getDecl()->getIdentifier()->getNameStart();
}

AttributedStmt *AttributedStmt::Create(const ASTContext &C, SourceLocation Loc,
                                       ArrayRef<const Attr*> Attrs,
                                       Stmt *SubStmt) {
  assert(!Attrs.empty() && "Attrs should not be empty");
  void *Mem = C.Allocate(totalSizeToAlloc<const Attr *>(Attrs.size()),
                         alignof(AttributedStmt));
  return new (Mem) AttributedStmt(Loc, Attrs, SubStmt);
}

AttributedStmt *AttributedStmt::CreateEmpty(const ASTContext &C,
                                            unsigned NumAttrs) {
  assert(NumAttrs > 0 && "NumAttrs should be greater than zero");
  void *Mem = C.Allocate(totalSizeToAlloc<const Attr *>(NumAttrs),
                         alignof(AttributedStmt));
  return new (Mem) AttributedStmt(EmptyShell(), NumAttrs);
}

std::string AsmStmt::generateAsmString(const ASTContext &C) const {
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
    return gccAsmStmt->generateAsmString(C);
  if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this))
    return msAsmStmt->generateAsmString(C);
  llvm_unreachable("unknown asm statement kind!");
}

StringRef AsmStmt::getOutputConstraint(unsigned i) const {
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
    return gccAsmStmt->getOutputConstraint(i);
  if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this))
    return msAsmStmt->getOutputConstraint(i);
  llvm_unreachable("unknown asm statement kind!");
}

const Expr *AsmStmt::getOutputExpr(unsigned i) const {
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
    return gccAsmStmt->getOutputExpr(i);
  if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this))
    return msAsmStmt->getOutputExpr(i);
  llvm_unreachable("unknown asm statement kind!");
}

StringRef AsmStmt::getInputConstraint(unsigned i) const {
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
    return gccAsmStmt->getInputConstraint(i);
  if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this))
    return msAsmStmt->getInputConstraint(i);
  llvm_unreachable("unknown asm statement kind!");
}

const Expr *AsmStmt::getInputExpr(unsigned i) const {
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
    return gccAsmStmt->getInputExpr(i);
  if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this))
    return msAsmStmt->getInputExpr(i);
  llvm_unreachable("unknown asm statement kind!");
}

StringRef AsmStmt::getClobber(unsigned i) const {
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
    return gccAsmStmt->getClobber(i);
  if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this))
    return msAsmStmt->getClobber(i);
  llvm_unreachable("unknown asm statement kind!");
}

/// getNumPlusOperands - Return the number of output operands that have a "+"
/// constraint.
unsigned AsmStmt::getNumPlusOperands() const {
  unsigned Res = 0;
  for (unsigned i = 0, e = getNumOutputs(); i != e; ++i)
    if (isOutputPlusConstraint(i))
      ++Res;
  return Res;
}

char GCCAsmStmt::AsmStringPiece::getModifier() const {
  assert(isOperand() && "Only Operands can have modifiers.");
  return isLetter(Str[0]) ? Str[0] : '\0';
}

StringRef GCCAsmStmt::getClobber(unsigned i) const {
  return getClobberStringLiteral(i)->getString();
}

Expr *GCCAsmStmt::getOutputExpr(unsigned i) {
  return cast<Expr>(Exprs[i]);
}

/// getOutputConstraint - Return the constraint string for the specified
/// output operand.  All output constraints are known to be non-empty (either
/// '=' or '+').
StringRef GCCAsmStmt::getOutputConstraint(unsigned i) const {
  return getOutputConstraintLiteral(i)->getString();
}

Expr *GCCAsmStmt::getInputExpr(unsigned i) {
  return cast<Expr>(Exprs[i + NumOutputs]);
}

void GCCAsmStmt::setInputExpr(unsigned i, Expr *E) {
  Exprs[i + NumOutputs] = E;
}

AddrLabelExpr *GCCAsmStmt::getLabelExpr(unsigned i) const {
  return cast<AddrLabelExpr>(Exprs[i + NumOutputs + NumInputs]);
}

StringRef GCCAsmStmt::getLabelName(unsigned i) const {
  return getLabelExpr(i)->getLabel()->getName();
}

/// getInputConstraint - Return the specified input constraint.  Unlike output
/// constraints, these can be empty.
StringRef GCCAsmStmt::getInputConstraint(unsigned i) const {
  return getInputConstraintLiteral(i)->getString();
}

void GCCAsmStmt::setOutputsAndInputsAndClobbers(const ASTContext &C,
                                                IdentifierInfo **Names,
                                                StringLiteral **Constraints,
                                                Stmt **Exprs,
                                                unsigned NumOutputs,
                                                unsigned NumInputs,
                                                unsigned NumLabels,
                                                StringLiteral **Clobbers,
                                                unsigned NumClobbers) {
  this->NumOutputs = NumOutputs;
  this->NumInputs = NumInputs;
  this->NumClobbers = NumClobbers;
  this->NumLabels = NumLabels;

  unsigned NumExprs = NumOutputs + NumInputs + NumLabels;

