// RUN: %clang_cc1 -triple x86_64-apple-darwin -fsyntax-only -Wconversion -std=c++11 -verify %s
// RUN: not %clang_cc1 -triple x86_64-apple-darwin -fsyntax-only -Wconversion -std=c++11 %s 2>&1 | FileCheck %s
#include <stddef.h>
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed long int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long uint64_t;
// <rdar://problem/7909130>
namespace test0 {
int32_t test1_positive(char *I, char *E) {
return (E - I); // expected-warning {{implicit conversion loses integer precision}}
}
int32_t test1_negative(char *I, char *E) {
return static_cast<int32_t>(E - I);
}
uint32_t test2_positive(uint64_t x) {
return x; // expected-warning {{implicit conversion loses integer precision}}
}
uint32_t test2_negative(uint64_t x) {
return (uint32_t) x;
}
}
namespace test1 {
uint64_t test1(int x, unsigned y) {
return sizeof(x == y);
}
uint64_t test2(int x, unsigned y) {
return __alignof(x == y);
}
void * const foo();
bool test2(void *p) {
return p == foo();
}
}
namespace test2 {
struct A {
unsigned int x : 2;
A() : x(10) {} // expected-warning {{implicit truncation from 'int' to bit-field changes value from 10 to 2}}
};
}
// This file tests -Wnull-conversion, a subcategory of -Wconversion
// which is on by default.
void test3() {
int a = NULL; // expected-warning {{implicit conversion of NULL constant to 'int'}}
int b;
b = NULL; // expected-warning {{implicit conversion of NULL constant to 'int'}}
long l = NULL; // FIXME: this should also warn, but currently does not if sizeof(NULL)==sizeof(inttype)
int c = ((((NULL)))); // expected-warning {{implicit conversion of NULL constant to 'int'}}
int d;
d = ((((NULL)))); // expected-warning {{implicit conversion of NULL constant to 'int'}}
bool bl = NULL; // expected-warning {{implicit conversion of NULL constant to 'bool'}}
char ch = NULL; // expected-warning {{implicit conversion of NULL constant to 'char'}}
unsigned char uch = NULL; // expected-warning {{implicit conversion of NULL constant to 'unsigned char'}}
short sh = NULL; // expected-warning {{implicit conversion of NULL constant to 'short'}}
double dbl = NULL; // expected-warning {{implicit conversion of NULL constant to 'double'}}
// Use FileCheck to ensure we don't get any unnecessary macro-expansion notes
// (that don't appear as 'real' notes & can't be seen/tested by -verify)
// CHECK-NOT: note:
// CHECK: note: expanded from macro 'FINIT'
#define FINIT int a3 = NULL;
FINIT // expected-warning {{implicit conversion of NULL constant to 'int'}}
// we don't catch the case of #define FOO NULL ... int i = FOO; but that
// seems a bit narrow anyway and avoiding that helps us skip other cases.
int *ip = NULL;
int (*fp)() = NULL;
struct foo {
int n;
void func();
};
int foo::*datamem = NULL;
int (foo::*funmem)() = NULL;
}
namespace test4 {
// FIXME: We should warn for non-dependent args (only when the param type is also non-dependent) only once
// not once for the template + once for every instantiation
template<typename T>
void tmpl(char c = NULL, // expected-warning 3 {{implicit conversion of NULL constant to 'char'}}
T a = NULL, // expected-warning {{implicit conversion of NULL constant to 'char'}} \
expected-warning {{implicit conversion of NULL constant to 'int'}}
T b = 1024) { // expected-warning {{implicit conversion from 'int' to 'char' changes value from 1024 to 0}}
}
template<typename T>
void tmpl2(T t = NULL) {
}
void func() {
tmpl<char>(); // expected-note 2 {{in instantiation of default function argument expression for 'tmpl<char>' required here}}
tmpl<int>(); // expected-note 2 {{in instantiation of default function argument expression for 'tmpl<int>' required here}}
tmpl<int>();
tmpl2<int*>();
}
}
namespace test5 {
template<int I>
void func() {
bool b = I;
}
template void func<3>();
}
namespace test6 {
decltype(nullptr) func() {
return NULL;
}
}
namespace test7 {
bool fun() {
bool x = nullptr; // expected-error {{cannot initialize}}
if (nullptr) {} // expected-warning {{implicit conversion of nullptr constant to 'bool'}}
return nullptr; // expected-error {{cannot initialize}}
}
}
namespace test8 {
#define NULL_COND(cond) ((cond) ? &num : NULL)
#define NULL_WRAPPER NULL_COND(false)
// don't warn on NULL conversion through the conditional operator across a
// macro boundary
void macro() {
int num;
bool b = NULL_COND(true);
if (NULL_COND(true)) {}
while (NULL_COND(true)) {}
for (;NULL_COND(true);) {}
do {} while (NULL_COND(true));
if (NULL_WRAPPER) {}
while (NULL_WRAPPER) {}
for (;NULL_WRAPPER;) {}
do {} while (NULL_WRAPPER);
}
// Identical to the previous function except with a template argument.