  C.Deallocate(this->Names);
  this->Names = new (C) IdentifierInfo*[NumExprs];
  std::copy(Names, Names + NumExprs, this->Names);

  C.Deallocate(this->Exprs);
  this->Exprs = new (C) Stmt*[NumExprs];
  std::copy(Exprs, Exprs + NumExprs, this->Exprs);

  unsigned NumConstraints = NumOutputs + NumInputs;
  C.Deallocate(this->Constraints);
  this->Constraints = new (C) StringLiteral*[NumConstraints];
  std::copy(Constraints, Constraints + NumConstraints, this->Constraints);

  C.Deallocate(this->Clobbers);
  this->Clobbers = new (C) StringLiteral*[NumClobbers];
  std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers);
}

/// getNamedOperand - Given a symbolic operand reference like %[foo],
/// translate this into a numeric value needed to reference the same operand.
/// This returns -1 if the operand name is invalid.
int GCCAsmStmt::getNamedOperand(StringRef SymbolicName) const {
  // Check if this is an output operand.
  unsigned NumOutputs = getNumOutputs();
  for (unsigned i = 0; i != NumOutputs; ++i)
    if (getOutputName(i) == SymbolicName)
      return i;

  unsigned NumInputs = getNumInputs();
  for (unsigned i = 0; i != NumInputs; ++i)
    if (getInputName(i) == SymbolicName)
      return NumOutputs + i;

  for (unsigned i = 0, e = getNumLabels(); i != e; ++i)
    if (getLabelName(i) == SymbolicName)
      return NumOutputs + NumInputs + getNumPlusOperands() + i;

  // Not found.
  return -1;
}

/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
/// it into pieces.  If the asm string is erroneous, emit errors and return
/// true, otherwise return false.
unsigned GCCAsmStmt::AnalyzeAsmString(SmallVectorImpl<AsmStringPiece>&Pieces,
                                const ASTContext &C, unsigned &DiagOffs) const {
  StringRef Str = getAsmString()->getString();
  const char *StrStart = Str.begin();
  const char *StrEnd = Str.end();
  const char *CurPtr = StrStart;

  // "Simple" inline asms have no constraints or operands, just convert the asm
  // string to escape $'s.
  if (isSimple()) {
    std::string Result;
    for (; CurPtr != StrEnd; ++CurPtr) {
      switch (*CurPtr) {
      case '$':
        Result += "$$";
        break;
      default:
        Result += *CurPtr;
        break;
      }
    }
    Pieces.push_back(AsmStringPiece(Result));
    return 0;
  }

  // CurStringPiece - The current string that we are building up as we scan the
  // asm string.
  std::string CurStringPiece;

  bool HasVariants = !C.getTargetInfo().hasNoAsmVariants();

  unsigned LastAsmStringToken = 0;
  unsigned LastAsmStringOffset = 0;

  while (true) {
    // Done with the string?
    if (CurPtr == StrEnd) {
      if (!CurStringPiece.empty())
        Pieces.push_back(AsmStringPiece(CurStringPiece));
      return 0;
    }

    char CurChar = *CurPtr++;
    switch (CurChar) {
    case '$': CurStringPiece += "$$"; continue;
    case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue;
    case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue;
    case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue;
    case '%':
      break;
    default:
      CurStringPiece += CurChar;
      continue;
    }

    const TargetInfo &TI = C.getTargetInfo();

    // Escaped "%" character in asm string.
    if (CurPtr == StrEnd) {
      // % at end of string is invalid (no escape).
      DiagOffs = CurPtr-StrStart-1;
      return diag::err_asm_invalid_escape;
    }
    // Handle escaped char and continue looping over the asm string.
    char EscapedChar = *CurPtr++;
    switch (EscapedChar) {
    default:
      // Handle target-specific escaped characters.
      if (auto MaybeReplaceStr = TI.handleAsmEscapedChar(EscapedChar)) {
        CurStringPiece += *MaybeReplaceStr;
        continue;
      }
      break;
    case '%': // %% -> %
    case '{': // %{ -> {
    case '}': // %} -> }
      CurStringPiece += EscapedChar;
      continue;
    case '=': // %= -> Generate a unique ID.
      CurStringPiece += "${:uid}";
      continue;
    }

    // Otherwise, we have an operand.  If we have accumulated a string so far,
    // add it to the Pieces list.
    if (!CurStringPiece.empty()) {
      Pieces.push_back(AsmStringPiece(CurStringPiece));
      CurStringPiece.clear();
    }

    // Handle operands that have asmSymbolicName (e.g., %x[foo]) and those that
    // don't (e.g., %x4). 'x' following the '%' is the constraint modifier.

    const char *Begin = CurPtr - 1; // Points to the character following '%'.
    const char *Percent = Begin - 1; // Points to '%'.

    if (isLetter(EscapedChar)) {
      if (CurPtr == StrEnd) { // Premature end.
        DiagOffs = CurPtr-StrStart-1;
        return diag::err_asm_invalid_escape;
      }
      EscapedChar = *CurPtr++;
    }

    const SourceManager &SM = C.getSourceManager();
    const LangOptions &LO = C.getLangOpts();

    // Handle operands that don't have asmSymbolicName (e.g., %x4).
    if (isDigit(EscapedChar)) {
      // %n - Assembler operand n
      unsigned N = 0;

      --CurPtr;
      while (CurPtr != StrEnd && isDigit(*CurPtr))
        N = N*10 + ((*CurPtr++)-'0');

      unsigned NumOperands = getNumOutputs() + getNumPlusOperands() +
                             getNumInputs() + getNumLabels();
      if (N >= NumOperands) {
        DiagOffs = CurPtr-StrStart-1;
        return diag::err_asm_invalid_operand_number;
      }

      // Str contains "x4" (Operand without the leading %).
      std::string Str(Begin, CurPtr - Begin);

      // (BeginLoc, EndLoc) represents the range of the operand we are currently
      // processing. Unlike Str, the range includes the leading '%'.
      SourceLocation BeginLoc = getAsmString()->getLocationOfByte(
          Percent - StrStart, SM, LO, TI, &LastAsmStringToken,
          &LastAsmStringOffset);
      SourceLocation EndLoc = getAsmString()->getLocationOfByte(
          CurPtr - StrStart, SM, LO, TI, &LastAsmStringToken,
          &LastAsmStringOffset);

      Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc);
      continue;
    }

    // Handle operands that have asmSymbolicName (e.g., %x[foo]).
    if (EscapedChar == '[') {
      DiagOffs = CurPtr-StrStart-1;

      // Find the ']'.
      const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr);
      if (NameEnd == nullptr)
        return diag::err_asm_unterminated_symbolic_operand_name;
      if (NameEnd == CurPtr)
        return diag::err_asm_empty_symbolic_operand_name;

      StringRef SymbolicName(CurPtr, NameEnd - CurPtr);

      int N = getNamedOperand(SymbolicName);
      if (N == -1) {
        // Verify that an operand with that name exists.
        DiagOffs = CurPtr-StrStart;
        return diag::err_asm_unknown_symbolic_operand_name;
      }

      // Str contains "x[foo]" (Operand without the leading %).
      std::string Str(Begin, NameEnd + 1 - Begin);

      // (BeginLoc, EndLoc) represents the range of the operand we are currently
      // processing. Unlike Str, the range includes the leading '%'.
      SourceLocation BeginLoc = getAsmString()->getLocationOfByte(
          Percent - StrStart, SM, LO, TI, &LastAsmStringToken,
          &LastAsmStringOffset);
      SourceLocation EndLoc = getAsmString()->getLocationOfByte(
          NameEnd + 1 - StrStart, SM, LO, TI, &LastAsmStringToken,
          &LastAsmStringOffset);

      Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc);

      CurPtr = NameEnd+1;
      continue;
    }

    DiagOffs = CurPtr-StrStart-1;
    return diag::err_asm_invalid_escape;
  }
}

/// Assemble final IR asm string (GCC-style).
std::string GCCAsmStmt::generateAsmString(const ASTContext &C) const {
  // Analyze the asm string to decompose it into its pieces.  We know that Sema
  // has already done this, so it is guaranteed to be successful.
  SmallVector<GCCAsmStmt::AsmStringPiece, 4> Pieces;
  unsigned DiagOffs;
  AnalyzeAsmString(Pieces, C, DiagOffs);

  std::string AsmString;
  for (const auto &Piece : Pieces) {
    if (Piece.isString())
      AsmString += Piece.getString();
    else if (Piece.getModifier() == '\0')
      AsmString += '$' + llvm::utostr(Piece.getOperandNo());
    else
      AsmString += "${" + llvm::utostr(Piece.getOperandNo()) + ':' +
                   Piece.getModifier() + '}';
  }
  return AsmString;
}

/// Assemble final IR asm string (MS-style).
std::string MSAsmStmt::generateAsmString(const ASTContext &C) const {
  // FIXME: This needs to be translated into the IR string representation.
  SmallVector<StringRef, 8> Pieces;
  AsmStr.split(Pieces, "\n\t");
  std::string MSAsmString;
  for (size_t I = 0, E = Pieces.size(); I < E; ++I) {
    StringRef Instruction = Pieces[I];
    // For vex/vex2/vex3/evex masm style prefix, convert it to att style
    // since we don't support masm style prefix in backend.
    if (Instruction.startswith("vex "))
      MSAsmString += '{' + Instruction.substr(0, 3).str() + '}' +
                     Instruction.substr(3).str();
    else if (Instruction.startswith("vex2 ") ||
             Instruction.startswith("vex3 ") || Instruction.startswith("evex "))
      MSAsmString += '{' + Instruction.substr(0, 4).str() + '}' +
                     Instruction.substr(4).str();
    else
      MSAsmString += Instruction.str();
    // If this is not the last instruction, adding back the '\n\t'.
    if (I < E - 1)
      MSAsmString += "\n\t";
  }
  return MSAsmString;
}