// This ensures that template instantiation does not introduce any new
// warnings.
template <typename X>
void template_and_macro() {
int num;
bool b = NULL_COND(true);
if (NULL_COND(true)) {}
while (NULL_COND(true)) {}
for (;NULL_COND(true);) {}
do {} while (NULL_COND(true));
if (NULL_WRAPPER) {}
while (NULL_WRAPPER) {}
for (;NULL_WRAPPER;) {}
do {} while (NULL_WRAPPER);
}
// Identical to the previous function except the template argument affects
// the conditional statement.
template <typename X>
void template_and_macro2() {
X num;
bool b = NULL_COND(true);
if (NULL_COND(true)) {}
while (NULL_COND(true)) {}
for (;NULL_COND(true);) {}
do {} while (NULL_COND(true));
if (NULL_WRAPPER) {}
while (NULL_WRAPPER) {}
for (;NULL_WRAPPER;) {}
do {} while (NULL_WRAPPER);
}
void run() {
template_and_macro<int>();
template_and_macro<double>();
template_and_macro2<int>();
template_and_macro2<double>();
}
}
namespace test9 {
typedef decltype(nullptr) nullptr_t;
nullptr_t EXIT();
bool test() {
return EXIT(); // expected-error {{cannot initialize}}
}
}
// Test NULL macro inside a macro has same warnings nullptr inside a macro.
namespace test10 {
#define test1(cond) \
((cond) ? nullptr : NULL)
#define test2(cond) \
((cond) ? NULL : nullptr)
#define assert(cond) \
((cond) ? foo() : bar())
void foo();
void bar();
void run(int x) {
if (test1(x)) {}
if (test2(x)) {}
assert(test1(x));
assert(test2(x));
}
}
namespace test11 {
#define assert11(expr) ((expr) ? 0 : 0)
// The whitespace in macro run1 are important to trigger the macro being split
// over multiple SLocEntry's.
#define run1() (dostuff() ? \
NULL : NULL)
#define run2() (dostuff() ? NULL : NULL)
int dostuff ();
void test(const char * content_type) {
assert11(run1());
assert11(run2());
}
}
namespace test12 {
#define x return NULL;
bool run() {
x // expected-warning{{}}
}
}
// More tests with macros. Specficially, test function-like macros that either
// have a pointer return type or take pointer arguments. Basically, if the
// macro was changed into a function and Clang doesn't warn, then it shouldn't
// warn for the macro either.
namespace test13 {
#define check_str_nullptr_13(str) ((str) ? str : nullptr)
#define check_str_null_13(str) ((str) ? str : NULL)
#define test13(condition) if (condition) return;
#define identity13(arg) arg
#define CHECK13(condition) test13(identity13(!(condition)))
void function1(const char* str) {
CHECK13(check_str_nullptr_13(str));
CHECK13(check_str_null_13(str));
}
bool some_bool_function(bool); // expected-note {{no known conversion}}
void function2() {
CHECK13(some_bool_function(nullptr)); // expected-error {{no matching function}}
CHECK13(some_bool_function(NULL)); // expected-warning {{implicit conversion of NULL constant to 'bool'}}
}
#define run_check_nullptr_13(str) \
if (check_str_nullptr_13(str)) return;
#define run_check_null_13(str) \
if (check_str_null_13(str)) return;
void function3(const char* str) {
run_check_nullptr_13(str)
run_check_null_13(str)
if (check_str_nullptr_13(str)) return;
if (check_str_null_13(str)) return;
}
void run(int* ptr);
#define conditional_run_13(ptr) \
if (ptr) run(ptr);
void function4() {
conditional_run_13(nullptr);
conditional_run_13(NULL);
}
}