Expr *MSAsmStmt::getOutputExpr(unsigned i) {
  return cast<Expr>(Exprs[i]);
}

Expr *MSAsmStmt::getInputExpr(unsigned i) {
  return cast<Expr>(Exprs[i + NumOutputs]);
}

void MSAsmStmt::setInputExpr(unsigned i, Expr *E) {
  Exprs[i + NumOutputs] = E;
}

//===----------------------------------------------------------------------===//
// Constructors
//===----------------------------------------------------------------------===//

GCCAsmStmt::GCCAsmStmt(const ASTContext &C, SourceLocation asmloc,
                       bool issimple, bool isvolatile, unsigned numoutputs,
                       unsigned numinputs, IdentifierInfo **names,
                       StringLiteral **constraints, Expr **exprs,
                       StringLiteral *asmstr, unsigned numclobbers,
                       StringLiteral **clobbers, unsigned numlabels,
                       SourceLocation rparenloc)
    : AsmStmt(GCCAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
              numinputs, numclobbers),
              RParenLoc(rparenloc), AsmStr(asmstr), NumLabels(numlabels) {
  unsigned NumExprs = NumOutputs + NumInputs + NumLabels;

  Names = new (C) IdentifierInfo*[NumExprs];
  std::copy(names, names + NumExprs, Names);

  Exprs = new (C) Stmt*[NumExprs];
  std::copy(exprs, exprs + NumExprs, Exprs);

  unsigned NumConstraints = NumOutputs + NumInputs;
  Constraints = new (C) StringLiteral*[NumConstraints];
  std::copy(constraints, constraints + NumConstraints, Constraints);

  Clobbers = new (C) StringLiteral*[NumClobbers];
  std::copy(clobbers, clobbers + NumClobbers, Clobbers);
}

MSAsmStmt::MSAsmStmt(const ASTContext &C, SourceLocation asmloc,
                     SourceLocation lbraceloc, bool issimple, bool isvolatile,
                     ArrayRef<Token> asmtoks, unsigned numoutputs,
                     unsigned numinputs,
                     ArrayRef<StringRef> constraints, ArrayRef<Expr*> exprs,
                     StringRef asmstr, ArrayRef<StringRef> clobbers,
                     SourceLocation endloc)
    : AsmStmt(MSAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
              numinputs, clobbers.size()), LBraceLoc(lbraceloc),
              EndLoc(endloc), NumAsmToks(asmtoks.size()) {
  initialize(C, asmstr, asmtoks, constraints, exprs, clobbers);
}

static StringRef copyIntoContext(const ASTContext &C, StringRef str) {
  return str.copy(C);
}

void MSAsmStmt::initialize(const ASTContext &C, StringRef asmstr,
                           ArrayRef<Token> asmtoks,
                           ArrayRef<StringRef> constraints,
                           ArrayRef<Expr*> exprs,
                           ArrayRef<StringRef> clobbers) {
  assert(NumAsmToks == asmtoks.size());
  assert(NumClobbers == clobbers.size());

  assert(exprs.size() == NumOutputs + NumInputs);
  assert(exprs.size() == constraints.size());

  AsmStr = copyIntoContext(C, asmstr);

  Exprs = new (C) Stmt*[exprs.size()];
  std::copy(exprs.begin(), exprs.end(), Exprs);

  AsmToks = new (C) Token[asmtoks.size()];
  std::copy(asmtoks.begin(), asmtoks.end(), AsmToks);

  Constraints = new (C) StringRef[exprs.size()];
  std::transform(constraints.begin(), constraints.end(), Constraints,
                 [&](StringRef Constraint) {
                   return copyIntoContext(C, Constraint);
                 });

  Clobbers = new (C) StringRef[NumClobbers];
  // FIXME: Avoid the allocation/copy if at all possible.
  std::transform(clobbers.begin(), clobbers.end(), Clobbers,
                 [&](StringRef Clobber) {
                   return copyIntoContext(C, Clobber);
                 });
}

IfStmt::IfStmt(const ASTContext &Ctx, SourceLocation IL, IfStatementKind Kind,
               Stmt *Init, VarDecl *Var, Expr *Cond, SourceLocation LPL,
               SourceLocation RPL, Stmt *Then, SourceLocation EL, Stmt *Else)
    : Stmt(IfStmtClass), LParenLoc(LPL), RParenLoc(RPL) {
  bool HasElse = Else != nullptr;
  bool HasVar = Var != nullptr;
  bool HasInit = Init != nullptr;
  IfStmtBits.HasElse = HasElse;
  IfStmtBits.HasVar = HasVar;
  IfStmtBits.HasInit = HasInit;

  setStatementKind(Kind);

  setCond(Cond);
  setThen(Then);
  if (HasElse)
    setElse(Else);
  if (HasVar)
    setConditionVariable(Ctx, Var);
  if (HasInit)
    setInit(Init);

  setIfLoc(IL);
  if (HasElse)
    setElseLoc(EL);
}

IfStmt::IfStmt(EmptyShell Empty, bool HasElse, bool HasVar, bool HasInit)
    : Stmt(IfStmtClass, Empty) {
  IfStmtBits.HasElse = HasElse;
  IfStmtBits.HasVar = HasVar;
  IfStmtBits.HasInit = HasInit;
}

IfStmt *IfStmt::Create(const ASTContext &Ctx, SourceLocation IL,
                       IfStatementKind Kind, Stmt *Init, VarDecl *Var,
                       Expr *Cond, SourceLocation LPL, SourceLocation RPL,
                       Stmt *Then, SourceLocation EL, Stmt *Else) {
  bool HasElse = Else != nullptr;
  bool HasVar = Var != nullptr;
  bool HasInit = Init != nullptr;
  void *Mem = Ctx.Allocate(
      totalSizeToAlloc<Stmt *, SourceLocation>(
          NumMandatoryStmtPtr + HasElse + HasVar + HasInit, HasElse),
      alignof(IfStmt));
  return new (Mem)
      IfStmt(Ctx, IL, Kind, Init, Var, Cond, LPL, RPL, Then, EL, Else);
}

IfStmt *IfStmt::CreateEmpty(const ASTContext &Ctx, bool HasElse, bool HasVar,
                            bool HasInit) {
  void *Mem = Ctx.Allocate(
      totalSizeToAlloc<Stmt *, SourceLocation>(
          NumMandatoryStmtPtr + HasElse + HasVar + HasInit, HasElse),
      alignof(IfStmt));
  return new (Mem) IfStmt(EmptyShell(), HasElse, HasVar, HasInit);
}

VarDecl *IfStmt::getConditionVariable() {
  auto *DS = getConditionVariableDeclStmt();
  if (!DS)
    return nullptr;
  return cast<VarDecl>(DS->getSingleDecl());
}

void IfStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) {
  assert(hasVarStorage() &&
         "This if statement has no storage for a condition variable!");

  if (!V) {
    getTrailingObjects<Stmt *>()[varOffset()] = nullptr;
    return;
  }

  SourceRange VarRange = V->getSourceRange();
  getTrailingObjects<Stmt *>()[varOffset()] = new (Ctx)
      DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd());
}

bool IfStmt::isObjCAvailabilityCheck() const {
  return isa<ObjCAvailabilityCheckExpr>(getCond());
}

Optional<Stmt *> IfStmt::getNondiscardedCase(const ASTContext &Ctx) {
  if (!isConstexpr() || getCond()->isValueDependent())
    return None;
  return !getCond()->EvaluateKnownConstInt(Ctx) ? getElse() : getThen();
}

Optional<const Stmt *>
IfStmt::getNondiscardedCase(const ASTContext &Ctx) const {
  if (Optional<Stmt *> Result =
          const_cast<IfStmt *>(this)->getNondiscardedCase(Ctx))
    return *Result;
  return None;
}

ForStmt::ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
                 Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
                 SourceLocation RP)
  : Stmt(ForStmtClass), LParenLoc(LP), RParenLoc(RP)
{
  SubExprs[INIT] = Init;
  setConditionVariable(C, condVar);
  SubExprs[COND] = Cond;
  SubExprs[INC] = Inc;
  SubExprs[BODY] = Body;
  ForStmtBits.ForLoc = FL;
}

VarDecl *ForStmt::getConditionVariable() const {
  if (!SubExprs[CONDVAR])
    return nullptr;

  auto *DS = cast<DeclStmt>(SubExprs[CONDVAR]);
  return cast<VarDecl>(DS->getSingleDecl());
}

void ForStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
  if (!V) {
    SubExprs[CONDVAR] = nullptr;
    return;
  }

  SourceRange VarRange = V->getSourceRange();
  SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
                                       VarRange.getEnd());
}

SwitchStmt::SwitchStmt(const ASTContext &Ctx, Stmt *Init, VarDecl *Var,
                       Expr *Cond, SourceLocation LParenLoc,
                       SourceLocation RParenLoc)
    : Stmt(SwitchStmtClass), FirstCase(nullptr), LParenLoc(LParenLoc),
      RParenLoc(RParenLoc) {
  bool HasInit = Init != nullptr;
  bool HasVar = Var != nullptr;
  SwitchStmtBits.HasInit = HasInit;
  SwitchStmtBits.HasVar = HasVar;
  SwitchStmtBits.AllEnumCasesCovered = false;

  setCond(Cond);
  setBody(nullptr);
  if (HasInit)
    setInit(Init);
  if (HasVar)
    setConditionVariable(Ctx, Var);

  setSwitchLoc(SourceLocation{});
}

SwitchStmt::SwitchStmt(EmptyShell Empty, bool HasInit, bool HasVar)
    : Stmt(SwitchStmtClass, Empty) {
  SwitchStmtBits.HasInit = HasInit;
  SwitchStmtBits.HasVar = HasVar;
  SwitchStmtBits.AllEnumCasesCovered = false;
}

SwitchStmt *SwitchStmt::Create(const ASTContext &Ctx, Stmt *Init, VarDecl *Var,
                               Expr *Cond, SourceLocation LParenLoc,
                               SourceLocation RParenLoc) {
  bool HasInit = Init != nullptr;
  bool HasVar = Var != nullptr;
  void *Mem = Ctx.Allocate(
      totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasInit + HasVar),
      alignof(SwitchStmt));
  return new (Mem) SwitchStmt(Ctx, Init, Var, Cond, LParenLoc, RParenLoc);
}

SwitchStmt *SwitchStmt::CreateEmpty(const ASTContext &Ctx, bool HasInit,
                                    bool HasVar) {
  void *Mem = Ctx.Allocate(
      totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasInit + HasVar),
      alignof(SwitchStmt));
  return new (Mem) SwitchStmt(EmptyShell(), HasInit, HasVar);
}

VarDecl *SwitchStmt::getConditionVariable() {
  auto *DS = getConditionVariableDeclStmt();
  if (!DS)
    return nullptr;
  return cast<VarDecl>(DS->getSingleDecl());
}

void SwitchStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) {
  assert(hasVarStorage() &&
         "This switch statement has no storage for a condition variable!");

  if (!V) {
    getTrailingObjects<Stmt *>()[varOffset()] = nullptr;
    return;
  }

  SourceRange VarRange = V->getSourceRange();
  getTrailingObjects<Stmt *>()[varOffset()] = new (Ctx)
      DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd());
}

WhileStmt::WhileStmt(const ASTContext &Ctx, VarDecl *Var, Expr *Cond,
                     Stmt *Body, SourceLocation WL, SourceLocation LParenLoc,
                     SourceLocation RParenLoc)
    : Stmt(WhileStmtClass) {
  bool HasVar = Var != nullptr;
  WhileStmtBits.HasVar = HasVar;

  setCond(Cond);
  setBody(Body);
  if (HasVar)
    setConditionVariable(Ctx, Var);

  setWhileLoc(WL);
  setLParenLoc(LParenLoc);
  setRParenLoc(RParenLoc);
}

WhileStmt::WhileStmt(EmptyShell Empty, bool HasVar)
    : Stmt(WhileStmtClass, Empty) {
  WhileStmtBits.HasVar = HasVar;
}

WhileStmt *WhileStmt::Create(const ASTContext &Ctx, VarDecl *Var, Expr *Cond,
                             Stmt *Body, SourceLocation WL,
                             SourceLocation LParenLoc,
                             SourceLocation RParenLoc) {
  bool HasVar = Var != nullptr;
  void *Mem =
      Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasVar),
                   alignof(WhileStmt));
  return new (Mem) WhileStmt(Ctx, Var, Cond, Body, WL, LParenLoc, RParenLoc);
}

WhileStmt *WhileStmt::CreateEmpty(const ASTContext &Ctx, bool HasVar) {
  void *Mem =
      Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasVar),
                   alignof(WhileStmt));
  return new (Mem) WhileStmt(EmptyShell(), HasVar);
}

VarDecl *WhileStmt::getConditionVariable() {
  auto *DS = getConditionVariableDeclStmt();
  if (!DS)
    return nullptr;
  return cast<VarDecl>(DS->getSingleDecl());
}

void WhileStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) {
  assert(hasVarStorage() &&
         "This while statement has no storage for a condition variable!");

  if (!V) {
    getTrailingObjects<Stmt *>()[varOffset()] = nullptr;
    return;
  }

  SourceRange VarRange = V->getSourceRange();
  getTrailingObjects<Stmt *>()[varOffset()] = new (Ctx)
      DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd());
}

// IndirectGotoStmt
LabelDecl *IndirectGotoStmt::getConstantTarget() {
  if (auto *E = dyn_cast<AddrLabelExpr>(getTarget()->IgnoreParenImpCasts()))
    return E->getLabel();
  return nullptr;
}

// ReturnStmt
ReturnStmt::ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
    : Stmt(ReturnStmtClass), RetExpr(E) {
  bool HasNRVOCandidate = NRVOCandidate != nullptr;
  ReturnStmtBits.HasNRVOCandidate = HasNRVOCandidate;
  if (HasNRVOCandidate)
    setNRVOCandidate(NRVOCandidate);
  setReturnLoc(RL);
}

ReturnStmt::ReturnStmt(EmptyShell Empty, bool HasNRVOCandidate)
    : Stmt(ReturnStmtClass, Empty) {
  ReturnStmtBits.HasNRVOCandidate = HasNRVOCandidate;
}

ReturnStmt *ReturnStmt::Create(const ASTContext &Ctx, SourceLocation RL,
                               Expr *E, const VarDecl *NRVOCandidate) {
  bool HasNRVOCandidate = NRVOCandidate != nullptr;
  void *Mem = Ctx.Allocate(totalSizeToAlloc<const VarDecl *>(HasNRVOCandidate),
                           alignof(ReturnStmt));
  return new (Mem) ReturnStmt(RL, E, NRVOCandidate);
}

ReturnStmt *ReturnStmt::CreateEmpty(const ASTContext &Ctx,
                                    bool HasNRVOCandidate) {
  void *Mem = Ctx.Allocate(totalSizeToAlloc<const VarDecl *>(HasNRVOCandidate),
                           alignof(ReturnStmt));
  return new (Mem) ReturnStmt(EmptyShell(), HasNRVOCandidate);
}

// CaseStmt
CaseStmt *CaseStmt::Create(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
                           SourceLocation caseLoc, SourceLocation ellipsisLoc,
                           SourceLocation colonLoc) {
  bool CaseStmtIsGNURange = rhs != nullptr;
  void *Mem = Ctx.Allocate(
      totalSizeToAlloc<Stmt *, SourceLocation>(
          NumMandatoryStmtPtr + CaseStmtIsGNURange, CaseStmtIsGNURange),
      alignof(CaseStmt));
  return new (Mem) CaseStmt(lhs, rhs, caseLoc, ellipsisLoc, colonLoc);
}

CaseStmt *CaseStmt::CreateEmpty(const ASTContext &Ctx,
                                bool CaseStmtIsGNURange) {
  void *Mem = Ctx.Allocate(
      totalSizeToAlloc<Stmt *, SourceLocation>(
          NumMandatoryStmtPtr + CaseStmtIsGNURange, CaseStmtIsGNURange),
      alignof(CaseStmt));
  return new (Mem) CaseStmt(EmptyShell(), CaseStmtIsGNURange);
}

SEHTryStmt::SEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock,
                       Stmt *Handler)
    : Stmt(SEHTryStmtClass), IsCXXTry(IsCXXTry), TryLoc(TryLoc) {
  Children[TRY]     = TryBlock;
  Children[HANDLER] = Handler;
}

SEHTryStmt* SEHTryStmt::Create(const ASTContext &C, bool IsCXXTry,
                               SourceLocation TryLoc, Stmt *TryBlock,
                               Stmt *Handler) {
  return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler);
}

SEHExceptStmt* SEHTryStmt::getExceptHandler() const {
  return dyn_cast<SEHExceptStmt>(getHandler());
}

SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const {
  return dyn_cast<SEHFinallyStmt>(getHandler());
}

SEHExceptStmt::SEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, Stmt *Block)
    : Stmt(SEHExceptStmtClass), Loc(Loc) {
  Children[FILTER_EXPR] = FilterExpr;
  Children[BLOCK]       = Block;
}

SEHExceptStmt* SEHExceptStmt::Create(const ASTContext &C, SourceLocation Loc,
                                     Expr *FilterExpr, Stmt *Block) {
  return new(C) SEHExceptStmt(Loc,FilterExpr,Block);
}

SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc, Stmt *Block)
    : Stmt(SEHFinallyStmtClass), Loc(Loc), Block(Block) {}

SEHFinallyStmt* SEHFinallyStmt::Create(const ASTContext &C, SourceLocation Loc,
                                       Stmt *Block) {
  return new(C)SEHFinallyStmt(Loc,Block);
}

CapturedStmt::Capture::Capture(SourceLocation Loc, VariableCaptureKind Kind,
                               VarDecl *Var)
    : VarAndKind(Var, Kind), Loc(Loc) {
  switch (Kind) {
  case VCK_This:
    assert(!Var && "'this' capture cannot have a variable!");
    break;
  case VCK_ByRef:
    assert(Var && "capturing by reference must have a variable!");
    break;
  case VCK_ByCopy:
    assert(Var && "capturing by copy must have a variable!");
    break;
  case VCK_VLAType:
    assert(!Var &&
           "Variable-length array type capture cannot have a variable!");
    break;
  }
}

CapturedStmt::VariableCaptureKind
CapturedStmt::Capture::getCaptureKind() const {
  return VarAndKind.getInt();
}

VarDecl *CapturedStmt::Capture::getCapturedVar() const {
  assert((capturesVariable() || capturesVariableByCopy()) &&
         "No variable available for 'this' or VAT capture");
  return VarAndKind.getPointer();
}

CapturedStmt::Capture *CapturedStmt::getStoredCaptures() const {
  unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);

  // Offset of the first Capture object.
  unsigned FirstCaptureOffset = llvm::alignTo(Size, alignof(Capture));

  return reinterpret_cast<Capture *>(
      reinterpret_cast<char *>(const_cast<CapturedStmt *>(this))
      + FirstCaptureOffset);
}

CapturedStmt::CapturedStmt(Stmt *S, CapturedRegionKind Kind,
                           ArrayRef<Capture> Captures,
                           ArrayRef<Expr *> CaptureInits,
                           CapturedDecl *CD,
                           RecordDecl *RD)
  : Stmt(CapturedStmtClass), NumCaptures(Captures.size()),
    CapDeclAndKind(CD, Kind), TheRecordDecl(RD) {
  assert( S && "null captured statement");
  assert(CD && "null captured declaration for captured statement");
  assert(RD && "null record declaration for captured statement");

  // Copy initialization expressions.
  Stmt **Stored = getStoredStmts();
  for (unsigned I = 0, N = NumCaptures; I != N; ++I)
    *Stored++ = CaptureInits[I];

  // Copy the statement being captured.
  *Stored = S;

  // Copy all Capture objects.
  Capture *Buffer = getStoredCaptures();
  std::copy(Captures.begin(), Captures.end(), Buffer);
}

CapturedStmt::CapturedStmt(EmptyShell Empty, unsigned NumCaptures)
  : Stmt(CapturedStmtClass, Empty), NumCaptures(NumCaptures),
    CapDeclAndKind(nullptr, CR_Default) {
  getStoredStmts()[NumCaptures] = nullptr;
}

CapturedStmt *CapturedStmt::Create(const ASTContext &Context, Stmt *S,
                                   CapturedRegionKind Kind,
                                   ArrayRef<Capture> Captures,
                                   ArrayRef<Expr *> CaptureInits,
                                   CapturedDecl *CD,
                                   RecordDecl *RD) {
  // The layout is
  //
  // -----------------------------------------------------------
  // | CapturedStmt, Init, ..., Init, S, Capture, ..., Capture |
  // ----------------^-------------------^----------------------
  //                 getStoredStmts()    getStoredCaptures()
  //
  // where S is the statement being captured.
  //
  assert(CaptureInits.size() == Captures.size() && "wrong number of arguments");

  unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (Captures.size() + 1);
  if (!Captures.empty()) {
    // Realign for the following Capture array.
    Size = llvm::alignTo(Size, alignof(Capture));
    Size += sizeof(Capture) * Captures.size();
  }

  void *Mem = Context.Allocate(Size);
  return new (Mem) CapturedStmt(S, Kind, Captures, CaptureInits, CD, RD);
}

CapturedStmt *CapturedStmt::CreateDeserialized(const ASTContext &Context,
                                               unsigned NumCaptures) {
  unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);
  if (NumCaptures > 0) {
    // Realign for the following Capture array.
    Size = llvm::alignTo(Size, alignof(Capture));
    Size += sizeof(Capture) * NumCaptures;
  }

  void *Mem = Context.Allocate(Size);
  return new (Mem) CapturedStmt(EmptyShell(), NumCaptures);
}

Stmt::child_range CapturedStmt::children() {
  // Children are captured field initializers.
  return child_range(getStoredStmts(), getStoredStmts() + NumCaptures);
}

Stmt::const_child_range CapturedStmt::children() const {
  return const_child_range(getStoredStmts(), getStoredStmts() + NumCaptures);
}

CapturedDecl *CapturedStmt::getCapturedDecl() {
  return CapDeclAndKind.getPointer();
}

const CapturedDecl *CapturedStmt::getCapturedDecl() const {
  return CapDeclAndKind.getPointer();
}

/// Set the outlined function declaration.
void CapturedStmt::setCapturedDecl(CapturedDecl *D) {
  assert(D && "null CapturedDecl");
  CapDeclAndKind.setPointer(D);
}

/// Retrieve the captured region kind.
CapturedRegionKind CapturedStmt::getCapturedRegionKind() const {
  return CapDeclAndKind.getInt();
}

/// Set the captured region kind.
void CapturedStmt::setCapturedRegionKind(CapturedRegionKind Kind) {
  CapDeclAndKind.setInt(Kind);
}

bool CapturedStmt::capturesVariable(const VarDecl *Var) const {
  for (const auto &I : captures()) {
    if (!I.capturesVariable() && !I.capturesVariableByCopy())
      continue;
    if (I.getCapturedVar()->getCanonicalDecl() == Var->getCanonicalDecl())
      return true;
  }

  return false;
}